MRF24J40MC
Data Sheet

2.4 GHz IEEE Std. 802.15.4™ RF
Transceiver Module with PA/LNA and
External Antenna Connector
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, Hi-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rPIC, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, All Rights Reserved.

Printed on recycled paper.

2.4 GHz IEEE Std. 802.15.4™ RF Transceiver Module with PA/LNA and External Antenna Connector

Features:
- IEEE Std. 802.15.4™ Compliant RF Transceiver
- Supports ZigBee®, MiWi™ Development Environment Proprietary Wireless Networking Protocols
- 4-Wire Serial Peripheral Interface (SPI) with Interrupt
- Small size: 0.9” x 1.3” (22.9 mm x 33.0 mm), Surface Mountable: Pin Compatible with MRF24J40MB
- Integrated Crystal, Internal Voltage Regulator, Matching Circuitry, Power Amplifier, Low Noise Amplifier
- External Antenna Connector: Ultra Miniature Coaxial (U.FL), 50Ω
- Easy Integration into Final Product: Minimize Product Development, Quicker Time to Market
- Radio Regulation Certified for United States (FCC), Canada (IC), Europe (ETSI) and Australia/New Zealand (C-TICK)
- Compatible with Microchip microcontroller families (PIC16, PIC18, PIC24, dsPIC33 and PIC32)
- Range up to 4000 ft

Operational:
- Operating Voltage: 2.7V – 3.6V (3.3V typical)
- Temperature Range: -40°C to +85°C Industrial
- Low-Current Consumption:
  - Rx Mode: 25 mA (typical)
  - Tx Mode: 120 mA (typical)
  - Sleep: 12 μA (typical)

RF/Analog Features:
- ISM Band 2.405 GHz – 2.475 GHz Operation
- Data Rate: 250 kbps
- -10 dBm Typical Sensitivity with -23 dBm Maximum Input Level
- +19 dBm Typical Output Power with 45 dB Tx Power Control Range
- Integrated Low Phase Noise VCO, Frequency Synthesizer and PLL Loop Filter
- Digital VCO and Filter Calibration
- Integrated RSSI ADC and I/Q DACs
- Integrated LDO
- High Receiver RSSI Dynamic Range

MAC/Baseband Features:
- Hardware CSMA-CA Mechanism, Automatic ACK Response and FCS Check
- Independent Beacon, Transmit and GTS FIFO
- Supports all CCA modes and RSS/LQI
- Automatic Packet Retransmit Capable
- Hardware Security Engine (AES-128) with CTR, CCM and CBC-MAC modes
- Supports Encryption and Decryption for MAC Sublayer and Upper Layer

Pin Diagram:
Table of Contents

1.0 Device Overview ............................................................................................................. 5
2.0 Circuit Description ......................................................................................................... 11
3.0 Regulatory Approval ...................................................................................................... 17
4.0 Electrical Characteristics ............................................................................................... 23
Appendix A: Revision History .............................................................................................. 25
The Microchip Web Site ........................................................................................................ 27
Customer Change Notification Service .............................................................................. 27
Customer Support ................................................................................................................ 27
Reader Response .................................................................................................................. 28
Product Identification System .............................................................................................. 29

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.
1.0 DEVICE OVERVIEW

The MRF24J40MC is a 2.4 GHz IEEE Std. 802.15.4™ compliant, surface mount module with integrated crystal, internal voltage regulator, matching circuitry, Power Amplifier (PA), Low Noise Amplifier (LNA) with 50Ω external antenna connector. The MRF24J40MC module operates in the non-licensed 2.4 GHz frequency band. The integrated module design frees the integrator from extensive RF and antenna design, and regulatory compliance testing allowing quicker time to market.

The MRF24J40MC module is compatible with Microchip’s ZigBee®, and MiWi™ Development Environment software stacks. The MiWi Development Environment software stack including the source code is available as a free download, from the Microchip web site: http://www.microchip.com/wireless.

The MRF24J40MC module has received regulatory approvals for modular devices in the United States (FCC) and Canada (IC). Modular approval removes the need for expensive RF and antenna design, and allows the end user to place the MRF24J40MC module inside a finished product and does not require regulatory testing for an intentional radiator (RF transmitter). To maintain conformance, refer to module settings in Section 3.1.1 “MRF24J40MC Settings” for the United States and Section 3.2.1 “MRF24J40MC Settings” for Canada.

1.1 Interface Description

Figure 1-1 shows a simplified block diagram of the MRF24J40MC module. The module is based on the Microchip Technology MRF24J40 IEEE 802.15.4™ 2.4 GHz RF Transceiver IC. The module interfaces to many popular Microchip PIC® microcontrollers through a 4-wire SPI interface, interrupt, wake, reset, power and ground, as shown in Figure 1-2. Table 1-1 provides the pin descriptions.

Serial communication and module configuration for the MRF24J40MC module are documented in the “MRF24J40 Data Sheet” (DS39776). Refer to the datasheet for specific serial interface protocol and register definitions.

