The PIC18F26K20/46K20 family devices that you have received conform functionally to the current Device Data Sheet (DS41303H), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18F26K20/46K20 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A5).

Data Sheet clarifications and corrections start on page 9, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip’s programmers, debuggers, and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

1. Using the appropriate interface, connect the device to the hardware debugger.
2. Open an MPLAB IDE project.
3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
4. Based on the version of MPLAB IDE you are using, do one of the following:
 a) For MPLAB IDE 8, select **Programmer > Reconnect**.
 b) For MPLAB X IDE, select **Window > Dashboard** and click the **Refresh Debug Tool Status** icon.
5. Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC18F26K20/46K20 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID(1) (11-bit)</th>
<th>Revision ID for Silicon Revision(2) (5-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A4</td>
</tr>
<tr>
<td>PIC18F26K20</td>
<td>100h</td>
<td>0x06</td>
</tr>
<tr>
<td>PIC18F46K20</td>
<td>101h</td>
<td>0x06</td>
</tr>
</tbody>
</table>

Note 1: The Device IDs (DEVID and DEVREV) are located at the last two implemented addresses of configuration memory space. They are shown in hexadecimal in the format “DEVID:DEVREV”.

2: Refer to the “PIC18F2XXK20/4XXK20 Flash Programming Specification” (DS41297) for detailed information on Device and Revision IDs for your specific device.
TABLE 2: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECCP</td>
<td>ECCP Modes</td>
<td>1.</td>
<td>Changing ECCP mode may cause a false capture of TMR1 value.</td>
<td>X</td>
</tr>
<tr>
<td>ECCP</td>
<td>Full-Bridge</td>
<td>2.</td>
<td>Compromised dead band.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP I²C</td>
<td>I²C</td>
<td>3.</td>
<td>Slower slew rate than I²C specifications.</td>
<td>X</td>
</tr>
<tr>
<td>ADC</td>
<td>ADC Conversion</td>
<td>4.</td>
<td>Offset error is 3 LSb typical and 7 LSb maximum.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP I²C</td>
<td>I²C Master</td>
<td>5.</td>
<td>False ACK generated when SSPOV bit is set and a matching address is clocked-in.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP I²C</td>
<td>I²C Master Baud Rate</td>
<td>6.</td>
<td>The first high-clock cycle following a clock stretching event may be shorter than half the clock period.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP SPI</td>
<td>SPI Clock</td>
<td>7.</td>
<td>Unexpected operation may occur if SSPADD is set to a value lower than 0x03.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP SPI</td>
<td>SPI Master</td>
<td>8.</td>
<td>First SPI clock may be short if SPI clock is configured to Timer2output/2.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP SPI</td>
<td>SPI Master</td>
<td>9.</td>
<td>When CKE is cleared and SMP is set, the last bit of incoming data will not be sampled properly.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP SPI</td>
<td>SPI Master</td>
<td>10.</td>
<td>SSPBUF will reload the SSPSR output on every SS pin toggle, if CKE is set.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP SPI</td>
<td>SPI Master</td>
<td>11.</td>
<td>Erroneous output on SCK pin for CKE = 1 and CKP = 0.</td>
<td>X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Synchronous mode</td>
<td>12.</td>
<td>Duty cycle of CK is skewed by one baud count if SPBRG is set to an odd number.</td>
<td>X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Transmit Buffer</td>
<td>13.</td>
<td>Data corruption may occur if TXREG is written while TX shift register has some characters in it for SPBRG = 3.</td>
<td>X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Transmit mode</td>
<td>14.</td>
<td>Improper clock behavior for SPBRG = 0.</td>
<td>X</td>
</tr>
<tr>
<td>System Clocks</td>
<td>HFINTOSC</td>
<td>15.</td>
<td>HFINTOSC output frequency is 16 MHz ± 3%, 25°C to 85°C.</td>
<td>X</td>
</tr>
<tr>
<td>POR/BOR</td>
<td>Power-on Reset</td>
<td>16.</td>
<td>Unexpected code execution may occur below the BOR range.</td>
<td>X</td>
</tr>
<tr>
<td>POR</td>
<td>Power-on Reset</td>
<td>17.</td>
<td>POR may release below the rearm voltage for certain BOR voltages.</td>
<td>X</td>
</tr>
<tr>
<td>POR</td>
<td>Power-on Reset</td>
<td>18.</td>
<td>Part may stay in Reset state if POR triggers and then VDD rises faster than 7500 volts per second.</td>
<td>X</td>
</tr>
<tr>
<td>Clocks</td>
<td>EC mode</td>
<td>19.</td>
<td>EC Mode operation is limited to a maximum of 48 MHz.</td>
<td>X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
TABLE 2: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparators</td>
<td>Input Offset Voltage</td>
<td>20.</td>
<td>Comparator input offset voltage range increases as the Common mode voltage decreases and may degrade over the lifetime of the part, accelerated by high temperature.</td>
<td>X</td>
</tr>
<tr>
<td>Comparators</td>
<td>Comparator Output</td>
<td>21.</td>
<td>The CxOUT is forced to zero when the CxON bit is clear, irrespective of the CxPOL bit setting.</td>
<td>X</td>
</tr>
<tr>
<td>Data EEPROM Memory</td>
<td>Endurance</td>
<td>22.</td>
<td>The write/erase endurance of Data EE Memory is limited to 10K cycles.</td>
<td>X</td>
</tr>
<tr>
<td>Program Flash Memory</td>
<td>Endurance</td>
<td>23.</td>
<td>The write/erase endurance of the PFM is limited to 1K cycles when VDD is above 3V.</td>
<td>X</td>
</tr>
<tr>
<td>Input/Output (PIC18F26K20 only)</td>
<td>I/O Pins</td>
<td>24.</td>
<td>Reading PORTE bit 3 always returns 0.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Timer Interrupt</td>
<td>25.</td>
<td>False interrupt may occur in Asynchronous mode.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1/3</td>
<td>Timer Interrupt</td>
<td>26.</td>
<td>In Asynchronous mode a false interrupt may occur if the clock arrives too soon following a firmware write to the TMR registers. Also, a switch from Synchronous to Asynchronous mode can cause it.</td>
<td>X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A5).

