Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEEL0G, KEEL0G logo, MPLAB, PIC, PICmicro, PICSTART, PIC18 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPicWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MIWI, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, SOI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation (“SMSC”) is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-62077-697-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0G® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Preface .. 5
 Introduction .. 5
 Intended Use .. 5
 Scope of Delivery .. 6
 Document Layout .. 6
 Term Definitions .. 6
 Recommended Reading .. 7
 Customer Support ... 7
 Document Revision History ... 7

Chapter 1. Introduction
 1.1 Product Features ... 9
 1.2 Block Diagram .. 9

Chapter 2. Board Options and Pin Configurations
 2.1 Changing the Pin Configuration .. 12

Chapter 3. Board Details
 3.1 Measurement Connector and Interface to Main Board Connector 13
 3.1.1 Identification Signals ... 13
 3.1.2 Electrical Characteristics .. 14
 3.2 Configuration/Debug Header Connector ... 14
 3.3 Default Interface Jumper .. 14
 3.4 Activity LED ... 14
 3.5 FOT 2+0 (oPHY) ... 14

Chapter 4. Assembly Plan
 4.1 Top View ... 15
 4.2 Bottom View ... 16

Chapter 5. Mechanical Drawing
 5.1 Top View ... 17
 5.2 Bottom View ... 18

Chapter 6. Schematics
 6.1 Board Option 1 .. 20
 6.2 Board Option 2 .. 24
 6.3 Board Option 3 .. 28

Worldwide Sales and Service .. 32
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document.

INTRODUCTION

This chapter contains general information that will be useful to know before using the Physical+ Interface Board OS81110 / 2+0 (in the following abbreviated as Phy+ Interface Board). Topics discussed in this chapter include:

- Intended Use
- Scope of Delivery
- Document Layout
- Term Definitions
- Recommended Reading
- Customer Support
- Document Revision History

INTENDED USE

This Microchip product is intended to be used for developing, testing, or analyzing MOST® based multimedia products and systems by persons with experience in developing multimedia devices.

Note: The operation of this Microchip product is only admitted with original Microchip devices.
Do not interfere with the product's original state. Otherwise user safety, faultless operation and electromagnetic compatibility are not guaranteed.
To avoid electric shocks and short circuits use this device only in an appropriate environment.
This open device may exceed the limits of electromagnetic interference. Electromagnetic compatibility can be only achieved if the equipment is built into an appropriate housing.
SCOPE OF DELIVERY

This product is delivered with the Physical+ Interface Board OS81110 / 2+0.
Check your shipment for completeness.
If you have any complaints, direct them to your local Microchip sales and service office,
listed on the last page of this document. Providing the delivery note number eases the
handling.

DOCUMENT LAYOUT

This user’s guide describes how to use the Phy+ Interface Board. The document is
organized as follows:
• Chapter 1, Introduction – This chapter introduces the Phy+ Interface Board. It pro-
vides an overview about the product features, shows the main parts of the board
and a hardware structure example.
• Chapter 2, Board Options and Pin Configurations – The Phy+ Interface Board is
available in three different board options. Each board option provides a set of differ-
ent Pin Configurations. This chapter gives an overview of the board options and
explains how to change a Pin Configuration.
• Chapter 3, Board Details – This chapter describes the pin-outs of the board connec-
tors. In addition it explains jumper settings and LED states.
• Chapter 4, Assembly Plan – This chapter shows the top and bottom view of the
assembly plan.
• Chapter 5, Mechanical Drawing – This chapter shows the mechanical dimensions of
the board (top and bottom view), including connectors and further peripherals.
• Chapter 6, Schematics – This chapter shows the schematics for all available board
options.

