PIC32 Ethernet Starter Kit
User’s Guide
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MIWI, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-721-7

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Preface .. 5

Chapter 1. Introduction
 1.1 Kit Contents .. 11
 1.2 PIC32 Functionality and Features ... 12

Chapter 2. Hardware
 2.1 Hardware Features .. 15

Appendix A. Board Layout and Schematics
 A.1 PIC32 Ethernet Starter Kit Block Diagram ... 19
 A.2 PIC32 Ethernet Starter Kit Board Layout ... 20
 A.3 PIC32 Ethernet Starter Kit Board Schematics ... 22

Appendix B. Bill of Materials

Index ... 31

Worldwide Sales and Service ... 32
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the PIC32 Ethernet Starter Kit. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Development Systems Customer Change Notification Service
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the PIC32 Ethernet Starter Kit (all also referred to as “starter kit”) as a development tool to emulate and debug firmware on a target board. This user’s guide is composed of the following chapters:

- Chapter 1. “Introduction” provides a brief overview of the starter kit, highlighting its features and uses.
- Chapter 2. “Hardware” provides the hardware descriptions of the starter kit.
- Appendix A. “Board Layout and Schematics” provides a block diagram, board layouts, and detailed schematics of the starter kit.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Emphasized text</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>"Save project before build"</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td></td>
<td>Filenames</td>
<td>autoexec.bat</td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>C:\mcc18\h</td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>Constants (in source code)</td>
<td>0xFF, ‘A’</td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {}</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [, var_name...]</td>
</tr>
<tr>
<td></td>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
</tr>
</tbody>
</table>
RECOMMENDED READING

This user’s guide describes how to use the starter kit. The following Microchip documents are available and recommended as supplemental reference resources.

PIC32MX5XX/6XX/7XX Family Data Sheet (DS61156)

Refer to this document for detailed information on PIC32 devices. Reference information found in this data sheet includes:

- Device memory maps
- Device pinout and packaging details
- Device electrical specifications
- List of peripherals included on the devices

MPLAB® C Compiler for PIC32 User’s Guide (DS51686)

This document, formerly the “MPLAB C32 C Compiler for PIC32 User’s Guide”, details the use of Microchip’s MPLAB C Compiler for PIC32 to develop an application.

MPLAB® IDE User’s Guide (DS51519)

Refer to this document for more information pertaining to the installation and implementation of the MPLAB IDE software, as well as the MPLAB Editor and MPLAB SIM Simulator software that are included with it.

Universal Serial Bus Specification and Associated Documents

The Universal Serial Bus is defined by the USB 2.0 specification and its associated supplements and class-specific documents. These documents are available from the USB Implementers Forum. See their web site at: http://www.usb.org

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at http://www.microchip.com. This web site makes files and information easily available to customers. Accessible by most Internet browsers, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listings
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listings of seminars and events; and listings of Microchip sales offices, distributors and factory representatives
DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com, click Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• **Compilers** – The latest information on Microchip C compilers and other language tools. These include the MPLAB® C compiler; MPASM™ and MPLAB 16-bit assemblers; MPLINK™ and MPLAB 16-bit object linkers; and MPLIB™ and MPLAB 16-bit object librarians.

• **Emulators** – The latest information on the Microchip MPLAB REAL ICE™ in-circuit emulator.

• **In-Circuit Debuggers** – The latest information on the Microchip in-circuit debugger, MPLAB ICD 3.

• **MPLAB IDE** – The latest information on Microchip MPLAB IDE, the Windows® Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager and general editing and debugging features.

• **Programmers** – The latest information on Microchip programmers. These include the MPLAB PM3 device programmer and the PICkit™ 3 development programmers.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com
DOCUMENT REVISION HISTORY

Revision A (December 2010)

This is the initial release of the PIC32 Ethernet Starter Kit User's Guide.
Chapter 1. Introduction

Thank you for purchasing a Microchip Technology PIC32 Ethernet Starter Kit. This board provides a low-cost, modular development system for Microchip’s line of 32-bit microcontrollers.