1. Module: ECCP

Changing the CCP1M<3:0> bits of CCP1CON may cause the CCPR1H and CCPR1L registers to capture the value of Timer1.

Work around
Halt Timer1 before changing ECCP mode. Reload Timer1 with desired value after ECCP is setup and before Timer1 is restarted.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Module: ECCP

Changing direction in Full-Bridge mode does not insert dead time between changing the active drivers in common legs of the bridge.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

3. Module: MSSP I^2C

Slew rate is slower than I^2C specifications when the SLRCON<2> bit is set.

Work around
Clear SLRCON<2> bit when using the I^2C peripheral.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

4. Module: ADC

Offset error is 3 LSb typical, 7 LSb maximum, including an acquisition time dependent component (~2 LSb).

Work around
The time dependent error is insignificant when the time between conversions is less than 100 ms. When the time since the previous conversion is greater than 100 ms then take two ADC conversions and discard the first.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

5. Module: MSSP I^2C

If a new address byte is received while the BF flag is set, the SSPOV bit is set and an ACK is not generated, both of which are proper operation. If only the SSPOV bit is set (BF flag was cleared) and a matching address is clocked in, that received byte will be loaded into the SSPBUF register and an ACK will be generated, both of which are improper operation.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

6. Module: MSSP I^2C

In Master I^2C mode, when a slave device releases the clock after holding it low (clock stretching), the pulse width of the first high clock cycle may be shorter than half the clock period.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

7. Module: MSSP I^2C

In Master I^2C mode, baud rates obtained by setting SSPADD to a value less than 0x03 will cause unexpected operation.

Work around
Ensure SSPADD is set to a value greater than or equal to 0x04.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
8. **Module: MSSP SPI**

When the SPI clock is configured for Timer2 output/2 (SSPCON1<3:0> = 0011), the first SPI high time may be short.

Work around

Option 1: Ensure TMR2 value rolls over to zero immediately before writing to SSPBUF.

Option 2: Turn Timer2 off and clear TMR2 before writing SSPBUF. Enable TMR2 after SSPBUF is written.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

9. **Module: MSSP SPI**

In SPI Master mode, when the CKE bit is cleared and the SMP bit is set, the last bit of the incoming data stream (bit 0) at the SDI pin will not be sampled properly.

Work around

None.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

10. **Module: MSSP SPI**

In SPI Master mode, when CKE bit is set, the SSPBUF will reload the SSPSR output shift register on every high-to-low transition of the SS pin.

