Device Configuration

HIGHLIGHTS

This section of the manual contains the following major topics:

1.0 Introduction ... 2
2.0 Device Configuration ... 2
3.0 Device Identification .. 6
4.0 Unit Identification .. 7
5.0 Related Application Notes ... 8
6.0 Revision History .. 9
1.0 INTRODUCTION

At their highest level of functionality, dsPIC33/PIC24 devices integrate several features that affect the entire device as a whole. They add convenience and flexibility of design for the user, and allow the devices to be incorporated into a wider range of designs. These include:

- Flexible Configuration Options – Allowing users to select a wide range of basic microcontroller operating options and changing them if needed during run time
- Device Identification – Allowing electronic confirmation of a device part number and revision level in the target application

2.0 DEVICE CONFIGURATION

The basic behavior and operation of dsPIC33/PIC24 devices are set by the device Configuration bits. These bits allow the user to select a wide range of options and optimize the microcontroller’s operation to the application’s requirements.

In all dsPIC33/PIC24 family devices, device Configuration bits are mapped to the device’s program memory space.

The method by which the Configuration bits are programmed differs between major device families. The details are discussed in Section 2.1 “Volatile Memory Implementation” and in Section 2.2 “Nonvolatile Memory Implementation”. Refer to the specific device data sheet for information on which method is implemented for your particular device.

Table 2-1 provides a list of the most common Configuration bit options. Note that this is not a comprehensive list. Certain device families will have unique configuration options that are specific to its peripheral set. For more information on the Configuration bit mapping of a particular device, refer to the specific device data sheet.

Note: All of the bits that are described in Table 2-1 are not present on all the devices. Refer to the specific device data sheet for availability.
2.1 Volatile Memory Implementation

In certain dsPIC33/PIC24 devices, the Configuration bits are implemented as volatile memory; that is, the configuration data must be loaded each time the device is powered up. The actual configuration data is stored in the last several words at the end of the on-chip program memory space, known as User Space. During all types of device Resets, the configuration data is automatically loaded from the Flash Words to the proper Configuration registers. Refer to the specific device data sheet for implementation details.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various configuration options. To prevent inadvertent configuration changes during code execution, all programmable device Configuration bits are write-once. After a bit is initially written, it cannot be written to again.

2.1.1 CONSIDERATIONS WHEN USING FLASH CONFIGURATION WORDS

Flash Configuration Words are 24-bits (three bytes) wide. However, depending on the device and register, all three bytes may not be implemented.

Erasing the last page of program memory (User Memory Space) will automatically enable code protection, which prevents further reads or writes to program memory. As a result, it is not recommended to perform a page erase on the last page of memory where the Configuration bits are stored.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in these addresses when the code is compiled.

Table 2-2 lists the Flash Configuration registers, including their primary function and memory locations, depending on the Flash size for dsPIC33EP(16/32/64)GS50X devices.
Table 2-3 lists the Flash Configuration registers, including their primary function and memory locations, depending on the dsPIC33E/PIC24E device Flash size.

Table 2-2: Flash-Based Configuration Register Map for dsPIC33EP(16/32/64)GS50X Devices

<table>
<thead>
<tr>
<th>Register</th>
<th>ADR (16k)</th>
<th>ADR (32k)</th>
<th>ADR (64k)</th>
<th>Primary Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSEC</td>
<td>0x2B80</td>
<td>0x5780</td>
<td>0xAF80</td>
<td>Code Protection Configure</td>
</tr>
<tr>
<td>FBSLIM</td>
<td>0x2B90</td>
<td>0x5790</td>
<td>0xAF90</td>
<td>Boot Segment Address Limit</td>
</tr>
<tr>
<td>FOSCSEL</td>
<td>0x2B98</td>
<td>0x5798</td>
<td>0xAF98</td>
<td>Oscillator Select</td>
</tr>
<tr>
<td>FOSC</td>
<td>0x2B9C</td>
<td>0x579C</td>
<td>0xAF9C</td>
<td>Oscillator Configure</td>
</tr>
<tr>
<td>FWDT</td>
<td>0x2BA0</td>
<td>0x57A0</td>
<td>0xAFA0</td>
<td>Watchdog Timer Configure</td>
</tr>
<tr>
<td>FPOR</td>
<td>0x2BA4</td>
<td>0x57A4</td>
<td>0xAFA4</td>
<td>Reset Configure</td>
</tr>
<tr>
<td>FICD</td>
<td>0x2BAC</td>
<td>0x57A8</td>
<td>0xAFA8</td>
<td>Debug Configure</td>
</tr>
<tr>
<td>FDEVOPT</td>
<td>0x2BAC</td>
<td>0x57AC</td>
<td>0xAFAC</td>
<td>Peripheral Pin Mapping</td>
</tr>
<tr>
<td>FALTREG</td>
<td>0x2BA4</td>
<td>0x57A4</td>
<td>0xAFA4</td>
<td>Alternate W Registers IPL Configure</td>
</tr>
<tr>
<td>FBTSEQ</td>
<td>0x2BFC</td>
<td>0x57FC</td>
<td>0xAFFC</td>
<td>Panel Sequence Number</td>
</tr>
</tbody>
</table>

