The PIC18F46J50 family devices that you have received conform functionally to the current Device Data Sheet (DS39931D), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18F46J50 family silicon.

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

1. Using the appropriate interface, connect the device to the hardware debugger.
2. Open an MPLAB IDE project.
3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
4. Based on the version of MPLAB IDE you are using, do one of the following:
 a) For MPLAB IDE 8, select Programmer > Reconnect.
 b) For MPLAB X IDE, select Window > Dashboard and click the Refresh Debug Tool Status icon ().
5. Depending on the development tool used, the part number and Device Revision ID value appear in the Output window.

The DEVREV values for the various PIC18F46J50 family silicon revisions are shown in Table 1.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A4).

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

TABLE 1: SILICON DEVREV VALUES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID(1)</th>
<th>Revision ID for Silicon Revision(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC18F24J50</td>
<td>4C0Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18F25J50</td>
<td>4C2Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18F26J50</td>
<td>4C4Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18F44J50</td>
<td>4C6Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18F45J50</td>
<td>4C8Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18F46J50</td>
<td>4CAxh</td>
<td>2h</td>
</tr>
<tr>
<td>PIC18LF24J50</td>
<td>4CCXh</td>
<td></td>
</tr>
<tr>
<td>PIC18LF25J50</td>
<td>4CEXh</td>
<td></td>
</tr>
<tr>
<td>PIC18LF26J50</td>
<td>4D0Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18LF44J50</td>
<td>4D2Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18LF45J50</td>
<td>4D4Xh</td>
<td></td>
</tr>
<tr>
<td>PIC18LF46J50</td>
<td>4D6Xh</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The Device IDs (DEVID and DEVREV) are located at the last two implemented addresses of configuration memory space. They are shown in hexadecimal in the format “DEVID DEVREV”.

Note 2: Refer to the “PIC18F2XJXX/4XJXX Family Flash Microcontroller Programming Specification” (DS39687) for detailed information on Device and Revision IDs for your specific device.

© 2009-2014 Microchip Technology Inc. DS80000436E-page 1
<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Synchronous Serial Port (MSSP1)</td>
<td>I²C™ Modes</td>
<td>1.</td>
<td>Must keep LATB<5:4> bits clear.</td>
<td>X</td>
</tr>
<tr>
<td>Master Synchronous Serial Port (MSSP)</td>
<td>I²C Slave</td>
<td>2.</td>
<td>Module may not receive the correct data if there is a delay in reading SSPxBUF after SSPxIF interrupt.</td>
<td>X X</td>
</tr>
<tr>
<td>Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)</td>
<td>Enable/ Disable</td>
<td>3.</td>
<td>If interrupts are enabled, a 2 TCY delay is needed after re-enabling the module.</td>
<td>X X</td>
</tr>
<tr>
<td>10-Bit Analog-to-Digital Converter (ADC)</td>
<td>Fosc/2 Clock</td>
<td>4.</td>
<td>Fosc/2 A/D Conversion mode may not meet linearity error limits.</td>
<td>X X</td>
</tr>
<tr>
<td>Parallel Master Port (PMP)</td>
<td>PSP/PMP</td>
<td>5.</td>
<td>The data bus may not work correctly.</td>
<td>X</td>
</tr>
<tr>
<td>Low-Power Modes (Deep Sleep)</td>
<td>Deep Sleep</td>
<td>6.</td>
<td>Wake-up events that occur during Deep Sleep entry may not generate an event.</td>
<td>X X</td>
</tr>
<tr>
<td>DC Characteristics (Supply Voltage)</td>
<td>Supply Voltage</td>
<td>7.</td>
<td>Minimum operating voltage (Vdd) parameter for “F” devices is 2.25V.</td>
<td></td>
</tr>
<tr>
<td>Analog-to-Digital Converter (Band Gap Reference)</td>
<td>Band Gap Reference</td>
<td>8.</td>
<td>At high VDD voltages, performing an A/D conversion on Channel 15 could have issues.</td>
<td>X X</td>
</tr>
<tr>
<td>Charge Time Measurement Unit (CTMU)</td>
<td>Constant Current</td>
<td>9.</td>
<td>Low voltages turn off constant current source.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1/3</td>
<td>Interrupt</td>
<td>10.</td>
<td>When the timer is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur.</td>
<td>X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
Silicon Errata Issues

