Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, nPIC and UNi/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICKit, PICDEM, PICDEM.net, PiCtail, PIC32 logo, REAL ICE, rFLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Preface .. 1
 Introduction .. 1
 Document Layout .. 1
 Conventions Used in this Guide ... 2
 Recommended Reading .. 2
 The Microchip Web Site .. 3
 Customer Support .. 3
 Document Revision History .. 3

Chapter 1. Product Overview
 1.1 Introduction .. 5
 1.2 What is the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board? 6
 1.3 What the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board Kit Includes: ... 6

Chapter 2. Installation and Operation
 2.1 Introduction .. 7
 2.2 Features ... 7
 2.3 Getting Started ... 8

Appendix A. Schematic and Layouts
 A.1 Introduction ... 11
 A.2 Board – Schematic .. 12
 A.3 Board – Assembly Drawing ... 13
 A.4 Board – Top Layer .. 14
 A.5 Board – Top Metal Layer ... 15
 A.6 Board – Bottom Layer ... 16

Appendix B. Bill Of Materials (BOM)

Worldwide Sales and Service ... 18
INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board User’s Guide. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board. The manual layout is as follows:

• Chapter 1. “Product Overview” – Important information about the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board.
• Chapter 2. “Installation and Operation” – Includes instructions on how to get started with this user’s guide and a description of the user’s guide.
• Appendix A. “Schematic and Layouts” – Shows the schematic and layout diagrams for the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board.
• Appendix B. “Bill Of Materials (BOM)” – Lists the parts used to build the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td>Referenced books</td>
<td>MPLAB® IDE User's Guide</td>
</tr>
<tr>
<td>Italic characters</td>
<td>Emphasized text</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>"Save project before build"</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>'bnnnn'</td>
<td>A binary number where n is a digit</td>
<td>'b00100, 'b10</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Courier font:</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td>Plain Courier</td>
<td>Filenames</td>
<td>autoexec.bat</td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
</tr>
<tr>
<td>Initial Courier</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>'0xnnnn'</td>
<td>A hexadecimal number where n is a hexadecimal digit</td>
<td>0xFFFF, 0x007A</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
</tr>
<tr>
<td>character: {</td>
<td>Ellipses...</td>
<td>Replaces repeated text var_name [, var_name...]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Represents code supplied by user void main (void) { ... }</td>
</tr>
</tbody>
</table>

RECOMMENDED READING

This user's guide describes how to use MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board. The following Microchip document is recommended as supplemental reference resources.

MCP73213 Data Sheet, “Dual-Cell Li-Ion / Li-Polymer Battery Charge Management Controller with Input Overvoltage Protection”, DS22190

This data sheet provides detailed information regarding the MCP73213 product family.
THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (July 2009)

- Initial Release of this Document.
1.1 INTRODUCTION

The MCP73213 product family is highly integrated linear charge management controllers for dual-cell Li-Ion and Li-Polymer batteries. The MCP73213 product family operates with minimum external components, which is ideal for use in space-limited and cost-effective applications. The maximum 18V rated input over voltage protection and battery short circuit protection offer designers a secondary protection in addition to the Li-Ion battery protection circuit.

This chapter provides an overview of the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board and covers the following topics:

• “What is the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board?”
• “What the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board Kit Includes”

FIGURE 1-1: MCP73213 Typical Application.
1.2 WHAT IS THE MCP73213 OVP DUAL-CELL LI-ION BATTERY CHARGER EVALUATION BOARD?

The MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board demonstrates the features of Microchip’s MCP73213 “Dual-Cell Li-Ion / Li-Polymer Battery Charge Management Controller with Input Overvoltage Protection”.

The MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board is designed with two charging currents. The default value is 500 mA and when PROG via is tied to ground, the two parallel resistors output 1000 mA charging current to a Li-Ion battery. One blue LED status output allows the user to learn if the MCP73213 is in charging state or not.

Note: Refer to Table 2-2 for Charge Status Outputs and Table 2-1 for Fast Charge Current vs. Resistor Lookup Table.

The MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board comes with an installed MCP73213 device in the 3 mm x 3 mm DFN package. The factory preset battery regulation voltage is 8.40V with 10% precondition current, 10% termination current set point, automatic recharge and 6.5V OVP threshold voltage.

The MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board is designed to observe the performance and features on the circuits via multiple test points. Circuits can also be implemented into suitable applications without additional work.