Table 2-3: Flash-Based Configuration Register Map for dsPIC33EP/PIC24E devices

<table>
<thead>
<tr>
<th>Register</th>
<th>ADR (32k)</th>
<th>ADR (64k)</th>
<th>ADR (128k)</th>
<th>ADR (256k)</th>
<th>ADR (512k)</th>
<th>Primary Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICD</td>
<td>0x57F0</td>
<td>0xAF0</td>
<td>0x157F0</td>
<td>0x2AFF0</td>
<td>0x557F0</td>
<td>Debug Configure</td>
</tr>
<tr>
<td>FPOR</td>
<td>0x57F2</td>
<td>0xAF2</td>
<td>0x157F2</td>
<td>0x2AFF2</td>
<td>0x557F2</td>
<td>Reset Configure</td>
</tr>
<tr>
<td>FWDT</td>
<td>0x57F4</td>
<td>0xAF4</td>
<td>0x157F4</td>
<td>0x2AFF4</td>
<td>0x557F4</td>
<td>Watchdog Timer Configure</td>
</tr>
<tr>
<td>FOSC</td>
<td>0x57F6</td>
<td>0xAF6</td>
<td>0x157F6</td>
<td>0x2AFF6</td>
<td>0x557F6</td>
<td>Oscillator Configure</td>
</tr>
<tr>
<td>FOSCSEL</td>
<td>0x57F8</td>
<td>0xAF8</td>
<td>0x157F8</td>
<td>0x2AFF8</td>
<td>0x557F8</td>
<td>Oscillator Select</td>
</tr>
<tr>
<td>FGS</td>
<td>0x57FA</td>
<td>0xAFA</td>
<td>0x157FA</td>
<td>0x2AFFA</td>
<td>0x557FA</td>
<td>General Code Protection</td>
</tr>
</tbody>
</table>

Note: Refer to the specific device data sheet for Configuration register availability.
2.2 Nonvolatile Memory Implementation

With nonvolatile memory implementation, the Configuration bits are implemented as a physically separate block of nonvolatile memory. Once programmed, configuration data is maintained indefinitely. Although they act like fuses, the Configuration bits are freely reprogrammable. Since they lie inside the configuration memory space, the Configuration bits are not directly accessible; they can only be written and read using Table Read (TBLRD) and Table Write (TBLWT) instructions.

Unlike volatile memory implementation devices, the Configuration bits with nonvolatile memory implementation devices are organized into 8-bit registers that are always the Least Significant Byte (LSB) of a program memory address. These Configuration registers are symbolically named according to their primary function (i.e., General Segment protection, Oscillator Selection, and so on). Table 2-4 lists the names and addresses of typical Configuration registers. Note that not all Configuration registers are implemented on all devices and certain devices with extended feature sets may have additional registers. In addition, there may be variations in naming or location of registers in certain devices. Refer to the specific device data sheet for more information.

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various configuration options.

The implementation of the Configuration bits in devices using nonvolatile memory implementation makes a Configuration Mismatch (CM) Reset and error, during full-speed operation, virtually impossible. However, a severe device disturbance (such as an ESD event) during Sleep may disrupt the configuration safety check, resulting in a CM Reset.

Table 2-4: Typical Configuration Registers

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Address</th>
<th>Primary Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGS</td>
<td>0xF80004</td>
<td>General Segment Protect</td>
</tr>
<tr>
<td>FOSCEL</td>
<td>0xF80006</td>
<td>Oscillator Select</td>
</tr>
<tr>
<td>FOSC</td>
<td>0xF80008</td>
<td>Oscillator Configure</td>
</tr>
<tr>
<td>FWDT</td>
<td>0xF8000A</td>
<td>Watchdog Timer Configure</td>
</tr>
<tr>
<td>FPOR</td>
<td>0xF8000C</td>
<td>Reset Configure</td>
</tr>
<tr>
<td>FICD</td>
<td>0xF8000E</td>
<td>Debug Configure</td>
</tr>
</tbody>
</table>
3.0 DEVICE IDENTIFICATION

dsPIC33/PIC24 devices have two read-only registers that provide device-specific identification information. These are located near the end of the program memory space. The Device ID registers are 24 bits wide and the upper 8 bits are unimplemented. Both registers can be read using Table Read instructions.