1. Module: Master Synchronous Serial Port (MSSP1)

If the LATB<5> or LATB<4> bit is set, the MSSP1 module will not work correctly in the I²C™ modes. If both LATB<5> and LATB<4> are clear, the module will work normally.

Work around
Clear the bits, LATB<5:4>, prior to enabling the MSSP1 module in an I²C mode. Keep these bits clear while using the module.

For operation in I²C modes, the TRISB<5:4> bits should be set.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Module: Master Synchronous Serial Port (MSSP)

In extremely rare cases, when configured for I²C™ slave reception, the MSSP module may not receive the correct data. This occurs only if the Serial Receive/Transmit Buffer Register (SSPxBUF) is not read within a window after the SSPxFIF interrupt has occurred.

Work around
The issue can be resolved in either of these ways:

- Prior to the I²C slave reception, enable the clock stretching feature. This is done by setting the SEN bit (SSPxCON2<0>).
- Each time the SSPxFIF is set, read the SSPxBUF before the first rising clock edge of the next byte being received.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
3. Module: Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)

In rare situations, when interrupts are enabled, unexpected results may occur if:

- The EUSART is disabled (the SPEN bit, RCSTAx<7> = 0)
- The EUSART is re-enabled (RCSTAx<7> = 1)
- A 2-cycle instruction is executed immediately after setting SPEN = 1

Work around

Add a 2 Tcy delay after any instruction that re-enables the EUSART module (sets SPEN = 1). Refer to Example 1.

EXAMPLE 1: RE-ENABLING A EUSART MODULE

```
;Initial conditions: SPEN = 0 (module disabled)
;To re-enable the module:
;Re-Initialize TXSTAx, BAUDCONx, SPBRGx, SPBRGHx registers (if needed)
;Re-Initialize RCSTAx register (if needed), but do not set SPEN = 1 yet

;Now enable the module, but add a 2-Tcy delay before executing any two-cycle instructions
bsf RCSTA1, SPEN ;or RCSTA2 if EUSART2
nop ;1 Tcy delay
nop ;1 Tcy delay (two total)

;CPU may now execute 2 cycle instructions
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
4. Module: 10-Bit Analog-to-Digital Converter (ADC)
When the A/D conversion clock select bits are set for Fosc/2 (ADCON1<2:0> = 000), the Integral Linearity Error (EIL) parameter (A03) and Differential Linearity Error (EDL) parameter (A04) may exceed data sheet specifications.

Work around
Select one of the alternate AD clock sources shown in Table 3. The EIL and EDL parameters are met for the other clocking options.

<table>
<thead>
<tr>
<th>ADCON1<2:0> ADCS<2:0></th>
<th>Clock Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Fosc/64</td>
</tr>
<tr>
<td>101</td>
<td>Fosc/16</td>
</tr>
<tr>
<td>100</td>
<td>Fosc/4</td>
</tr>
<tr>
<td>011</td>
<td>Frc</td>
</tr>
<tr>
<td>010</td>
<td>Fosc/32</td>
</tr>
<tr>
<td>001</td>
<td>Fosc/8</td>
</tr>
</tbody>
</table>

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
<th>X</th>
</tr>
</thead>
</table>

5. Module: Parallel Master Port (PMP)
When configured for Parallel Slave Port (PMMODEH<1:0> = 0x and PMPEN = 1), the data bus (PMD<7:0>) may not work correctly and incorrect data could be captured into the PMDIN1L register.

When configured for Parallel Master Port (PMMODEH<1:0> = 1x and PMPEN = 1), clearing a PMEx bit to disable a PMP address line also disables the corresponding PMDx data bus line.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
<th>X</th>
</tr>
</thead>
</table>
6. Module: Low-Power Modes (Deep Sleep)

Entering Deep Sleep mode takes approximately 2 TCy, following the SLEEP instruction. Wake-up events that occur during this Deep Sleep entry period may not generate a wake-up event.

Work around

If using the RTCC alarm for Deep Sleep wake-up, code should only enter Deep Sleep mode when the RTCC Value registers read synchronization bit (RTCCFG<4>) is clear.

This will prevent missing an RTCC alarm that could occur during the period after the SLEEP instruction, but before the Deep Sleep mode has not been fully entered.

The revision A4 silicon allows insertion of a single instruction between setting the Deep Sleep Enable bit (DSEN, DCONH<7>) and issuing the SLEEP instruction (see Example 2). The insertion of a NOP instruction before the SLEEP instruction eliminates the 2 TCy window where wake-up events could be missed.

Before using this work around, users should check their device’s revision ID bits to verify that they have the A4 silicon. This can be done at run time by a table read from address, 3FFFFEh.

On revision A2 silicon devices, the instruction cannot be inserted between setting the DSEN bit and executing the SLEEP instruction or the device will enter conventional Sleep mode, not Deep Sleep.

Even on A4 silicon devices, if the firmware immediately executes SLEEP after setting DSEN, the device will enter Deep Sleep mode without benefitting from this work around.

EXAMPLE 2: DEEP-SLEEP WAKE-UP WORK AROUND