The starter kit comes preloaded with demonstration software for the user to explore the new features of the PIC32. It is also expandable through a modular expansion interface, which allows the user to extend its functionality. The starter kit also supplies on-board circuitry for full debug and programming capabilities.

This chapter covers the following topics:

• Kit Contents
• PIC32 Functionality and Features

The preprogrammed example code on the PIC32 MCU is available via download from the Microchip web site at http://www.microchip.com. All project files have been included so that the code may be used directly to restore the PIC32 MCU on the starter kit to its original state (i.e., if the sample device has been reprogrammed with another program) or so you can use the tutorial code as a platform for further experimentation.

1.1 KIT CONTENTS

The PIC32 Ethernet Starter Kit contains the following items:

• PIC32 Ethernet Starter Kit development board
• USB mini-B to full-sized A cable – USB debug cable to debug and power the board
• USB micro-B to full-sized A cable – PIC32 USB cable to communicate with the PIC32 USB port
• RJ-45 CAT5 Ethernet patch cable – Ethernet CAT5 cable to communicate with the PIC32 Ethernet port

Note: If you are missing any part of a kit, contact a Microchip sales office for assistance. A list of Microchip offices for sales and service is provided on the back page of this document.
1.2 PIC32 FUNCTIONALITY AND FEATURES

Representations of the layout of the PIC32 Ethernet Starter Kit are shown in Figure 1-1 and Figure 1-2.

The top assembly of the board includes these key features, as indicated in Figure 1-1:
1. PIC32MX795F512L 32-bit microcontroller.
2. PIC32MX440F512H USB microcontroller for on-board debugging.
3. Green power indicator LED.
4. On-board crystal for precision microcontroller clocking (8 MHz).
5. USB connectivity for on-board debugger communications.
6. Orange debug indicator LED.
7. Three push button switches for user-defined inputs.
8. Three user-defined indicator LEDs.
9. USB Type A receptacle connectivity for PIC32 host-based applications.
10. HOST mode power jumper.
11. RJ-45 Ethernet port.
12. Ethernet 10/100 bus speed indicator LED.
13. 50 MHz Ethernet PHY oscillator.
14. 32 kHz oscillator (optional).
15. USB Host and OTG power supply for powering PIC32 USB applications.

Note: When running self-powered USB device applications, open the jumper JP2 to prevent possibly back-feeding voltage onto the Vbus from one port on the host to another (or from one host to another).

For details on these features, refer to Chapter 2, “Hardware”.

FIGURE 1-1: PIC32 ETHERNET STARTER KIT LAYOUT (TOP SIDE)
The bottom assembly of the board includes these key features, as indicated in Figure 1-2:

1. Regulated +3.3V power supply for powering the starter kit via USB or expansion board.
2. Connector for various expansion boards.
3. USB Type micro-AB receptacle for OTG and USB device connectivity for PIC32 OTG/device-based applications.
4. External Ethernet PHY.

FIGURE 1-2: PIC32 ETHERNET STARTER KIT LAYOUT (UNDERSIDE)
Chapter 2. Hardware

This chapter describes the hardware features of the PIC32 Ethernet Starter Kit.

2.1 HARDWARE FEATURES

The key features of the PIC32 Ethernet Starter Kit are listed below. They are presented in the order given in Section 1.2 “PIC32 Functionality and Features”. You can refer to Figure 1-1 for their locations on the board.

2.1.1 Processor Support

The PIC32 Ethernet Starter Kit is designed with a permanently mounted (i.e., soldered) PIC32MX795F512L processor.

2.1.2 Power Supply

There are two ways to supply power to the PIC32 Ethernet Starter Kit:

- USB bus power connected to USB debug connector J1.
- An external application board with a regulated DC power supply that provides +5V can be connected to the J2 application board connector that is provided on the bottom side of the board.

One green LED (D3) is provided to show that the PIC32 microcontroller is powered up.