The DEVID register identifies the Microchip microcontroller architectural family and the specific part number. The DEVREV register identifies the particular silicon revision for that device in terms of major and minor revision levels ("letter and dot revision" format).

For any given family of dsPIC33/PIC24 devices, the corresponding Family Silicon Errata and Data Sheet Clarification document provides a list of values for DEVID and the corresponding part numbers for that family. The association of the value of DEVREV to a revision level is different for each part number. The translation of a DEVREV value to a revision level can be found in the associated Family Silicon Errata and Data Sheet Clarification document.

Register 3-1: DEVID: Device ID Register

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVID15</td>
<td>DEVID14</td>
<td>DEVID13</td>
<td>DEVID12</td>
<td>DEVID11</td>
<td>DEVID10</td>
<td>DEVID9</td>
<td>DEVID8</td>
<td></td>
</tr>
<tr>
<td>bit 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVID7</td>
<td>DEVID6</td>
<td>DEVID5</td>
<td>DEVID4</td>
<td>DEVID3</td>
<td>DEVID2</td>
<td>DEVID1</td>
<td>DEVID0</td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit
U = Unimplemented bit, read as ‘0’

bit 23-16 Unimplemented: Read as ‘0’
bit 15-0 DEVID<15:0>: Device ID Value bits

Register 3-2: DEVREV: Device Revision Register

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVREV15</td>
<td>DEVREV14</td>
<td>DEVREV13</td>
<td>DEVREV12</td>
<td>DEVREV11</td>
<td>DEVREV10</td>
<td>DEVREV9</td>
<td>DEVREV8</td>
<td></td>
</tr>
<tr>
<td>bit 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVREV7</td>
<td>DEVREV6</td>
<td>DEVREV5</td>
<td>DEVREV4</td>
<td>DEVREV3</td>
<td>DEVREV2</td>
<td>DEVREV1</td>
<td>DEVREV0</td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit
U = Unimplemented bit, read as ‘0’

bit 23-16 Unimplemented: Read as ‘0’
bit 15-0 DEVREV<15:0>: Device Revision Value bits
4.0 UNIT IDENTIFICATION

Some devices may feature programmable Unit ID registers (FUIDx), which can be programmed by the user with unique device information. Refer to the specific device data sheet for FUIDx availability and memory locations.
5.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the dsPIC33/PIC24 Product Family, but the concepts are pertinent and could be used with modification and possible limitations. The current application notes related to Device Configuration include the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Application Note #</th>
</tr>
</thead>
<tbody>
<tr>
<td>No related application notes at this time.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Please visit the Microchip web site (www.microchip.com) for additional Application Notes and code examples for the dsPIC33/PIC24 family of devices.
6.0 REVISION HISTORY

Revision A (November 2009)
This is the initial released version of this document.

Revision B (July 2010)
This revision includes major updates that have been incorporated throughout the document.

Revision C (June 2011)
This revision includes the following updates:
• Updated all paragraphs of 2.1 “Volatile Memory Implementation” and replaced references to Configuration Words with Configuration Bytes
• Removed section 30.5 “In-Circuit Programming and Debugging”
• Changes to formatting and minor text updates were incorporated throughout the document

Revision D (August 2013)
This revision includes the following updates:
• Added Table 2-1 and Table 2-2
• Updated Register 3-1 and Register 3-2
• Minor text updates and major formatting changes were incorporated throughout the document.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rFLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
GestiIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2009-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-62077-388-8

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV
ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
World Wide Sales and Service

Americas
- **Corporate Office**
 - 2355 West Chandler Blvd.
 - Chandler, AZ 85224-6199
 - Tel: 480-792-7200
 - Fax: 480-792-7277
 - Technical Support:
 - http://www.microchip.com/support
 - Web Address:
 - www.microchip.com

Asia/Pacific
- **Asia Pacific Office**
 - Suites 3707-14, 37th Floor
 - Tower 6, The Gateway Harbour City, Kowloon
 - Hong Kong
 - Tel: 852-2401-1200
 - Fax: 852-2401-2580