Also, see Section 1.3 “Operation” for specific register settings that are unique to the MRF24J40MC module.
TABLE 1-1: PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>RESET</td>
<td>DI</td>
<td>Global hardware Reset pin</td>
</tr>
<tr>
<td>3</td>
<td>WAKE</td>
<td>DI</td>
<td>External wake-up trigger</td>
</tr>
<tr>
<td>4</td>
<td>INT</td>
<td>DO</td>
<td>Interrupt pin to microcontroller</td>
</tr>
<tr>
<td>5</td>
<td>SDI</td>
<td>DI</td>
<td>Serial interface data input</td>
</tr>
<tr>
<td>6</td>
<td>SCK</td>
<td>DI</td>
<td>Serial interface clock</td>
</tr>
<tr>
<td>7</td>
<td>SDO</td>
<td>DO</td>
<td>Serial interface data output from MRF24J40</td>
</tr>
<tr>
<td>8</td>
<td>CS</td>
<td>DI</td>
<td>Serial interface enable</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>—</td>
<td>No connection</td>
</tr>
<tr>
<td>10</td>
<td>VIN</td>
<td>Power</td>
<td>Power supply</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Legend: Pin type abbreviation: D = Digital, I = Input, O = Output

FIGURE 1-2: MICROCONTROLLER TO MRF24J40MC INTERFACE
1.2 Mounting Details

The MRF24J40MC is a surface mountable module. Module dimensions are shown in Figure 1-3. The module Printed Circuit Board (PCB) is 0.032" thick with castellated mounting points on the edge. Figure 1-4 is a recommended host PCB footprint for the MRF24J40MC.

Caution: The U.FL connector is fragile and can only tolerate very limited number of insertions.

The MRF24J40MC has 50Ω ultra miniature coaxial (U.FL) connector.
1.3 Operation

The MRF24J40MC module is based on the Microchip Technology MRF24J40 2.4 GHz IEEE 802.15.4 RF Transceiver IC. Serial communication and configuration are documented in the “MRF24J40 Data Sheet” (DS39776).

This section emphasizes operational settings that are unique to the MRF24J40MC module design that must be followed for proper operation.

1.3.1 PA/LNA CONTROL

Operation of the PA U3 and LNA U2 is controlled by the MRF24J40 internal RF state machine through RF switches, U1 and U4, and the GPIO1 and GPIO2 pins on the MRF24J40. Figure 1-5 shows the PA/LNA block diagram. Figure 2-2 is the schematic diagram for the module.

The internal RF state machine is configured for the PA/LNA Mode by setting TESTMODE (0x22<2:0>) = 111. Pins GPIO1 and GPIO2 control the RF switches, PA and LNA automatically when the MRF24J40 receives and transmits data.

**Note:** A complete explanation of the operation of the PA/LNA control is documented in the "MRF24J40 Data Sheet" (DS39776), Section 4.2 “External PA/LNA Control”.

Voltage regulator U5 supplies a regulated 2.2V to the PA. This provides a stable voltage to the PA over the VIN voltage range of the module. U5 is enabled or shutdown from GPIO3. Ensure that the GPIO3 direction has been set to output (TRISGP3 (0x34<3>) = 1). Setting a logic high (GPIO3(0x33<3>) = 1) enables the voltage regulator and supplies voltage to the PA. Setting a logic low (GPIO3 (0x33<3>) = 0) will shutdown the voltage regulator, disabling the PA, and provides the lowest shutdown current.
1.3.2 ENERGY DETECTION (ED)

Before performing an energy detection (see Section 3.6.1 “RSSI Firmware Request (RSSI Mode 1)” in the “MRF24J40 Data Sheet” (DS39776)), perform the following steps:

1. Configure the internal RF state machine to normal operation (TESTMODE (0x22F<2:0>) = 000).
2. Configure GPIO2 and GPIO1 direction for output (TRISGP2 (0x34<2>) = 1 and TRISGP1 (0x34<1>) = 1).
3. Set GPIO2 (0x33<2>) = 1 and GPIO1 (0x32<1>) = 0. This enables the LNA and disables the PA.
4. Perform the energy detection following the steps in Section 3.6.1 “RSSI Firmware Request (RSSI Mode 1)” in the “MRF24J40 Data Sheet” (DS39776).

**Note:** The LNA will amplify the received signal. The RSSI value will include the receive signal strength plus the LNA amplification.

1.3.3 SLEEP

To get the lowest power consumption from the MRF24J40MC module during Sleep, it is necessary to disable the PA, PA voltage regulator and LNA. To do this, perform the following steps:

1. Configure the internal RF state machine to normal operation (TESTMODE (0x22F<2:0>) = 000).
2. Configure the GPIO3, GPIO2 and GPIO1 direction for output (TRISGP2 (0x34<2>) = 1, TRISGP2 (0x34<3>) = 1 and TRISGP1 (0x34<1>) = 1).
3. Set GPIO2 (0x33<2>) = 0 and GPIO1 (0x32<1>) = 0. This disables the LNA and the PA.
4. Set GPIO3 (0x33<3>) = 0. This shuts down the voltage regulator U5 that supplies 2.2 volts to the PA.
5. Put the MRF24J40 to Sleep following the steps in the “MRF24J40 Data Sheet” (DS39776).

When waking the module, re-enable the PA/LNA Mode.
### 1.3.4 TRANSMIT POWER SETTINGS

Table 1-2 lists the power settings in register RFCON3 (0x203<7:3>) and the output power at antenna connector J1.