2.1.3 Debug USB Connectivity

The PIC32 Ethernet Starter Kit includes a PIC32MX440F512H USB microcontroller that provides debugger connectivity over USB. The PIC32MX440F512H is hard-wired to the PIC32 device to provide two types of protocol translation:

- I/O pins of PIC32MX440F512H to the ICSP™ pins of the PIC32
- I/O pins of PIC32MX440F512H to the JTAG pins of the PIC32

The PIC32 Ethernet Starter Kit currently uses the JTAG pins of the PIC32 device for programming and debugging.

2.1.4 PIC32 USB Connectivity

There are three possible ways to connect to the PIC32 USB microcontroller:

- HOST Mode

 Connect the device to the Type A connector J4, located on the top side of the starter kit. If using the Debug USB port to power the Host port, install jumper JP2 to short the back-power prevention diode. Note that a maximum of ~400 mA can be supplied from the Debug USB port to the Host port using this method. If the full 500 mA supply is needed, an external supply must be connected to the application board and jumper JP2 must be removed to prevent back-powering the Debug USB port.
• **DEVICE Mode**
 First, connect the debug mini-B USB cable to port J1. Next, connect the starter kit to the host using a cable with a Type-B micro-plug to the starter kit’s micro-A/B port J5, located on the bottom side of the starter kit. The other end of the cable must have a Type-A plug. Connect it to a USB host. Jumper JP2 should be removed.

• **OTG Mode**
 Connect the starter kit to the OTG device using an OTG micro-A/B cable to the micro-A/B port J5, located on the bottom side of the starter kit. The starter kit provides an on-board power supply capable of providing 120 mA Max. This supply is controlled by the PIC32MX795F512L microcontroller. Jumper JP2 should be removed.

2.1.5 Switches
Push button switches provide the following functionality:
• SW1: Active-low switch connected to RD6
• SW2: Active-low switch connected to RD7
• SW3: Active-low switch connected to RD13
The switches do not have any debounce circuitry and require the use of internal pull-up resistors; this allows you to investigate software debounce techniques. When Idle, the switches are pulled high (+3.3V). When pressed, they are grounded.

2.1.6 LEDs
The RD0 through RD2 LEDs are connected to PORTD of the processor. The PORTD pins are set high to light the LEDs.

2.1.7 Oscillator Options
The installed microcontroller has an oscillator circuit connected to it. The main oscillator uses an 8 MHz crystal (Y2) and functions as the controller’s primary oscillator. Use of an external crystal is required to develop USB applications. The USB specification dictates a frequency tolerance of ±0.25% for full speed. Non-USB applications can use the internal oscillators. The starter kit also has provisions for an external secondary 32 kHz oscillator (Y3); however, this is not populated. A suitable oscillator, the ECS-3X8, can be obtained from Digi-Key: Part no. X801-ND CMR200TB32.768KDZFR.

The PIC32MX440F512H is independently clocked and has its own 8 MHz crystal (Y1).

2.1.8 120-Pin Modular Expansion Connector
The PIC32 Ethernet Starter Kit has been designed with a 120-pin modular expansion interface, which allows the board to provide basic generic functionality now, and easy extendability to new technologies as they become available.

TABLE 2-1: STARTER KIT CONNECTOR PART NUMBERS

<table>
<thead>
<tr>
<th>Connector</th>
<th>HIROSE Electric PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter Kit Connector</td>
<td>FX10A-120P/12-SV1(71)</td>
</tr>
<tr>
<td>Application Board Connector</td>
<td>FX10A-120S/12-SV(71)</td>
</tr>
</tbody>
</table>
2.1.9 Ethernet PHY

The PIC32 Ethernet Starter Kit has been designed with a National DP83848 PHY for connecting the starter kit using an RJ-45 cable to a network. The interface between the PHY and the PIC32 has been configured for the industry standard RMII interface and has been isolated from the Modular Expansion Connector. LED D8 indicates the Ethernet bus speed. When lit, the bus speed is 100 Mbps; when off, the bus speed is 10 Mbps.
Appendix A. Board Layout and Schematics