TERM DEFINITIONS

This user’s guide uses the following term definitions:

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNx</td>
<td>Connector x</td>
</tr>
<tr>
<td>FOT</td>
<td>Fiber Optic Transceiver</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>I²C™</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>I²S™</td>
<td>Inter-IC Sound</td>
</tr>
<tr>
<td>INIC</td>
<td>Intelligent Network Interface Controller</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
</tbody>
</table>
| MediaLB® | Media Local Bus, an open standard from Microchip for inter-chip multime-
 | dia communication |
| MOST | Media Oriented System Transport |
| NC | Not Connected |
| oPHY | Optical physical layer |
RECOMMENDED READING

This user's guide describes how to use the Phy+ Interface Board. Other useful documents are listed below.

[1] OS81110 Hardware Data Sheet
 Contact: support-ais-de@microchip.com.

 Contact: support-ais-de@microchip.com.

 Go to: www.microchip.com.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (December 2013)

• Initial release of this document.
Chapter 1. Introduction

1.1 PRODUCT FEATURES

The product features of the Phy+ Interface Board are as follows:

• Detached interface between application hardware and MOST network
• Supports a MOST network speed grade of 150 Mbits/s
• Available for optical physical layer (oPHY) applications
• Fully encapsulated kernel hardware
• Common and standard inter-board connector
 - Connects to application hardware
 - Serves as measurement connector
• Configuration/Debug Header Connector
• Lock detection
• Offers connection capabilities to the following ports and interfaces:
 - Control port (I2C)
 - Two streaming ports (I2S): I2S A and I2S B
 - MediaLB 3-Pin port
 - MediaLB 6-Pin port
 - Two Transport Stream Interfaces (TSI): TSI 0 and TSI 1
 - Two Serial Peripheral Interfaces (SPI): SPI 0 and SPI 1

1.2 BLOCK DIAGRAM

Figure 1-1 gives an overview of the Phy+ Interface Board’s main components.

FIGURE 1-1: BLOCK DIAGRAM
As depicted in the figure below, the Phy+ Interface Board serves as an interface between the INIC Evaluation Platform OS81xxx or customer application hardware (specified as ‘Application’ in Figure 1-2) and the MOST150 network. The Phy+ Interface Board can be simply plugged on the application hardware via the inter-board connector CN7, see Section 3.1.

FIGURE 1-2: HARDWARE STRUCTURE EXAMPLE

![Diagram of Hardware Structure Example](image)

Note: Schematics and layouts are provided "as is" without any warranty as an example application, and are not guaranteed to be suitable for any particular application. Any design using this information should be tested over the full environmental stress conditions of the intended application. For application information, schematic and layout issues refer to the OS81110 hardware data sheet [1].
Chapter 2. Board Options and Pin Configurations

There are three different board options available which support a specific combination of hardware ports. Depending upon the ports required for the application and the data type(s) to be streamed, either board option 1, 2 or 3 can be chosen. Board options 1-3 provide pre-defined Pin Configurations (1-8), see Table 2-1, which can be easily accessed by using either the default Pin Configuration or selecting a Pin Configuration different to the default, see Section 2.1 “Changing the Pin Configuration”. For further reading on Pin Configurations refer to the OS81110 hardware data sheet [1] and OS81110 INIC API User’s Manual [3].

TABLE 2-1: PHY INTERFACE CONFIGURATION MODES

<table>
<thead>
<tr>
<th>OS81110 PIN</th>
<th>BOARD OPTION 1</th>
<th>PIN CONFIG. 1 (Note 1)</th>
<th>BOARD OPTION 2</th>
<th>PIN CONFIG. 3</th>
<th>BOARD OPTION 3</th>
<th>PIN CONFIG. 5 (Note 1)</th>
<th>PIN CONFIG. 6</th>
<th>PIN CONFIG. 7 (Note 1)</th>
<th>PIN CONFIG. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>MLBSN</td>
<td>MLBSN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>MLBSP</td>
<td>MLBSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>MLBDN</td>
<td>MLBDN</td>
<td>NC</td>
<td></td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>MLBDP</td>
<td>MLBDP</td>
<td>NC</td>
<td>SCKB</td>
<td>SCKB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>MLBCN</td>
<td>MLBCN</td>
<td>TCLK1</td>
<td>SCKLB</td>
<td>SCKLB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>MLBCP</td>
<td>MLBCP</td>
<td>TSYN1</td>
<td>TSYN1</td>
<td>TSYN1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FSYA</td>
<td>TSYN0</td>
<td>FSYA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SCKA</td>
<td>TCLK0</td>
<td>SCKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>SRX0</td>
<td>TDA0</td>
<td>SRX0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>SRX1</td>
<td>TVAL0</td>
<td>SRX1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>SRX2</td>
<td>NC</td>
<td>SRX2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>SRX3</td>
<td>NC</td>
<td>SRX3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RMCK0</td>
<td>RMCK0</td>
<td>RMCK0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEMLDAT</td>
</tr>
</tbody>
</table>