Work around

Avoid using the SS pin when the CKE bit is set and the MSSP is configured for SPI Master mode.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

11. **Module: MSSP SPI**

When SPI is enabled in Master mode with CKE = 1 and CKP = 0, a 1/Fosc wide pulse will occur on the SCK pin.

Work around

Configure the SCK pin as an input until after the MSSP is setup.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

12. **Module: EUSART**

In Synchronous Master mode, when the SPBRG is set to an odd number, the duty cycle of the CK output will be skewed by one baud clock count.

Work around

High values of SPBRG will minimize the effect of this anomaly.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

13. **Module: EUSART**

In Synchronous Master mode, when the SPBRG is set to 3 and the TXREG is written while the previous character is still in the TX shift register, the LS bit of the TXREG character may be corrupted during transmission.

Work around

When SPBRG is set to 3, wait until the TRMT bit of the TXSTA register is set before loading TXREG with the next character to be transmitted.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

14. **Module: EUSART**

In Synchronous Master mode, if the SPBRG register is equal to 0, when the TXEN bit is set, then writing to TXREG will properly start transmission. However, the clock will be improperly out of phase with the data bits and the clock will not stop at the end of the character transmission.

Work around

Set SPBRG register to non-zero value before setting the TXEN bit.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
15. Module: System Clocks
 HFINTOSC output frequency is 16 MHz ± 3%, 25°C to 85°C.

 Work around
 None.

 Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

16. Module: POR/BOR
 The POR rearm voltage may be below the low end of the BOR range causing unexpected code execution below the BOR range.

 Work around
 Use external power monitor to hold device in Reset below 1.1 Volts.

 Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

17. Module: POR
 The POR may release around 0.8 volts (below the POR rearm voltage of 1.2V nominal) when VDD rises from below either 0.60V when BOR is not enabled, or 0.33V when BOR is enabled.

 Work around
 Use Power-up Timer when operating with the EC, EXTRC or HFINTOSC oscillator modes. Ensure that VDD rise time is less than the Power-up Timer time.

 Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

18. Module: POR
 The part may hang in the Reset state when VDD falls to the POR rearm threshold of approximately 1.2 volts then rises at a rate faster than 7500 volts per second to the operating range. Recovery from the hung state is possible only by first lowering VDD to below the POR rearm threshold followed by raising VDD to the operating range.

 Work around
 Slow VDD rise time by adding series resistance between the voltage supply and the VDD pin. VDD bypassing should remain on the pin side of the series resistor.

 Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

19. Module: Clocks
 EC Mode operation is limited to a maximum of 48 MHz.

 Work around
 Use HS Clock mode for external clocking above 48 MHz.

 Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

20. Module: Comparators
 Comparator input offset voltage is ± 25 mV and may degrade over the lifetime of the part accelerated by high temperature. The offset voltage increases as the common-mode voltage decreases with the following characteristics: Offset is ± 25 mV when the common-mode voltage is VDD; The offset is up to ± 50 mV when the common-mode voltage is VDD/2; The offset is greater than ± 50 mV when the common-mode voltage is 0V.

 Work around
 None.

 Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

21. Module: Comparators
 When the CxON bit is clear, the output from the comparator will be properly forced to zero, but the CxPOL bit will improperly have no effect on the CxOUT bit. This prevents presetting the comparator change-on-interrupt mismatch latches as described in the data sheet.

 Work around
 Configure one of the unused comparator input channels as a digital output. Use that digital output to manipulate the comparator output to the desired CxOUT non-interrupt level. When the comparator
is then set to the desired inputs, the mismatch latches will be preset to the non-interrupt level and the CxIF flag can then be cleared.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

22. Module: Data EEPROM Memory

The write/erase endurance of Data EE Memory is limited to 10K cycles.

Work around

Use error correction method that stores data in multiple locations.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

23. Module: Program Flash Memory

The write/erase endurance of the PFM is limited to 1K cycles when VDD is above 3V. Endurance degrades when VDD is below 3V.

Work around

For data tables in Program Flash Memory, use the error correction method that stores data in multiple locations.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

24. Module: Input/Output (PIC18F26K20 only)

Reading PORTE bit 3 always returns 0.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

25. Module: Timer1

In Asynchronous Counter mode, a false interrupt may occur on the first rising T1CKI clock edge after writing the TMR1H or TMR1L register.