A.1 PIC32 ETHERNET STARTER KIT BLOCK DIAGRAM

FIGURE A-1: HIGH-LEVEL BLOCK DIAGRAM OF THE PIC32 ETHERNET STARTER KIT

Power Circuit

- V_{USB} (or $+5\text{V}_{\text{EXT}}$
- +3.3V Power Supply
- PIC32MX795F512L
- Debug USB
- Debugger Circuit (PIC32MX440F512H)
- ICSP™ JTAG
- Switches
- LEDs

USB OTG
- Device/OTG (Type micro-A/B)

USB Host
- Host (Type A)

Application Board Connector
- +5V EXT

Ethernet PHY
- 10/100 Jack

Note 1: From Debugger USB Port.
A.2 PIC32 ETHERNET STARTER KIT BOARD LAYOUT

FIGURE A-2: PIC32 ETHERNET STARTER KIT LAYOUT (TOP ASSEMBLY)
FIGURE A-3: PIC32 ETHERNET STARTER KIT LAYOUT (BOTTOM ASSEMBLY)
A.3 PIC32 ETHERNET STARTER KIT BOARD SCHEMATICS

FIGURE A-4: PIC32 ETHERNET STARTER KIT (ETHERNET)
FIGURE A-6: PIC32 ETHERNET STARTER KIT (USB HOST AND OTG POWER SUPPLIES)

USB HOST Power Supply

*Install Jumper if powering from Debugger Power Supply

USB OTG/Device Power Supply (120 mA MAX)
FIGURE A-7: PIC32 ETHERNET STARTER KIT (DEBUGGER)

Debug32 uP

PIC32xLF44F512H

DBG ICSP HEADER

Debugger USB PORT
FIGURE A-8: PIC32 ETHERNET STARTER KIT (3.3V POWER SUPPLY)
Appendix B. Bill of Materials