Note 1: Default Pin Configuration of board option
Note: All board options provide an I²C interface to configure and control the INIC.
Note: The default interface (MediaLB or I²C) is configurable via CN5, see Section 3.3 “Default Interface Jumper”.

Legend:
- MediaLB 3-Pin
- MediaLB 6-Pin
- TSI Port 0
- TSI Port 1
- SPI A
- SPI B
- Streaming Port A
-Streaming Port B
2.1 CHANGING THE PIN CONFIGURATION

To change the Pin Configuration of the Phy+ Interface Board, the INIC Explorer [2] is required, with its software component installed on PC and its hardware connected to both the PC (for connection information refer to the INIC Explorer Startup Guide [4]) and the Configuration/Debug Header connector [1] of the Phy+ Interface Board, see Figure 4-1. Assuming that the application setup is powered and working properly, the Pin Configuration can be changed by performing the following steps:

• Start INIC Explorer software.
• Go to the Configuration String Editor.
 (You can access the Configuration String Editor either by clicking on its entry in the context area or by opening the navigation tree.)
• Select INIC.PortConfiguration.PortVariantCfg.
• Double click on the value.
 >> A dialogue window opens.
• Open the drop down list.
• Select one of the Pin Configuration(s) valid for your board option, see Table 2-1.

| Note: | If you choose a Pin Configuration different to those supported by the board option you use, proper functionality of the Phy+ Interface Board cannot be ensured. |

• Click ‘OK’.
• Click the ‘Write’ button, which is located in the toolbar.
 >> The changes are written into the INIC’s Configuration String and a reset will be applied to the INIC in order to adapt the new setting.
Chapter 3. Board Details

3.1 MEASUREMENT CONNECTOR AND INTERFACE TO MAIN BOARD CONNECTOR

Measurement Connector CN2 (see Figure 4-1): Samtec QSH-020-01-L-D-DP-A
Interface to Main Board Connector CN7 (see Figure 4-2): Samtec QTH-020-01-L-D-DP-A

Connector CN2 is placed on the top side of the Phy+ Interface Board and can be used for measurement purposes. Connector CN7, placed on the bottom side of the Phy+ Interface Board, is used as interface to connector CN2, mounted on the customer application hardware.

CN2 and CN7 have the same pin assignment.

3.1.1 Identification Signals

Pins 4, 5, 7, 8 and 12 serve as Phy+ Interface Board identifiers in respect to the signals active on the pins. ‘GND’ means that the respective pin is tied to ground, ‘Open’ indicates the pin is not connected (NC). In the latter case, the pin needs a pull-up resistor mounted on the application board.