Work around

Examine the TMR1H:TMR1L register pair in the Interrupt Service Routine (ISR). If the TMR1H:TMR1L register pair is less than the preset value then service the interrupt. Otherwise, disregard the interrupt and only clear the Timer1 interrupt flag.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

26. Module: Timer1/3

When Timer1 or Timer3 is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur if an external clock edge arrives too soon following a firmware write to the TMRxH:TMRxL registers. An unexpected interrupt flag event may also occur when enabling the module or switching from Synchronous to Asynchronous mode.

Work around

This issue only applies when operating the timer in Asynchronous mode. Whenever possible, operate the timer module in Synchronous mode to avoid spurious timer interrupts.

If Asynchronous mode must be used in the application, potential strategies to mitigate the issue may include any of the following:

• Design the firmware so it does not rely on the TMRxIF flag or keep the respective interrupt disabled. The timer still counts normally and does not reset to 0x0000 when the spurious interrupt flag event is generated.

• Design the firmware so that it does not write to the TMRxH:TMRxL registers or does not periodically disable/enable the timer, or switch modes. Reading from the timer does not trigger the spurious interrupt flag events.

• If the firmware must use the timer interrupts and must write to the timer (or disable/enable, or mode switch the timer), implement code to suppress the spurious interrupt flag events.

Example 1.
EXAMPLE 1: ASYNCHRONOUS TIMER MODE WORK AROUND TO AVOID SPURIOUS INTERRUPT

//Timer1 update procedure in asynchronous mode
//The code below uses Timer1 as example

T1CONbits.TMR1ON = 0; //Stop timer from incrementing
PIE1bits.TMR1IE = 0; //Temporarily disable Timer1 interrupt vectoring
TMR1H = 0x00; //Update timer value
TMR1L = 0x00;
T1CONbits.TMR1ON = 1; //Turn on timer

//Now wait at least two full T1CKI periods + 2TCY before re-enabling Timer1 interrupts.
//Depending upon clock edge timing relative to TMR1H/TMR1L firmware write operation,
//a spurious TMR1IF flag event may sometimes assert. If this happens, to suppress
//the actual interrupt vectoring, the TMR1IE bit should be kept clear until
//after the "window of opportunity" (for the spurious interrupt flag event has passed).
//After the window is passed, no further spurious interrupts occur, at least
//until the next timer write (or mode switch/enable event).

while(TMR1L < 0x02); //Wait for 2 timer increments more than the Updated Timer
 //value (indicating more than 2 full T1CKI clock periods elapsed)
NOP(); //Wait two more instruction cycles
NOP();
PIR1bits.TMR1IF = 0; //Clear TMR1IF flag, in case it was spuriously set
PIE1bits.TMR1IE = 1; //Now re-enable interrupt vectoring for timer 1
Data Sheet Clarifications

The following typographical corrections and clarifications are to be noted for the latest version of the device data sheet (DS41303H):

Note: Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.

1. Module: Product Identification System

The temperature range values have been corrected.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Tape and Reel Option</th>
<th>Temperature Range</th>
<th>Package</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC18F26K20; PIC18F46K20; DSTEMP; PIC18F26K20; DSTEMP; PIC16F887; PIC18F45K20; PIC18F46K20.</td>
<td>Blank = Standard packaging (tube or tray)</td>
<td>T = Tape and Reel[1]</td>
<td>I = -40°C to +85°C (Industrial)</td>
<td>PT = TQFP (Thin Quad Flatpack)</td>
<td>QTP, SQTP, Code or Special Requirements (blank otherwise)</td>
</tr>
</tbody>
</table>

Examples:

a) PIC18F45K20 - E/P 301 = Industrial temp., PDIP package, QTP pattern #301.
b) PIC18F26K20 - I/SO = Industrial temp., SOIC package.
c) PIC16F887 - E/P = Extended temp., PDIP package.
d) PIC18F46K20 - I/PT = Industrial temp., TQFP package, tape and reel.

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
APPENDIX A: REVISION HISTORY

Rev A Document (12/08)
First revision of this document.

Added Module 26.

Rev C Document (9/2015)
Updated errata to new format.
Data Sheet Clarifications:
Added Module 1: Product Identification System.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOG, KEELOG logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, Optolizer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscent Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VanSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestiC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-798-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-6473-2460
Fax: 86-25-6473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4432

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-365
Fax: 886-3-5778-360

Taiwan - Kaohsiung
Tel: 886-6-2713-7828

Taiwan - Taipei
Tel: 886-2-2308-8600
Fax: 886-2-2308-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

07/14/15