```assembly
EnterDeepSleep:
    bsf  DCONH, DSEN  ; Enter Deep Sleep mode on SLEEP instruction
    nop              ; Not compatible with A2 silicon
    sleep           ; Enter Deep Sleep mode
    (...)           ; Add code here to handle wake up events that may have been asserted prior to Deep Sleep entry
    goto EnterDeepSleep  ; re-attempt Deep Sleep entry if desired
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2009-2014 Microchip Technology Inc.
7. Module: DC Characteristics (Supply Voltage)

The minimum operating voltage (VDD) parameter (D001) for "F" devices is 2.25V. For "LF" devices (such as the PIC18LF46J50), the minimum rated VDD operating voltage is 2.0V.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Module: Analog-to-Digital Converter (Band Gap Reference)

At high VDD voltages (ex: >2.5V), performing an ADC conversion on Channel 15 (the VBG absolute reference) can temporarily disturb the reference voltage supplied to the HLVD module and comparator module (only when configured to use the Vrerv). At lower VDD voltages, the disturbance will be less or non-existent.

Work around
If precise HLVD or comparator Vrerv thresholds are required at high VDD voltages, avoid performing ADC conversions on Channel 15 while simultaneously using the HLVD or comparator Vrerv. If an ADC conversion is performed on Channel 15, a settling time of approximately 100 μs is needed before the reference voltage fully returns to the original value.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Module: Charge Time Measurement Unit (CTMU)

On an "F" device, the CTMU current source will stop sourcing current if the applied VDD voltage falls below the LVDSTAT (WDTCN<6>) threshold (2.45V nominal). When VDD is above the LVDSTAT threshold, the CTMU will function normally. This issue does not apply to "LF" devices. The current source will continue to function normally at all rated voltages for these devices.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Module: Timer1/3

When Timer1 or Timer3 is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur if an external clock edge arrives too soon following a firmware write to the TMRxH:TMRxL registers. An unexpected interrupt flag event may also occur when enabling the module or switching from Synchronous to Asynchronous mode.

Work around
This issue only applies when operating the timer in Asynchronous mode. Whenever possible, operate the timer module in Synchronous mode to avoid spurious timer interrupts.