#### TABLE 1-2: TRANSMIT POWER SETTINGS

<table>
<thead>
<tr>
<th>RFCON3 (0x203&lt;7:3&gt;)</th>
<th>MRF24J40 Power Setting</th>
<th>Output Power(^{(1)}) (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111</td>
<td>–36.3</td>
<td>–26.4</td>
</tr>
<tr>
<td>11110</td>
<td>–34.9</td>
<td>–25.2</td>
</tr>
<tr>
<td>11101</td>
<td>–33.7</td>
<td>–24.1</td>
</tr>
<tr>
<td>11100</td>
<td>–32.8</td>
<td>–23.4</td>
</tr>
<tr>
<td>11011</td>
<td>–31.9</td>
<td>–22.7</td>
</tr>
<tr>
<td>11010</td>
<td>–31.2</td>
<td>–22.4</td>
</tr>
<tr>
<td>11001</td>
<td>–30.5</td>
<td>–21.9</td>
</tr>
<tr>
<td>11000</td>
<td>–30.0</td>
<td>–21.6</td>
</tr>
<tr>
<td>10111</td>
<td>–26.3</td>
<td>–15.7</td>
</tr>
<tr>
<td>10110</td>
<td>–24.9</td>
<td>–14.5</td>
</tr>
<tr>
<td>10101</td>
<td>–23.7</td>
<td>–13.7</td>
</tr>
<tr>
<td>10100</td>
<td>–22.8</td>
<td>–12.9</td>
</tr>
<tr>
<td>10011</td>
<td>–21.9</td>
<td>–12.3</td>
</tr>
<tr>
<td>10010</td>
<td>–21.2</td>
<td>–11.8</td>
</tr>
<tr>
<td>10001</td>
<td>–20.5</td>
<td>–11.5</td>
</tr>
<tr>
<td>10000</td>
<td>–20.0</td>
<td>–11.1</td>
</tr>
<tr>
<td>01111</td>
<td>–16.3</td>
<td>–6.6</td>
</tr>
<tr>
<td>01110</td>
<td>–14.9</td>
<td>–5.5</td>
</tr>
<tr>
<td>01101</td>
<td>–13.7</td>
<td>–4.7</td>
</tr>
<tr>
<td>01100</td>
<td>–12.8</td>
<td>–4.0</td>
</tr>
<tr>
<td>01011</td>
<td>–11.9</td>
<td>–3.4</td>
</tr>
<tr>
<td>01010</td>
<td>–11.2</td>
<td>–2.9</td>
</tr>
<tr>
<td>01001</td>
<td>–10.5</td>
<td>–2.5</td>
</tr>
<tr>
<td>01000</td>
<td>–10.0</td>
<td>–2.0</td>
</tr>
<tr>
<td>00111</td>
<td>–6.3</td>
<td>10.7</td>
</tr>
<tr>
<td>00110</td>
<td>–4.9</td>
<td>18.0</td>
</tr>
<tr>
<td>00101</td>
<td>–3.7</td>
<td>18.5</td>
</tr>
</tbody>
</table>

**Note 1:** Typical output power at antenna connector J1, Channel 11, 50Ω impedance.

**Note:** Refer to Section 3.0 “Regulatory Approval” for the required maximum power setting necessary to maintain certification requirements for each country the module will be used.
2.0 CIRCUIT DESCRIPTION

The MRF24J40MC is a 2.4 GHz IEEE Std. 802.15.4™ compliant surface mount module with integrated crystal, internal voltage regulator, matching circuitry, power amplifier, low noise amplifier with 50Ω external antenna connector.

The MRF24J40MC module interfaces to many popular Microchip PIC microcontrollers through a 4-wire SPI Interface, interrupt, wake, reset, power and ground. An example application schematic is illustrated in Figure 2-1.

Serial communications and register definitions for the MRF24J40MC module are documented in the "MRF24J40 Data Sheet" (DS39776). Refer to this datasheet for specific serial interface protocol and register definitions. Also, see Section 1.3 “Operation” for specific register settings that are unique to the MRF24J40MC module.

2.1 External Antenna

The MRF24J40MC module has a 50Ω ultra miniature coaxial (U.FL) connector to connect to an external 2.4 GHz antenna.

Caution: The U.FL connector is fragile and can only tolerate very limited number of insertions.

The choice of antenna is limited to the antenna types the module has been tested with. Refer to the respective country in Section 3.0 “Regulatory Approval” for a list of tested and approved antenna types that may be used with the MRF24J40MC module.

2.2 Module Schematic

A schematic diagram of the module is illustrated in Figure 2-2 and the Bill of Materials (BOM) is shown in Table 2-1.

The MRF24J40MC module is based on the Microchip Technology MRF24J40 IEEE 802.15.4™ 2.4 GHz RF Transceiver IC (U6). The Serial I/O (SCK, SDI, SDO and CS), RESET, WAKE and INT pins are brought out to the module pins. The SDO signal is tri-state buffered by U7 to solve a silicon errata, where the SDO signal does not release to a high-impedance state, after the CS pin returns to its inactive state.

Crystal, X1, is a 20 MHz crystal with a frequency tolerance of ±10 ppm @ 25°C to meet the IEEE Std. 802.15.4 symbol rate tolerance of ±40 ppm.