- **Australia - Sydney**
 - Tel: 61-2-9686-6733
 - Fax: 61-2-9686-6755

- **China - Beijing**
 - Tel: 86-10-8569-7000
 - Fax: 86-10-8569-2104

- **China - Chengdu**
 - Tel: 86-28-8665-5511
 - Fax: 86-28-8665-7889

- **China - Chongqing**
 - Tel: 86-23-8980-9588
 - Fax: 86-23-8990-9500

- **China - Hangzhou**
 - Tel: 86-571-2819-3187
 - Fax: 86-571-2819-3189

- **China - Hong Kong SAR**
 - Tel: 852-2943-5100
 - Fax: 852-2401-3431

- **China - Nanjing**
 - Tel: 86-25-8473-2460
 - Fax: 86-25-8473-2470

- **China - Qingdao**
 - Tel: 86-532-8502-7355
 - Fax: 86-532-8502-7205

- **China - Shanghai**
 - Tel: 86-21-5407-5533
 - Fax: 86-21-5407-5066

- **China - Shenyang**
 - Tel: 86-24-2334-2829
 - Fax: 86-24-2334-2393

- **China - Shenzhen**
 - Tel: 86-755-8864-2200
 - Fax: 86-755-8203-1760

- **China - Wuhan**
 - Tel: 86-27-5980-5300
 - Fax: 86-27-5980-5118

- **China - Xian**
 - Tel: 86-29-8833-7252
 - Fax: 86-29-8833-7256

- **China - Xiamen**
 - Tel: 86-592-2388138
 - Fax: 86-592-2398130

- **China - Zhuhai**
 - Tel: 86-756-3210040
 - Fax: 86-756-3210049

Asia/Pacific
- **India - Bangalore**
 - Tel: 91-80-3090-4444
 - Fax: 91-80-3090-4123

- **India - New Delhi**
 - Tel: 91-11-4160-8631
 - Fax: 91-11-4160-8632

- **India - Pune**
 - Tel: 91-20-2566-1512
 - Fax: 91-20-2566-1513

- **Japan - Osaka**
 - Tel: 81-6-6152-7160
 - Fax: 81-6-6152-9310

- **Japan - Tokyo**
 - Tel: 81-3-6880-3770
 - Fax: 81-3-6880-3771

- **Korea - Daegu**
 - Tel: 82-53-744-4301
 - Fax: 82-53-744-4302

- **Korea - Seoul**
 - Tel: 82-2-554-7200
 - Fax: 82-2-558-5932 or 82-2-558-5934

- **Malaysia - Kuala Lumpur**
 - Tel: 60-3-6201-9857
 - Fax: 60-3-6201-9859

- **Malaysia - Penang**
 - Tel: 60-4-227-8840
 - Fax: 60-4-227-4068

- **Philippines - Manila**
 - Tel: 63-2-634-9065
 - Fax: 63-2-634-9069

- **Singapore**
 - Tel: 65-6334-8870
 - Fax: 65-6334-8850

- **Taiwan - Hsin Chu**
 - Tel: 886-3-5778-366
 - Fax: 886-3-5770-955

- **Taiwan - Kaohsiung**
 - Tel: 886-7-213-7828
 - Fax: 886-7-330-9305

- **Taiwan - Taipei**
 - Tel: 886-2-2508-8600
 - Fax: 886-2-2508-0102

- **Thailand - Bangkok**
 - Tel: 66-2-694-1351
 - Fax: 66-2-694-1350

Europe
- **Austria - Wels**
 - Tel: 43-7242-2244-39
 - Fax: 43-7242-2244-393

- **Denmark - Copenhagen**
 - Tel: 45-4450-2828
 - Fax: 45-4485-2829

- **France - Paris**
 - Tel: 33-1-69-53-63-20
 - Fax: 33-1-69-30-90-79

- **Germany - Munich**
 - Tel: 49-89-627-144-0
 - Fax: 49-89-627-144-44

- **Italy - Milan**
 - Tel: 39-0331-742611
 - Fax: 39-0331-466781

- **Netherlands - Drunen**
 - Tel: 31-416-690399
 - Fax: 31-416-690340

- **Spain - Madrid**
 - Tel: 34-91-708-08-90
 - Fax: 34-91-708-08-91

- **UK - Wokingham**
 - Tel: 44-118-921-5869
 - Fax: 44-118-921-5820