If Asynchronous mode must be used in the application, potential strategies to mitigate the issue may include any of the following:

- Design the firmware so it does not rely on the TMRxIF flag or keep the respective interrupt disabled. The timer still counts normally and does not reset to 0x0000 when the spurious interrupt flag event is generated.
- Design the firmware so that it does not write to the TMRxH:TMRxL registers or does not periodically disable/enable the timer, or switch modes. Reading from the timer does not trigger the spurious interrupt flag events.
- If the firmware must use the timer interrupts and must write to the timer (or disable/enable, or mode switch the timer), implement code to suppress the spurious interrupt event, should it occur. This can be achieved by following the process shown in Example 3.
EXAMPLE 3: ASYNCHRONOUS TIMER MODE WORK AROUND TO AVOID SPURIOUS INTERRUPT

```c
// Timer1 update procedure in asynchronous mode
// The code below uses Timer1 as example

T1CONbits.TMR1ON = 0; // Stop timer from incrementing
PIE1bits.TMR1IE = 0; // Temporarily disable Timer1 interrupt vectoring
TMR1H = 0x00; // Update timer value
TMR1L = 0x00;
T1CONbits.TMR1ON = 1; // Turn on timer

// Now wait at least two full T1CKI periods + 2TCY before re-enabling Timer1 interrupts.
// Depending upon clock edge timing relative to TMR1H/TMR1L firmware write operation,
// a spurious TMR1IF flag event may sometimes assert. If this happens, to suppress
// the actual interrupt vectoring, the TMR1IE bit should be kept clear until
// after the "window of opportunity" (for the spurious interrupt flag event has passed).
// After the window is passed, no further spurious interrupts occur, at least
// until the next timer write (or mode switch/enable event).

while(TMR1L < 0x02); // Wait for 2 timer increments more than the Updated Timer value
                   // indicating more than 2 full T1CKI clock periods elapsed
NOP();             // Wait two more instruction cycles
NOP();
PIE1bits.TMR1IE = 0; // Clear TMR1IF flag, in case it was spuriously set
PIE1bits.TMR1IE = 1; // Now re-enable interrupt vectoring for timer 1
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the Device Data Sheet (DS39931D):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

1. **Module: Special Features (CONFIG2L)**

 The “T1DIG” feature mentioned in the Device Data Sheet (DS39931D) is not implemented in this device family. The feature, associated with bit 3 of the CONFIG2L Configuration register, is discussed in **Section 26.1 “Configuration Bits”** and **Section 2.5.1 “Oscillator Control Register”**.

 For application firmware to switch to the Timer1 clock source, it must first enable the crystal driver by setting the T1OSCEN bit (T1CON<3>). The microcontroller will ignore attempts to clock switch to the Timer1 clock source when the crystal driver is disabled.
APPENDIX A: DOCUMENT

REVISION HISTORY

Rev A Document (2/2009)
First release of this document. Silicon issues 1 (T1DIG), 2-3 (MSSP), 4 (EUSART), 5 (ADC), 6 (PMP), 7 (Deep Sleep), 8 (Supply Voltage).

Added silicon issues 9 (Band Gap Reference) and 10 (Charge Time Measurement Unit – CTMU).

Converted existing document for the A2 silicon revision to the new, combined format. (There were no other silicon errata or data sheet clarification documents for the device family.)

Removed silicon issue 1 (Special Features, T1DIG) and modified decremented issue 1, formerly 2 (MSSP1) and 6 (Low-Power Modes – Deep Sleep). Added data sheet clarifications 1 (Special Features – CONFIG2L), 2 (DC Characteristics – Power-Down Current) and 3 (DC Characteristics – Input Leakage).

Updated text description for silicon issue 5 (Parallel Master Port) and removed data sheet clarifications 2 (DC Characteristics – Power-Down Current) and 3 (DC Characteristics – Input Leakage) since both clarifications have been included in the PIC18F46J50 Data Sheet.

Rev E Document (7/2014)
Added MPLAB X IDE; Added Module 10, Timer1/3, to Silicon Errata Issues section.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOG, KEELOG logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC18 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-432-4