TABLE B-1: PIC32 ETHERNET STARTER KIT BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U4</td>
<td>IC SMT, MCP1253, DC/DC Converter 3.3V 8L MSOP</td>
<td>Microchip</td>
<td>MCP1253-33X501/MS</td>
</tr>
<tr>
<td>U1</td>
<td>IC SMT, PIC32MX440F512H-80I/MR 64P QFN</td>
<td>Microchip</td>
<td>PIC32MX440F512H-80I/MR</td>
</tr>
<tr>
<td>U2</td>
<td>IC SMT, PIC32MX795F512L 100L TQFP</td>
<td>Microchip</td>
<td>PIC32MX795F512L-80I/PT</td>
</tr>
<tr>
<td>U5</td>
<td>IC SMT, TC1262-3.3VDB, SOT-223</td>
<td>Microchip</td>
<td>TC1262-3.3VDBTR</td>
</tr>
<tr>
<td>C1, C9-C14, C27, C28, C30-C33, C35-C39</td>
<td>CAP SMT, 0.1 µF 0603 CER 16V 10% X7R</td>
<td>Panasonic</td>
<td>ECJ-1VB1C104K</td>
</tr>
<tr>
<td>C17</td>
<td>CAP SMT, 1.0 µF 0805 CER 16V 10% X7R</td>
<td>Kemet</td>
<td>C0805C105K4RACTU</td>
</tr>
<tr>
<td>C2, C29, C34</td>
<td>CAP SMT, 10 µF 0805 CER 6.3V 20%, X5R</td>
<td>Panasonic</td>
<td>ECJ-2FB0J106M</td>
</tr>
<tr>
<td>C7, C8, C18</td>
<td>CAP SMT, 4.7 µF 0805 CER 16V +80-20% Y5V</td>
<td>Panasonic</td>
<td>ECJ-2FB0J475K</td>
</tr>
<tr>
<td>C3-C6</td>
<td>CAP SMT, 20 pF 0603 CER 50V, 5% C0G</td>
<td>Panasonic</td>
<td>ECJ-2FB0J475K</td>
</tr>
<tr>
<td>C7, C8, C18</td>
<td>CAP SMT, 4.7 µF 0805 CER 16V +80-20% Y5V</td>
<td>Panasonic</td>
<td>ECJ-2FB0J475K</td>
</tr>
<tr>
<td>C25</td>
<td>CAP SMT, 6.8 µF 0805 CER 6.3V 10% X5R</td>
<td>Kemet</td>
<td>C0805C685K9PACTU</td>
</tr>
<tr>
<td>C26</td>
<td>CAP SMT, 100 µF 1812 CER 6.3V -20%,+80% Y5V</td>
<td>Panasonic</td>
<td>ECJ-5YF0J107Z</td>
</tr>
<tr>
<td>JP2</td>
<td>CONN, HDR, 1x2 Breakaway, 0.100" Pitch, 0.025 SQ Post (0.100"/0.230")</td>
<td>Samtec</td>
<td>TSW-102-07-G-S</td>
</tr>
<tr>
<td>J1</td>
<td>CONN SMT, RECPT, USB Mini-B 5POS RA</td>
<td>Delphi</td>
<td>15430262-110</td>
</tr>
<tr>
<td>J2</td>
<td>CONN SMT, HDR, 120P, w/Post</td>
<td>Hirose Electronics</td>
<td></td>
</tr>
<tr>
<td>J4</td>
<td>CONN, RECPT, USB Type-A w/Board Lock</td>
<td>FCI</td>
<td>87520-0010BLF</td>
</tr>
<tr>
<td>J5</td>
<td>CONN, RECPT, USB Micro-B SMD TH SHLL</td>
<td>Hirose Electronics</td>
<td>ZK62D-AB-5P8</td>
</tr>
<tr>
<td>D2, D7</td>
<td>Diode SMT, Schottky 30V 0.5A SOD-123</td>
<td>On Semiconductor</td>
<td>MBR050T1G</td>
</tr>
<tr>
<td>U6</td>
<td>IC SMT, TPS20X1 .75A Power DIST Switch 5-SOT23</td>
<td>Texas Instruments</td>
<td>TPS2051BDBVR</td>
</tr>
<tr>
<td>U3</td>
<td>IC SMT, TPS2041 1A PWR DIST Switch SNGL SOT23-5</td>
<td>Texas Instruments</td>
<td>TPS2041BDBVR</td>
</tr>
<tr>
<td>LED1</td>
<td>LED SMT, 0805 Red DIFF 2x1.25 mm Thin</td>
<td>Lumex</td>
<td>SML-LXT0805IW-TR</td>
</tr>
<tr>
<td>D1, LED2</td>
<td>LED SMT, 0805 Yellow DIFF 2x1.25 mm Thin</td>
<td>Lumex</td>
<td>SML-LXT0805YW-TR</td>
</tr>
<tr>
<td>D3, D8, LED3</td>
<td>LED SMT, 0805 Green DIFF 2x1.25 mm</td>
<td>Lumex</td>
<td>SML-LXT0805GW-TR</td>
</tr>
<tr>
<td>Y1, Y2</td>
<td>OSC SMT, Crystal 8.000 MHz 18 pF SMD</td>
<td>Abracon Corp.</td>
<td>ABM3B-8.000MHZ-B2-T</td>
</tr>
<tr>
<td>R4, R9, R11, R12</td>
<td>RES SMT, 1.0 KΩ 1/10W 5% 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ102V</td>
</tr>
<tr>
<td>R10, R13, R14, R16, R18</td>
<td>RES SMT, 4.7 KΩ 1/10W 5% 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ472V</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Part No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>R5, R19, R20, R22, R23</td>
<td>RES SMT, 330Ω 1/10W 5% 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ331V</td>
</tr>
<tr>
<td>R17</td>
<td>RES SMT, 100 KΩ 1/10W 1% 0603</td>
<td>Panasonic</td>
<td>PANASONIC ERJ-3EKF1003V</td>
</tr>
<tr>
<td>S1-S3</td>
<td>Switch, Light Touch 160 gF</td>
<td>Panasonic</td>
<td>EVQ-PPBA25</td>
</tr>
<tr>
<td>J6</td>
<td>CONN, MAGJACK 1PORT SHLD 10/100BT and LEDs</td>
<td>Bel Stewart</td>
<td>SI-60062-F</td>
</tr>
<tr>
<td>U8</td>
<td>IC SMT, TXRX Ethernet PHYTER 48-LQFP</td>
<td>National</td>
<td>DP83848CVV/NOPB</td>
</tr>
<tr>
<td>Y4</td>
<td>OSC SMT, Oscillator 50.0000 MHz 3.3V</td>
<td>AVX</td>
<td>ECS-80-20-5PVX</td>
</tr>
<tr>
<td>R15, R21, R25, R33, R51, R57</td>
<td>RES SMT, 1.5 KΩ 1/10W 1% 0603</td>
<td>Panasonic</td>
<td>ERJ-3EKF1501V</td>
</tr>
<tr>
<td>R29, R59-R63</td>
<td>RES SMT, 2.2 KΩ 1/16W 1% 0603</td>
<td>SPC Technology</td>
<td>MC0603WGF2201T5E-TC</td>
</tr>
<tr>
<td>R28, R44</td>
<td>RES SMT, 49.9Ω 1/10W 1% 0603</td>
<td>Rohm</td>
<td>MCR03EZPFX49R9</td>
</tr>
<tr>
<td>R26</td>
<td>RES SMT, 249Ω 1/10W 1% 0603</td>
<td>Yageo</td>
<td>RC0603FR-07249RL</td>
</tr>
<tr>
<td>R50</td>
<td>RES SMT, 510Ω 1/16W 1% 100 PPM 0603</td>
<td>Yageo/Phyco</td>
<td>9C06031A5100FKHFT</td>
</tr>
<tr>
<td>C18, C15, C16, GND1, J3, R24, R27, TP9, TP10, TP11, Y3</td>
<td>Spare Location, Do Not Install</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Index