A balun is formed by components: L11, L12, L13, C25, C27 and C31. L12 is also a pull-up for the RFP and RFN pins on the MRF24J40. C25 also acts as a DC block capacitor. RF switches, U1 and U2, switch between the power amplifier, U3, when transmitting and low noise amplifier, U2, when receiving. A band-pass filter FL1 is placed after the PA U3 to reduce harmonics. The remaining passive components provide bias and decoupling.
FIGURE 2-2: MRF24J40MC SCHEMATIC
<table>
<thead>
<tr>
<th>Designator</th>
<th>Value</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>C27, C31</td>
<td>0.5 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.1 pF, UHI Q NP0, SMT 0402</td>
<td>Johanson Technology</td>
<td>500R07S0R5BV4T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>C25</td>
<td>0.7 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.1 pF, UHI Q NP0, SMT 0402</td>
<td>Johanson Technology</td>
<td>500R07S0R7BV4T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>C1, C15</td>
<td>1.0 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.25 pF, HI-Q C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GJM1555C1H1R0 CB01D</td>
<td>—</td>
</tr>
<tr>
<td>C9</td>
<td>1.2 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.1 pF, UHI Q NP0, SMT 0402</td>
<td>Johanson Technology</td>
<td>500R07S1R2BV4T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>C2</td>
<td>1.5 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.25 pF, HI-Q C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GJM1555C1H1R5 CB01D</td>
<td>—</td>
</tr>
<tr>
<td>C18</td>
<td>2.4 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.25 pF, HI-Q C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GJM1555C1H2R4 CB01D</td>
<td>—</td>
</tr>
<tr>
<td>C7</td>
<td>5.6 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.25 pF, HI-Q C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GJM1555C1H5R6 CB01D</td>
<td>—</td>
</tr>
<tr>
<td>C8</td>
<td>6.8 pF</td>
<td>Capacitor, Ceramic, 50V, ±0.25 pF, HI-Q C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GJM1555C1H6R8 CB01D</td>
<td>—</td>
</tr>
<tr>
<td>C3, C6</td>
<td>10 pF</td>
<td>Capacitor, Ceramic, 50V, ±5%, HI-Q C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GJM1555C1H100J B01D</td>
<td>—</td>
</tr>
<tr>
<td>C11</td>
<td>12 pF</td>
<td>Capacitor, Ceramic, 50V, ±5%, HI-Q C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GJM1555C1H120J B01D</td>
<td>—</td>
</tr>
<tr>
<td>C38, C41</td>
<td>18 pF</td>
<td>Capacitor, Ceramic, 50V, ±5%, C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GRM1555C1H180 JZ01D</td>
<td>do not substitute</td>
</tr>
<tr>
<td>C19, C26, C30, C32, C37, C40, C42</td>
<td>47 pF</td>
<td>Capacitor, Ceramic, 50V, ±5%, C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GRM1555C1H470 JZ01D</td>
<td>—</td>
</tr>
<tr>
<td>C4, C5, C12, C17, C21, C22, C36</td>
<td>100 pF</td>
<td>Capacitor, Ceramic, 50V, ±5%, C0G, SMT 0402</td>
<td>Murata Electronics</td>
<td>GRM1555C1H101 JZ01D</td>
<td>—</td>
</tr>
<tr>
<td>C10, C13, C14, C16, C29</td>
<td>1000 pF</td>
<td>Capacitor, Ceramic, 50V, ±10%, X7R, SMT 0402</td>
<td>Murata Electronics</td>
<td>GRM155R71H102 KA01D</td>
<td>—</td>
</tr>
<tr>
<td>C24, C34, C43</td>
<td>0.01 μF</td>
<td>Capacitor, Ceramic, 25V, ±10%, X7R, SMT 0402</td>
<td>Murata Electronics</td>
<td>GRM155R71E103 KA01D</td>
<td>—</td>
</tr>
<tr>
<td>C20, C23, C33, C44</td>
<td>0.1 μF</td>
<td>Capacitor, Ceramic, 10V, ±10%, X5R, SMT 0402</td>
<td>Murata Electronics</td>
<td>GRM155R61A104 KA01D</td>
<td>—</td>
</tr>
<tr>
<td>C28, C35, C39</td>
<td>1 μF</td>
<td>Capacitor, Ceramic, 6.3V, ±20%, X5R, SMT 0402</td>
<td>Murata Electronics</td>
<td>GRM155R60J105 ME19D</td>
<td>—</td>
</tr>
<tr>
<td>FL1</td>
<td>—</td>
<td>Filter, Bandpass, 2.4 GHz</td>
<td>Johanson Technology</td>
<td>2450BP15B100E</td>
<td>—</td>
</tr>
<tr>
<td>J1</td>
<td>—</td>
<td>Connector, Receptical, Ultra-mini coax SMD</td>
<td>Hirose Electric Co Ltd</td>
<td>U.FL-R-SMT(10)</td>
<td>—</td>
</tr>
<tr>
<td>Designator</td>
<td>Value</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Part Number</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>L1, L2, L3</td>
<td>2.4 nH</td>
<td>Inductor, Ceramic, ±0.3 nH, SMT 0402</td>
<td>Johanson Technology</td>
<td>L-07C2N4SV6T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>L8</td>
<td>2.7 nH</td>
<td>Inductor, Ceramic, ±0.3 nH, SMT 0402</td>
<td>Johanson Technology</td>
<td>L-07C2N7SV6T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>L10</td>
<td>3.3 nH</td>
<td>Inductor, Ceramic, ±0.3 nH, SMT 0402</td>
<td>Johanson Technology</td>
<td>L-07C3N3SV6T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>L7, L9</td>
<td>5.6 nH</td>
<td>Inductor, Ceramic, ±0.3 nH, SMT 0402</td>
<td>Johanson Technology</td>
<td>L-07C5N6SV6T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>L11, L12</td>
<td>4.7 nH</td>
<td>Inductor, Ceramic, ±0.3 nH, SMT 0402</td>
<td>Johanson Technology</td>
<td>L-07C4N7SV6T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>L13</td>
<td>7.5 nH</td>
<td>Inductor, Ceramic, ±5%, SMT 0402</td>
<td>Johanson Technology</td>
<td>L-07C7N5JV6T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>L4</td>
<td>18 nH</td>
<td>Inductor, Ceramic, ±5%, SMT 0402</td>
<td>Johanson Technology</td>
<td>L-07C18NJV6T</td>
<td>do not substitute</td>
</tr>
<tr>
<td>R5</td>
<td>2.2 ohms</td>
<td>Resistor, 1%, ±100 ppm/C, SMT 0402</td>
<td>Vishay/Dale</td>
<td>CRCW04022R00F6KED</td>
<td>—</td>
</tr>
<tr>
<td>R2</td>
<td>360 ohms</td>
<td>Resistor, 1%, ±100 ppm/C, SMT 0402</td>
<td>Panasonic – ECG</td>
<td>ERJ-2RKF3600X</td>
<td>—</td>
</tr>
<tr>
<td>R1</td>
<td>1.60 kohms</td>
<td>Resistor, 1%, ±100 ppm/C, SMT 0402</td>
<td>Panasonic – ECG</td>
<td>ERJ-2RKF1601X</td>
<td>—</td>
</tr>
<tr>
<td>R3</td>
<td>470 kohms</td>
<td>Resistor, 1%, ±100 ppm/C, SMT 0402</td>
<td>Yageo</td>
<td>RC0402FR-07470KL</td>
<td>—</td>
</tr>
<tr>
<td>R4</td>
<td>560 kohms</td>
<td>Resistor, 1%, ±100 ppm/C, SMT 0402</td>
<td>Panasonic – ECG</td>
<td>ERJ-2RKF5603X</td>
<td>—</td>
</tr>
<tr>
<td>U6</td>
<td>MRF24J40</td>
<td>Transceiver, 2.4 GHz, IEEE 802.15.4 QFN</td>
<td>Microchip Technology Inc.</td>
<td>MRF24J40-I/ML</td>
<td>—</td>
</tr>
<tr>
<td>U7</td>
<td>NC7SZ125P5X</td>
<td>Buffer, Tri-State, SC-70-5</td>
<td>Fairchild Semiconductor</td>
<td>NC7SZ125P5X</td>
<td>—</td>
</tr>
<tr>
<td>U5</td>
<td>TC1187VCT713</td>
<td>Regulator, LDO</td>
<td>Microchip Technology Inc.</td>
<td>TC1187VCT713</td>
<td>—</td>
</tr>
<tr>
<td>U1, U4</td>
<td>UPG2179TB</td>
<td>Switch, RF, SPDT, 6-SMINI</td>
<td>CEL/NEC</td>
<td>UPG2179TB-E4-A</td>
<td>—</td>
</tr>
<tr>
<td>U2</td>
<td>UPC8233TK</td>
<td>Amplifier, Low-noise, 6MINIMOLD</td>
<td>CEL/NEC</td>
<td>UPC8233TK-A</td>
<td>—</td>
</tr>
<tr>
<td>U3</td>
<td>UPG2250T5N</td>
<td>Amplifier, RF, 6-TSON</td>
<td>CEL/NEC</td>
<td>UPG2250T5N-E2-A</td>
<td>—</td>
</tr>
<tr>
<td>X1</td>
<td>20.000 MHz</td>
<td>Crystal, 20.000 MHz, 3.5 x 2.5 mm SMD</td>
<td>Abracon</td>
<td>ABM8-156-20.000 MHz</td>
<td>—</td>
</tr>
</tbody>
</table>
2.3 Printed Circuit Board