1.3 WHAT THE MCP73213 OVP DUAL-CELL LI-ION BATTERY CHARGER EVALUATION BOARD KIT INCLUDES:

This MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board kit includes:

- MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board, 102-00261
- Important Information Sheet
Chapter 2. Installation and Operation

2.1 INTRODUCTION

The MCP73213 is a highly integrated Li-Ion battery charge management controller for use in space-limited and cost-sensitive applications. The MCP73213 provides specific charge algorithms for Li-Ion / Li-Polymer batteries to achieve optimal capacity and safety in the shortest charging time possible. Along with its small physical size, the low number of external components makes the MCP73213 ideally suitable for portable applications.

The absolute maximum voltage, up to 18V, allows the use of MCP73213 in harsh environments, such as low cost ac-dc adapter.

The MCP73213 employs a constant current / constant voltage charge algorithm. The various charging voltage regulations provide design engineers flexibility to use in different applications. The fast charge, constant current value is set with one external resistor from 130 mA to 1100 mA. The MCP73213 limits the charge current based on die temperature during high power or high ambient conditions. This thermal regulation optimizes the charge cycle time while maintaining device reliability.

The PROG pin of the MCP73213 also serves as enable pin. When high impedance is applied, the MCP73213 will be in standby mode.

Typical applications for the reference design are Digital Camcorders, Portable Media Players, Handheld Medical devices, Portable Communicators, Ultra Mobile Computers and Netbook computers.

2.2 FEATURES

The MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board has the following features:

- 13V Input Overvoltage Protection
- 10% Preconditioning of deeply depleted cells.
- 32-Minute Preconditioning Timer
- 6-Hour Safety Timer
- 10% Automatic Charge Termination
- 500 mA and 1000 mA Preset Fast Charge Current
- Automatic Recharge
- Thermal Regulation
- One Blue LED indicates charge status
- Small DFN packages with Exposed Pad as additional heat sink
2.3 GETTING STARTED

The MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board is fully assembled and tested for charging a single-cell Li-Ion or Li-Polymer battery.

2.3.1 Power Input and Output Connection

2.3.1.1 POWERING THE MCP73213 OVP DUAL-CELL LI-ION BATTERY CHARGER EVALUATION BOARD

1. Connect the positive battery terminal to \(V_{\text{BAT}^+} \) and negative battery terminal to \(V_{\text{BAT}^-} \).
2. Connect the 9V DC power supply Negative Terminal to \(V_{\text{SS}} \).
3. Connect the 9V DC power supply Positive Terminal to \(V_{\text{DD}} \).
4. It should initiate the battery charging cycle when the power source is present and \(V_{\text{BAT}} \) is below recharge threshold. For example, when \(V_{\text{REG}} \) is 8.4V, \(V_{\text{BAT}} \) needs to be lower than 7.98V to initiate the charge cycle.

5. The charging status table is available on Table 2-2.
6. The fast charge current is preset at 500 mA and can be increased to 1A by connecting PROG via to ground.

Note: The Li-Ion battery pack can be replaced with test circuit or electronic load that can sink current with DC power supply. Refer to Figure 2-3.

Note: Fast Charge Current can be programmed with various resistors based on Figure 2-2 and Table 2-1.

![Board Top Assembly Diagram]

FIGURE 2-1: Board Top Assembly.
FIGURE 2-2: MCP73213 Charge Current (I\text{OUT}) vs. Programming Resistor (R\text{PROG}).

TABLE 2-1: MCP73213 RESISTOR LOOKUP TABLE

<table>
<thead>
<tr>
<th>Charge Current (mA)</th>
<th>Recommended E96 Resistor (Ω)</th>
<th>Recommended E24 Resistor (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>10k</td>
<td>10k</td>
</tr>
<tr>
<td>150</td>
<td>8.45k</td>
<td>8.20k</td>
</tr>
<tr>
<td>200</td>
<td>6.20k</td>
<td>6.20k</td>
</tr>
<tr>
<td>250</td>
<td>4.99k</td>
<td>5.10k</td>
</tr>
<tr>
<td>300</td>
<td>4.02k</td>
<td>3.90k</td>
</tr>
<tr>
<td>350</td>
<td>3.40k</td>
<td>3.30k</td>
</tr>
<tr>
<td>400</td>
<td>3.00k</td>
<td>3.00k</td>
</tr>
<tr>
<td>450</td>
<td>2.61k</td>
<td>2.70k</td>
</tr>
<tr>
<td>500</td>
<td>2.32k</td>
<td>2.37k</td>
</tr>
<tr>
<td>550</td>
<td>2.10k</td>
<td>2.20k</td>
</tr>
<tr>
<td>600</td>
<td>1.91k</td>
<td>2.00k</td>
</tr>
<tr>
<td>650</td>
<td>1.78k</td>
<td>1.80k</td>
</tr>
<tr>
<td>700</td>
<td>1.62k</td>
<td>1.60k</td>
</tr>
<tr>
<td>750</td>
<td>1.50k</td>
<td>1.50k</td>
</tr>
<tr>
<td>800</td>
<td>1.40k</td>
<td>1.50k</td>
</tr>
<tr>
<td>850</td>
<td>1.33k</td>
<td>1.30k</td>
</tr>
<tr>
<td>900</td>
<td>1.24k</td>
<td>1.20k</td>
</tr>
<tr>
<td>950</td>
<td>1.18k</td>
<td>1.20k</td>
</tr>
<tr>
<td>1000</td>
<td>1.10k</td>
<td>1.10k</td>
</tr>
<tr>
<td>1100</td>
<td>1.00k</td>
<td>1.00k</td>
</tr>
</tbody>
</table>
TABLE 2-2: MCP73213 CHARGE STATUS OUTPUTS