TABLE 3-1: IDENTIFICATION SIGNALS

<table>
<thead>
<tr>
<th>ID0</th>
<th>ID1</th>
<th>ID2</th>
<th>ID3</th>
<th>ID4</th>
<th>Phy+ Interface Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>GND</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Physical+ Interface Board OS81110 / 2+0 Board Option 1</td>
</tr>
<tr>
<td>GND</td>
<td>Open</td>
<td>GND</td>
<td>Open</td>
<td>Open</td>
<td>Physical+ Interface Board OS81110 / 2+0 Board Option 2</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>Open</td>
<td>Open</td>
<td>Physical+ Interface Board OS81110 / 2+0 Board Option 3</td>
</tr>
</tbody>
</table>
3.1.2 Electrical Characteristics

TABLE 3-2: ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 V continuous</td>
<td>30</td>
<td>50</td>
<td>3.465 V</td>
<td></td>
</tr>
<tr>
<td>3.3 V</td>
<td>3.135</td>
<td>370</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

3.2 CONFIGURATION/DEBUG HEADER CONNECTOR

Configuration/Debug Header Connector CN10 (see Figure 4-1): Molex 87832-1420

TABLE 3-3: CONFIGURATION/DEBUG HEADER CONNECTOR

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 3, 13</td>
<td>NC</td>
</tr>
<tr>
<td>2, 5, 10</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>Error/Boot</td>
</tr>
<tr>
<td>6, 9</td>
<td>3.3 V</td>
</tr>
<tr>
<td>7</td>
<td>TDI/DSDA</td>
</tr>
<tr>
<td>8</td>
<td>TCK/DSCL</td>
</tr>
<tr>
<td>11</td>
<td>TDO/DINT</td>
</tr>
<tr>
<td>12</td>
<td>Reset</td>
</tr>
<tr>
<td>14</td>
<td>TMS</td>
</tr>
</tbody>
</table>

3.3 DEFAULT INTERFACE JUMPER

If the jumper CN5 (see Figure 4-1) is closed during start-up, MediaLB is set as default data interface. If the jumper is opened during start-up, I²C is set as default data interface.

3.4 ACTIVITY LED

The activity LED (see Figure 4-1) indicates different activity states.

TABLE 3-4: ACTIVITY LED

<table>
<thead>
<tr>
<th>Color</th>
<th>Activity State</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No activity</td>
</tr>
<tr>
<td>Red</td>
<td>Activity, but no lock</td>
</tr>
<tr>
<td>Green</td>
<td>Lock</td>
</tr>
</tbody>
</table>

3.5 FOT 2+0 (oPHY)

The Phy+ Interface Board can be connected to the MOST network via a FOT unit MOST150 2+0 from Tyco (see Figure 4-1), which is a fiber optic transceiver module for the MOST connector.
Chapter 4. Assembly Plan

4.1 TOP VIEW

FIGURE 4-1: ASSEMBLY PLAN—TOP VIEW
4.2 BOTTOM VIEW

FIGURE 4-2: ASSEMBLY PLAN—BOTTOM VIEW

Interface to Main Board Connector
Chapter 5. Mechanical Drawing

5.1 TOP VIEW

FIGURE 5-1: MECHANICAL DRAWING—TOP VIEW
5.2 BOTTOM VIEW

FIGURE 5-2: MECHANICAL DRAWING—BOTTOM VIEW
Chapter 6. Schematics

The following pages show the schematics available for the different Board Options. For available Board Options and their supported Pin Configurations refer to Chapter 2.
6.1 BOARD OPTION 1

FIGURE 6-1: BOARD OPTION 1—TOP BLOCK
FIGURE 6-4: BOARD OPTION 1—OS81110
6.2 BOARD OPTION 2

FIGURE 6-5: BOARD OPTION 2—TOP BLOCK
FIGURE 6-7: BOARD OPTION 2—CONNECTORS
FIGURE 6-8: BOARD OPTION 2—OS81110
6.3 BOARD OPTION 3

FIGURE 6-9: BOARD OPTION 3—TOP BLOCK
FIGURE 6-11: BOARD OPTION 3—CONNECTORS

Application Interface

Box for Comments:

Physical Interface Board OS81110 / 2+0 User's Guide

© 2013 Microchip Technology Inc.
Worldwide Sales and Service

Americas

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

Asia/Pacific

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6765

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8526-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8990-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5500
Fax: 852-2943-5558

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-6473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2929
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8664-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

Asia/Pacific

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-0102
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Europe

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820