The MRF24J40MC module PCB is constructed with high temperature FR4 material, four layers and 0.032" thick. The layers are illustrated in Figure 2-3 through Figure 2-8. The stack up of the PCB is illustrated in Figure 2-9.
FIGURE 2-7: BOTTOM COPPER

FIGURE 2-8: BOTTOM SILK SCREEN

FIGURE 2-9: PCB LAYER STACK UP

1/2 oz. Copper

8 mil FR4

1/2 oz. Copper

12 mil FR4

1/2 oz. Copper

8 mil FR4

1/2 oz. Copper

Top Copper

Ground Plane

Power Plane

Bottom Copper

0.032" ±0.005"
3.0 REGULATORY APPROVAL

The MRF24J40MC module has received regulatory approvals for modular devices in the United States and Canada. Modular approval allows the end user to place the MRF24J40MC module inside a finished product and not require regulatory testing for an intentional radiator (RF transmitter), provided no changes or modifications are made to the module circuitry. Changes or modifications could void the user’s authority to operate the equipment. The end user must comply with all of the instructions provided by the Grantee, which indicate installation and/or operating conditions necessary for compliance.

The MRF24J40MC module has been tested and conforms to EN 300 328 V1.7.1 (2006-10), European Standards. The module tests can be applied toward final product certification and Declaration of Conformity (DoC). Additional testing may be required depending on the end application.

The integrator is still responsible for testing the end product for any additional compliance requirements required with this module installed (digital device emission, PC peripheral requirements, etc.) in the specific country that the end device will be marketed.

Annex F of the IEEE Std. 802.15.4 document has a good summary of regulatory requirements in various countries concerning IEEE Std. 802.15.4 devices. The standard can be downloaded from the IEEE Standards web page: http://standards.ieee.org/getieee802/802.15.html.

For more information on details on regulatory compliance, refer to the specific country radio regulations in the following sections.

3.1 United States

The MRF24J40MC has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Subpart C “Intentional Radiators” 15.247 and modular approval in accordance with FCC Public Notice DA 00-1407 Released: June 26, 2000, Part 15 Unlicensed Modular Transmitter Approval. The MRF24J40MC module can be integrated into a finished product without obtaining subsequent and separate FCC certification.

The MRF24J40MC module has been labeled with its own FCC ID number, and if the FCC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording as following:

Contains Transmitter Module FCC ID:
OA3MRF24J40MC
-or-
Contains FCC ID: OA3MRF24J40MC

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired operation.

The user’s manual should include the following statement:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment OFF and ON, the user is encouraged to try to correct the interference by one or more of the following measures:
- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
3.1.1 MRF24J40MC SETTINGS

To meet the FCC requirements, the following settings must be observed by the integrator:

• The MRF24J40MC transmit power setting shall not exceed 18.5 dBm (RFCON3 0x203<7:3> = 00101). Refer to Section 1.3.4 “Transmit Power Settings”.
• Only channels 11 through 25 may be selected (RFCON0 0x200).

