MCP6031
Photodiode PICtail™ Plus
Demo Board
User’s Guide
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXMLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC 32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rFLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Document Layout</td>
<td>1</td>
</tr>
<tr>
<td>Conventions Used in this Guide</td>
<td>2</td>
</tr>
<tr>
<td>Recommended Reading</td>
<td>3</td>
</tr>
<tr>
<td>The Microchip Web Site</td>
<td>3</td>
</tr>
<tr>
<td>Customer Support</td>
<td>3</td>
</tr>
<tr>
<td>Document Revision History</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 1. Product Overview</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>1.2 MCP6031 Photodiode PICtail™ Plus Demo Board Kit Contents</td>
<td>5</td>
</tr>
<tr>
<td>1.3 MCP6031 Photodiode PICtail™ Plus Demo Board Description</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 2. Installation and Operation</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Required Tool</td>
<td>9</td>
</tr>
<tr>
<td>2.3 MCP6031 Photodiode PICtail™ Plus Demo Board Set-up</td>
<td>9</td>
</tr>
<tr>
<td>2.4 MCP6031 Photodiode PICtail™ Plus Demo Board Operation</td>
<td>10</td>
</tr>
<tr>
<td>Appendix A. Schematic and Layouts</td>
<td></td>
</tr>
<tr>
<td>A.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>A.2 Board - Schematic</td>
<td>12</td>
</tr>
<tr>
<td>A.3 Board - Top Silk Layer</td>
<td>13</td>
</tr>
<tr>
<td>A.4 Board - Top Metal And Top Silk Layers</td>
<td>13</td>
</tr>
<tr>
<td>A.5 Board - Bottom Metal Layer</td>
<td>14</td>
</tr>
<tr>
<td>Appendix B. Bill of Materials (BOM)</td>
<td>16</td>
</tr>
<tr>
<td>Worldwide Sales and Service</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP6031 Photodiode PICtail™ Plus Demo Board. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP6031 Photodiode PICtail™ Plus Demo Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

- Chapter 1. “Product Overview” – Provides the important information about the MCP6031 Photodiode PICtail™ Plus Demo Board.
- Chapter 2. “Installation and Operation” – Covers the installation and operation of the MCP6031 Photodiode PICtail™ Plus Demo Board.
- Appendix A. “Schematic and Layouts” – Shows the schematic and board layouts for the MCP6031 Photodiode PICtail™ Plus Demo Board.
- Appendix B. “Bill of Materials (BOM)” – Lists the parts used to build the MCP6031 Photodiode PICtail™ Plus Demo Board.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MILAB® IDE User’s Guide</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td></td>
<td>Emphasized text</td>
<td>the Output window</td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Settings dialog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>select Enable Programmer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
<td></td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
<td></td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
<td></td>
</tr>
<tr>
<td>N’Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
<td></td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
<td></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filenames</td>
<td>autoexec.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constants</td>
<td>0xFF, ‘A’</td>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
<td></td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
<td></td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
<td>1}</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [, var_name...]</td>
<td></td>
</tr>
<tr>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDED READING

This user's guide describes how to use MCP6031 Photodiode PICtail™ Plus Demo Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

- MCP6031/2/3/4 Data Sheet, “0.9 μA, High Precision Op Amps” (DS22041) - This data sheet provides detailed information regarding the MCP603X Op Amps.
- AN951, “Amplifying High-Impedance Sensors - Photodiode Example” (DS00951) - This application note shows how to condition the current out of a high-impedance sensor. A photodiode detector illustrates the theory.
- “Signal Chain Design Guide” (DS21825)
- “Explorer 16 Development Board User’s Guide” (DS51589)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (September 2008)

- Initial Release of this Document.
Chapter 1. Product Overview

1.1 INTRODUCTION

The MCP6031 Photodiode PICtail™ Plus Demo Board is described by the following:

- Assembly #: 114-00219
- Order #: MCP6031DM-PCTL
- Name: MCP6031 Photodiode PICtail™ Plus Demo Board

Items discussed in this chapter include:

- MCP6031 Photodiode PICtail™ Plus Demo Board Kit Contents
- MCP6031 Photodiode PICtail™ Plus Demo Board Description