<table>
<thead>
<tr>
<th>CHARGE CYCLE STATE</th>
<th>STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown</td>
<td>Hi-Z</td>
</tr>
<tr>
<td>Standby</td>
<td>Hi-Z</td>
</tr>
<tr>
<td>Preconditioning</td>
<td>L</td>
</tr>
<tr>
<td>Constant Current Fast Charge</td>
<td>L</td>
</tr>
<tr>
<td>Constant Voltage</td>
<td>L</td>
</tr>
<tr>
<td>Charge Complete - Standby</td>
<td>Hi-Z</td>
</tr>
<tr>
<td>Temperature Fault</td>
<td>1.6 second 50% D.C. Flashing (Type 1)</td>
</tr>
<tr>
<td></td>
<td>Hi-Z (Type 2)</td>
</tr>
<tr>
<td>Timer Fault</td>
<td>1.6 second 50% D.C. Flashing (Type 1)</td>
</tr>
<tr>
<td></td>
<td>Hi-Z (Type 2)</td>
</tr>
<tr>
<td>Preconditioning Timer Fault</td>
<td>1.6 second 50% D.C. Flashing (Type 1)</td>
</tr>
<tr>
<td></td>
<td>Hi-Z (Type 2)</td>
</tr>
</tbody>
</table>

FIGURE 2-3: Simulated Battery Load.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP73213 OVP Dual-Cell Li-Ion Battery Charger Evaluation Board:

• Board – Schematic
• Board – Top Layer
• Board – Top Metal Layer
• Board – Bottom Layer
A.3 BOARD – TOP LAYER

TP3
VSS

TP1
VDD

C2

R3
PROG

R1
D1

R2
STAT

U1

C1

TP4
VBAT–

VBAT+

TP2

102-00261
MCP73213EV–2SOVP

OVP Dual Cell Li–Ion Battery Charger
A.4 BOARD – TOP METAL LAYER
Appendix B. Bill Of Materials (BOM)

TABLE B-1: BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Bump</td>
<td>BUMPON HEMISPHERE .44X.20 WHITE</td>
<td>3M</td>
<td>SJ5003-9-ND</td>
</tr>
<tr>
<td>2</td>
<td>C1, C2</td>
<td>CAP CERAMIC 4.7 µF 25V X5R 1206</td>
<td>TDK</td>
<td>C2012X5R1E475M</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Blue Water Clear 0603 SMD LED</td>
<td>Para Light USA</td>
<td>L-C191LBCT-U1</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>RoHS Compliant Bare PCB, MCP73213 Evaluation Board</td>
<td>Microchip Technology Inc.</td>
<td>104-00261</td>
</tr>
<tr>
<td>2</td>
<td>R1, R3</td>
<td>RES 2.37K OHM 1/10W 1% 0603 SMD</td>
<td>Panasonic® - ECG</td>
<td>ERJ-3EKF2371V</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>RES 1K OHM 1/10W 1% 0603 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF1001V</td>
</tr>
<tr>
<td>4</td>
<td>TP1, TP2, TP3, TP4</td>
<td>PC Test Point Compact SMT</td>
<td>Keystone Electronics®</td>
<td>5016</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Dual-Cell Li-Ion/Li-Poly Battery Charger with OVP</td>
<td>Microchip Technology Inc.</td>
<td>MCP73213-A6S/MF</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0046
Fax: 216-447-0043

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7899

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

03/26/09