3.1.2 APPROVED EXTERNAL ANTENNA TYPES

To maintain modular approval in the United States, only the antenna types that have been tested shall be used. It is permissible to use different antenna manufacturer provided the same antenna type, antenna gain (equal to or less than), and MRF24J40MC power setting is used for the same antenna type tested.

Testing of the MRF24J40MC module was performed with the antenna types listed in Table 3-1.

3.1.3 RF EXPOSURE

All transmitters regulated by FCC must comply with RF exposure requirements. OET Bulletin 65 “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields” provides assistance in determining whether proposed or existing transmitting facilities, operations or devices comply with limits for human exposure to RF fields adopted by the Federal Communications Commission (FCC). The bulletin offers guidelines and suggestions for evaluating compliance.

If appropriate, compliance with exposure guidelines for mobile and unlicensed devices can be accomplished by the use of warning labels and by providing users with information concerning minimum separation distances from transmitting structures and proper installation of antennas.

The following statement must be included as a CAUTION statement in manuals and OEM products to alert users of FCC RF Exposure compliance:

To satisfy FCC RF Exposure requirements for mobile and base station transmission devices, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at closer than this distance is not recommended.

The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

If the MRF24J40MC module is used in a portable application (antenna is less than 20 cm from persons during operation), the integrator is responsible for performing Specific Absorption Rate (SAR) testing in accordance with FCC rules 2.1091.

3.1.4 HELPFUL WEB SITES

Federal Communications Commission (FCC)
http://www.fcc.gov

Note 1: Typical output power at antenna connector J1, Channel 11, 50Ω impedance.

TABLE 3-1: APPROVED EXTERNAL ANTENNA TYPES

<table>
<thead>
<tr>
<th>Type</th>
<th>Manufacture</th>
<th>Part Number</th>
<th>Gain</th>
<th>Output Power(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whip, Dipole</td>
<td>Aristotle Enterprises Inc.</td>
<td>RFA-02-5-F7H1-70B-150</td>
<td>5 dBi</td>
<td>18.5 dBm</td>
</tr>
</tbody>
</table>

Note 1: Typical output power at antenna connector J1, Channel 11, 50Ω impedance.
3.2 Canada

The MRF24J40MC module has been certified for use in Canada under Industry Canada (IC) Radio Standards Specification (RSS) RSS-210 and RSS-Gen. Modular approval permits the installation of a module in a host device without the need to recertify the device.

Labeling Requirements for the Host Device (from Section 3.2.1, RSS-Gen, Issue 3, December 2010):
The host device shall be properly labeled to identify the module within the host device.

The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labeled to display the Industry Canada certification number of the module, preceded by the words “Contains transmitter module”, or the word “Contains”, or similar wording expressing the same meaning, as follows:

Contains transmitter module IC: 7693A-24J40MC


User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both.

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

3.2.1 MRF24J40MC SETTINGS

To meet Industry Canada (IC) requirements, the following settings must be observed by the integrator:

- The MRF24J40MC transmit power setting shall not exceed 18.5 dBm (RFCON3 0x203<7:3> = 00101). Refer to Section 1.3.4 “Transmit Power Settings”.
- Only channels 11 through 25 may be selected (RFCON0 0x200).

3.2.2 APPROVED EXTERNAL ANTENNA TYPES

Transmitter Antenna (from Section 7.1.2 RSS-Gen, Issue 3, December 2010):
The MRF24J40MC module can only be sold or operated with antennas with which it was approved. Transmitter may be approved with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest gain antenna of each combination of transmitter and antenna type for which approval is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type having equal or lesser gain as an antenna that had been successfully tested with the transmitter, will also be considered approved with the transmitter, and may be used and marketed with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power limits. User manuals for transmitters shall display the following notice in a conspicuous location:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

The above notice may be affixed to the device instead of displayed in the user manual.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:
This radio transmitter (identify the device by certification number, or model number if Category II) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

<table>
<thead>
<tr>
<th>Type</th>
<th>Manufacture</th>
<th>Part Number</th>
<th>Gain</th>
<th>Output Power (1)</th>
<th>E.I.R.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whip, Dipole</td>
<td>Aristotle Enterprises Inc.</td>
<td>RFA-02-5-F7H1-70B-150</td>
<td>5 dBi</td>
<td>18.5 dBm</td>
<td>23.5 dBm</td>
</tr>
</tbody>
</table>

**Note 1:** Typical output power at antenna connector J1, Channel 11, 50Ω impedance

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi) and required impedance for each.

Approved external antenna types for the MRF24J40MC module are listed in Table 3-2.

**3.2.3 HELPFUL WEB SITES**

3.3 Europe

The MRF24J40MC module conforms to the emission standards summarized in Table 3-3. The module tests can be applied toward product certification and Declaration of Conformity (DoC).

Note: To maintain conformance tested ETSI standards, the module shall not be modified and settings in Section 1.3 “Operation” must be observed.

The European Standards do not provide a modular approval similar to the USA (FCC) and Canada (IC). However, the completed compliance testing can be used as part of the customer’s application for product compliance approvals. The module test report data can be used as part of the customer’s product test plan and can significantly lower customer’s compliance burden.

Depending on the end application, additional testing may be required. The integrator is responsible for testing the end product for any additional compliance requirements that become necessary with this module installed (for example, digital device emission, PC peripheral requirements and so on) in the specific country where end device is marketed.