C
- Customer Change Notification Service 8
- Customer Support.. 8

D
- Documentation
 - Conventions.. 6

H
- Hardware Features
 - LEDs ..15, 16
 - Oscillator Options ... 16
 - PICtail Plus Card Edge Connectors.................. 16
 - Power Supply.. 15
 - Processor Support .. 15
 - Switches ... 16
 - USB Connectivity .. 15

I
- Internet Address... 7

M
- Microchip Internet Web Site....................................... 7
- MPLAB IDE Simulator, Editor User’s Guide............... 7

P
- PIC32
 - Layout
 - 32-bit microcontroller ... 12
 - Debug indicator LED .. 12
 - Ethernet 10/100 Bus Speed LED 12
 - Ethernet PHY oscillator 12
 - Expansion board connector 13
 - External Ethernet PHY ... 13
 - HOST mode power jumper 12
 - On-board crystal .. 12
 - Optional 32 kHz oscillator 12
 - Power supply .. 13
 - Power-indicator LED ... 12
 - RJ-45 Ethernet port .. 12
 - Switches .. 12
 - USB connectivity .. 12
 - USB Host and OTG power supply 12
 - USB microcontroller .. 12
 - USB Type A receptacle 12
 - USB Type micro-AB receptacle 13
 - User-defined LEDs ... 12

S
- Starter Kit Board
 - Block Diagram.. 19
- Starter Kit Layout
 - Bottom Assembly .. 13, 21
 - Top Assembly .. 12, 20
- Starter Kit Schematics
 - 3.3V Power Supply .. 26
 - Application board connector 27
 - Debugger .. 25
 - Ethernet ... 22
 - PIC32 device ... 23
 - USB Host and OTG power supplies 24