3.3.1 MRF24J40MC SETTINGS

To meet ETSI requirements, the following settings must be observed by the integrator:

- The MRF24J40MC transmit power setting shall not exceed 18.5 dBm peak (RFCON3 0x203<7:3> = 00101) which for ETSI 300 328 requirements equates to 9.8 dBm average (20 percent duty cycle). When the MRF24J40MC module is connected to a 2 dBi antenna, the EIRP is less than 20 dBm. Refer to Section 1.3.4 “Transmit Power Settings”.

Only channels 11 through 25 may be selected (RFCON0 0x200).

### TABLE 3-3: EMISSIONS STANDARDS TESTED

<table>
<thead>
<tr>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Standards</td>
<td>Test Method</td>
</tr>
<tr>
<td>EN 300 328 V1.7.1 (2006-10)</td>
<td>4.3.1</td>
</tr>
<tr>
<td>EN 300 328 V1.7.1 (2006-10)</td>
<td>4.3.2</td>
</tr>
<tr>
<td>EN 300 328 V1.7.1 (2006-10)</td>
<td>4.3.3</td>
</tr>
<tr>
<td>EN 300 328 V1.7.1 (2006-10)</td>
<td>4.3.6</td>
</tr>
<tr>
<td>EN 300 328 V1.7.1 (2006-10)</td>
<td>4.3.7</td>
</tr>
</tbody>
</table>

3.3.2 EXTERNAL ANTENNA REQUIREMENTS

The maximum gain external antenna should not exceed 3 dBi to satisfy ETSI EN 300 328 v1.7.1 (2006-10), Maximum e.i.r.p. spectral density limit, Section 4.3.2.2, “For wideband modulations other then FHSS (DSSS, OFDM, etc.), the maximum e.i.r.p. spectral density is limited to 10 mW per MHz.”

3.3.3 HELPFUL WEB SITES

A document that can be used as a starting point in understanding the use of Short Range Devices (SRD) in Europe is the European Radio Communications Committee (ERC) Recommendation 70-03 E, which can be downloaded from the European Radio Communications Office (ERO): http://www.ero.dk/.

The other helpful websites are:

- European Radio Communications Office (ERO): http://www.ero.dk

Note: To maintain conformance tested ETSI standards, the module shall not be modified and settings in Section 1.3 “Operation” must be observed.
3.4 Australia/New Zealand

The MRF24J40MC module conforms to compliance levels 1, 2 and 3 in Australia and levels of conformity 1, 2 and 3 in New Zealand as required by notices under:

- Section 182 of the Australian Radiocommunications Act 1992;
- Section 407 of the Australian Telecommunications Act 1997; and
- Section 134 of the New Zealand Radiocommunications Act 1989.

3.4.1 MRF24J40MC SETTINGS

To meet ETSI requirements, the following settings must be observed by the integrator:

- The MRF24J40MC transmit power setting shall not exceed 18.5 dBm peak (RFCON3 0x203<7:3> = 00101) which for ETSI 300 328 requirements equates to 9.8 dBm average (20 percent duty cycle). When the MRF24J40MC module is connected to a 2 dBi antenna, the EIRP is less than 20 dBm. Refer to Section 1.3.4 “Transmit Power Settings”.
- Only channels 11 through 25 may be selected (RFCON0 0x200).

3.4.2 EXTERNAL ANTENNA REQUIREMENTS

The maximum gain external antenna should not exceed 3 dBi to satisfy ETSI EN 300 328 v1.7.1 (2006-10), Maximum e.i.r.p. spectral density limit. Section 4.3.2.2, “For wideband modulations other than FHSS (DSSS, OFDM, etc.), the maximum e.i.r.p. spectral density is limited to 10 mW per MHz.”

3.4.3 HELPFUL WEBSITES

Australian Communications and Media Authority – Radiocommunications (Short Range Devices) Standard:
4.0 ELECTRICAL CHARACTERISTICS

### TABLE 4-1: RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Operating Temperature</td>
<td>–40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Supply Voltage for RF, Analog and Digital Circuits</td>
<td>2.7</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage for Digital I/O</td>
<td>2.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input High Voltage (V\text{IH})</td>
<td>0.5 x V\text{DD}</td>
<td>—</td>
<td>V\text{DD} + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Input Low Voltage (V\text{IL})</td>
<td>–0.3</td>
<td>—</td>
<td>0.2 x V\text{DD}</td>
<td>V</td>
</tr>
</tbody>
</table>

### TABLE 4-2: CURRENT CONSUMPTION

(\text{TA} = 25°C, \text{VDD} = 3.3V)

<table>
<thead>
<tr>
<th>Chip Mode</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep</td>
<td>Sleep Clock and PA voltage regulator Disabled</td>
<td>—</td>
<td>12 µA</td>
<td>—</td>
<td>µA</td>
</tr>
<tr>
<td>Tx</td>
<td>At Maximum Output Power</td>
<td>—</td>
<td>120 mA</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>Rx</td>
<td></td>
<td>—</td>
<td>25 mA</td>
<td>—</td>
<td>mA</td>
</tr>
</tbody>
</table>

### TABLE 4-3: RECEIVER AC CHARACTERISTICS

Typical values are at \text{TA} = 25°C, \text{VDD} = 3.3V, LO Frequency = 2.445 GHz

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input Frequency</td>
<td>Compatible to IEEE Std. 802.15.4™, 2003</td>
<td>2.405</td>
<td>—</td>
<td>2.480</td>
<td>GHz</td>
</tr>
<tr>
<td>RF Sensitivity</td>
<td>—</td>
<td>—</td>
<td>–108</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>Maximum RF Input</td>
<td>50Ω</td>
<td>—</td>
<td>—</td>
<td>–23</td>
<td>dBm</td>
</tr>
<tr>
<td>LO Leakage</td>
<td>Measured at Balun Matching Network Input at Frequency, 2.405 GHz – 2.48 GHz</td>
<td>—</td>
<td>–60</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>50Ω</td>
<td>–8</td>
<td>–12</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure (including matching)</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Adjacent Channel Rejection</td>
<td>@ ±5 MHz</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Alternate Channel Rejection</td>
<td>@ ±10 MHz</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>RSSI Range</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>RSSI Error</td>
<td>—</td>
<td>—</td>
<td>–5</td>
<td>5</td>
<td>dB</td>
</tr>
</tbody>
</table>
### TABLE 4-4: TRANSMITTER AC CHARACTERISTICS

Typical values are at $T_A = 25^\circ C$, $V_{DD} = 3.3V$, LO Frequency = 2.445 GHz

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Carrier Frequency</td>
<td>—</td>
<td>2.405</td>
<td>—</td>
<td>2.475</td>
<td>GHz</td>
</tr>
<tr>
<td>Maximum RF Output Power</td>
<td>50Ω</td>
<td>—</td>
<td>19$^{(1)}$</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>RF Output Power Control Range</td>
<td>—</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Tx Gain Control Resolution</td>
<td>Programmed by Register</td>
<td>—</td>
<td>1.25</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Carrier Suppression</td>
<td>—</td>
<td>—</td>
<td>−30</td>
<td>—</td>
<td>dBc</td>
</tr>
<tr>
<td>Tx Spectrum Mask for O-QPSK Signal</td>
<td>Offset Frequency &gt;3.5 MHz, at 0 dBm Output Power</td>
<td>−33</td>
<td>—</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>Tx EVM</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>%</td>
</tr>
</tbody>
</table>

**Note 1:** Output power at antenna connector J1.
APPENDIX A: REVISION HISTORY

Revision A (March 2011)

This is the initial release of the document.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

**Technical support is available through the web site at:** [http://microchip.com/support](http://microchip.com/support)
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO:    Technical Publications Manager  Total Pages Sent ________
RE:    Reader Response

From:  Name ____________________________

Company ____________________________
Address ____________________________
City / State / ZIP / Country ____________
Telephone: (______) _________ - _________  FAX: (______) _________ - _________

Application (optional):

Would you like a reply?  Y   N

Device: MRF24J40MC  Literature Number: DS75002A

Questions:

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?
## PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, for example, on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO</th>
<th>M</th>
<th>X</th>
<th>T</th>
<th>-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Module Type</td>
<td>Tape and Reel</td>
<td>Temperature Range</td>
<td></td>
</tr>
</tbody>
</table>

### Example:

- **a)** MRF24J40MC-I/RM: Industrial temperature, tray.
- **b)** MRF24J40MCT-I/RM: Industrial temperature, tape and reel.

**Device**

MRF24J40MC: 2.4 GHz IEEE Std. 802.15.4 RF Transceiver Module with PA/LNA and External Antenna Connector

**Temperature Range**

I = -40°C to +85°C (Industrial)
Worldwide Sales and Service

**AMERICAS**

Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/support  
Web Address:  
www.microchip.com

**Atlanta**  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455

**Boston**  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088

**Chicago**  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075

**Cleveland**  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643

**Dallas**  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924

**Detroit**  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260

**Indianapolis**  
Noblesville, IN  
Tel: 317-773-9323  
Fax: 317-773-5453

**Los Angeles**  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608

**Santa Clara**  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445

**Toronto**  
Mississauga, Ontario, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509

**ASIA/PACIFIC**

Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-8401-2100  
Fax: 852-2401-3431

**Australia - Sydney**  
Tel: 61-2-9866-6733  
Fax: 61-2-9866-6755

**China - Beijing**  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104

**China - Chengdu**  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889

**China - Chongqing**  
Tel: 86-23-8980-9599  
Fax: 86-23-8980-9500

**China - Hong Kong SAR**  
Tel: 852-2401-1200  
Fax: 852-2401-3431

**China - Nanjing**  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470

**China - Qingdao**  
Tel: 86-632-8502-7355  
Fax: 86-632-8502-7205

**China - Shanghai**  
Tel: 86-21-5407-5613  
Fax: 86-21-5407-5066

**China - Shenyang**  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393

**China - Shenzhen**  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760

**China - Wuhan**  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118

**China - Xian**  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256

**China - Xiamen**  
Tel: 86-592-2388138  
Fax: 86-592-2388130

**China - Zhuhai**  
Tel: 86-756-3210040  
Fax: 86-756-3210049

**ASIA/PACIFIC**

**India - Bangalore**  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123

**India - New Delhi**  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632

**India - Pune**  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513

**Japan - Yokohama**  
Tel: 81-45-471-6166  
Fax: 81-45-471-6122

**Korea - Daegu**  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302

**Korea - Seoul**  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932

**Malaysia - Kuala Lumpur**  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859

**Malaysia - Penang**  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068

**Philippines - Manila**  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069

**Singapore**  
Tel: 65-6334-8870  
Fax: 65-6334-8850

**Taiwan - Hsin Chu**  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370

**Taiwan - Kaohsiung**  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305

**Taiwan - Taipei**  
Tel: 886-2-2240-6100  
Fax: 886-2-2240-6100

**Thailand - Bangkok**  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350

**EUROPE**

**Austria - Wels**  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393

**Denmark - Copenhagen**  
Tel: 45-4450-2828  
Fax: 45-4485-2829

**France - Paris**  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79

**Germany - Munich**  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44

**Italy - Milan**  
Tel: 39-0331-742611  
Fax: 39-0331-466781

**Netherlands - Drunen**  
Tel: 31-416-690399  
Fax: 31-416-690340

**Spain - Madrid**  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91

**UK - Wokingham**  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820

02/18/11