U
- USB
 - Connectivity .. 15

W
- WWW Address... 7
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Asia Pacific Office</td>
<td>India - Bangalore</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>2355 West Chandler Blvd., Chandler, AZ 85224-6199</td>
<td>Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong</td>
<td>Tel: 91-80-3090-4444 Fax: 91-80-3090-4433</td>
<td>Tel: 43-7242-2244-39 Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>Tel: 852-2401-1200</td>
<td>Tel: 91-11-4160-8631 Fax: 91-11-4160-8632</td>
<td>Denmark - Copenhagen</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>Fax: 852-2401-3431</td>
<td>Fax: 91-20-2566-1512 Fax: 91-20-2566-1513</td>
<td>Tel: 45-4450-2828 Fax: 45-4485-2829</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>China - Beijing</td>
<td>Japan - Yokohama</td>
<td>France - Paris</td>
</tr>
<tr>
<td>Web Address:</td>
<td>China - Chengdu</td>
<td>Korea - Daegu</td>
<td>Germany - Munich</td>
</tr>
<tr>
<td>www.microchip.com</td>
<td>Tel: 86-28-8665-5511 Fax: 86-28-8665-7889</td>
<td>Tel: 82-53-744-4301 Fax: 82-53-744-4302</td>
<td>Tel: 49-89-627-144-0 Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td></td>
<td>China - Chongqing</td>
<td>Korea - Seoul</td>
<td>Italy - Milan</td>
</tr>
<tr>
<td></td>
<td>Tel: 86-23-8980-9588 Fax: 86-23-8980-9500</td>
<td>Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934</td>
<td>Tel: 39-0331-742611 Fax: 39-0331-466781</td>
</tr>
<tr>
<td></td>
<td>China - Hong Kong SAR</td>
<td>Malaysia - Kuala Lumpur</td>
<td>Netherlands - Drunen</td>
</tr>
<tr>
<td></td>
<td>Tel: 852-2401-1200 Fax: 852-2401-3431</td>
<td>Tel: 60-3-6201-9857 Fax: 60-3-6201-9859</td>
<td>Tel: 31-416-690399 Fax: 31-416-690340</td>
</tr>
<tr>
<td></td>
<td>China - Nanjing</td>
<td>Malaysia - Penang</td>
<td>Spain - Madrid</td>
</tr>
<tr>
<td></td>
<td>Tel: 86-25-8473-2460 Fax: 86-25-8473-2470</td>
<td>Tel: 60-4-227-8870 Fax: 60-4-227-4068</td>
<td>Tel: 34-91-708-08-90 Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td></td>
<td>China - Qingdao</td>
<td>Philippines - Manila</td>
<td>UK - Wokingham</td>
</tr>
<tr>
<td></td>
<td>Tel: 86-532-8502-7355 Fax: 86-532-8502-7205</td>
<td>Tel: 63-2-634-9065 Fax: 63-2-634-9069</td>
<td>Tel: 44-118-921-5869 Fax: 44-118-921-5820</td>
</tr>
<tr>
<td></td>
<td>China - Shanghai</td>
<td>Singapore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: 86-21-5407-5533 Fax: 86-21-5407-5066</td>
<td>Tel: 65-6334-8870 Fax: 65-6334-8850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Shenyang</td>
<td>Taiwan - Hsin Chu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: 86-24-2334-2829 Fax: 86-24-2334-2393</td>
<td>Tel: 886-3-6578-300 Fax: 886-3-6578-370</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Shenzhen</td>
<td>Taiwan - Kaohsiung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: 86-755-8203-2660 Fax: 86-755-8203-1760</td>
<td>Tel: 886-7-213-7830 Fax: 886-7-330-9305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Wuhan</td>
<td>Taiwan - Taipei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: 86-27-5980-5300 Fax: 86-27-5980-5118</td>
<td>Tel: 886-2-2500-6610 Fax: 886-2-2508-0102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Xian</td>
<td>Thailand - Bangkok</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: 86-29-8833-7252 Fax: 86-29-8833-7256</td>
<td>Tel: 66-2-694-1351 Fax: 66-2-694-1350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Xiamen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: 86-592-2388138 Fax: 86-592-2388130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>China - Zhuhai</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel: 86-756-3210040 Fax: 86-756-3210049</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

08/04/10