1.2 MCP6031 PHOTODIODE PICtail™ PLUS DEMO BOARD KIT CONTENTS

- MCP6031 Photodiode PICtail™ Plus Demo Board (102-00219)
- Important Information “Read First”
- Analog and Interface Products Demonstration Boards CD-ROM (DS21912). It contains:
 - Firmware files
 - Gerber files

FIGURE 1-1: MCP6031 Photodiode PICtail™ Plus Demo Board Kit.
1.3 MCP6031 PHOTODIODE PICtail™ PLUS DEMO BOARD DESCRIPTION

The MCP6031 Photodiode PICtail™ Plus Demo Board demonstrates how to use a transimpedance amplifier, which consists of MCP6031 high precision op amp and external resistors, to convert photo-current (I_S) to voltage. The circuit was not calibrated for absolute accuracy.

The RC low-pass filter that is implemented in this circuit can remove the high frequency noise and interference from the signal path prior to the analog-to-digital (A/D) conversion.

The PICmicro® on the Explorer 16 Development Board communicates with the MCP6031 Photodiode PICtail™ Plus Demo Board and completes the analog-to-digital conversion.

Note: For high measurement accuracy, an external stand-alone ADC with higher resolution needs to be used.

The measured voltage (V_{OUT}) and calculated illuminance (L) will be shown on LCD screen on board. The illuminance (L) will be calculated by the equation:

EQUATION 1-1:

$$L = \text{illuminance (lx)} = \left(\frac{V_{OUT}}{R_i}\right) \times \left(\frac{10000 \ I_S}{70 \ \mu A}\right)$$

Figure 1-2 shows the block diagram of the MCP6031 Photodiode PICtail™ Plus Demo Board.
Figure 1-3 shows the top view of the MCP6031 Photodiode PICtail™ Plus Demo Board.

FIGURE 1-3: Top view of MCP6031 Photodiode PICtail™ Plus Demo Board

Figure 1-4 shows the circuit diagram of MCP6031 Photodiode PICtail™ Plus Demo Board. C₁ is for compensation purpose and no need for the board. It may be needed when MCP6031 is replaced by the other Microchip’s op amp.

The DC output voltage due to the source photo-current will be $V_{OUT} = I_S R_1$, where R_1 is the feedback resistor. The op amp will contribute a DC offset voltage, $V_{OS} + I_B R_1$, to the output, where V_{OS} is the op amp’s input offset voltage and I_B is the op amp’s input bias current. Select the value of R_1 to give a high gain to I_S. Usually, this gain is high enough to use most of the op amp’s output voltage swing when I_S is at its extreme values. The op amp needs to have V_{OS} and I_B low enough to not cause a large DC offset. That is the reason why op amp MCP6031 is selected.

FIGURE 1-4: MCP6031 Photodiode PICtail™ Plus Demo Board Circuit Diagram.
For the design approach of this board, please refer to AN951, “Amplifying High-Impedance Sensors - Photodiode Example” (DS00951) as reference resource. This application note discusses the analog conditioning circuit used for high-impedance sensors that act like current sensors. The design approach illustrated in this application note, using op amps, is broken down into three design steps: DC, stability compensation, closed-loop gain and noise reduction. A design using a PIN photodiode (light detector) illustrates the principles discussed. Measurement results are provided to support the theory presented. The last sections of this application note contain supplemental information.

MCP6031 Photodiode PICtail™ Plus Demo Board has the following features:

- Supports Microchip MCP6031 high precision op amp
- Uses a transimpedance amplifier as sensor conditioning circuit
- Uses a PIN photodiode (PNZ334) as light detector
- Test points for connecting lab equipment
Chapter 2. Installation and Operation

2.1 INTRODUCTION

This chapter shows how to set up the MCP6031 Photodiode PICtail™ Plus Demo Board and explore the operation of a light sensing application.

Items discussed in this chapter include:

- Required Tools
- MCP6031 Photodiode PICtail™ Plus Demo Board Set-Up
- MCP6031 Photodiode PICtail™ Plus Demo Board Operation

2.2 REQUIRED TOOL

- Explorer 16 Development Board

2.3 MCP6031 PHOTODIODE PICtail™ PLUS DEMO BOARD SET-UP

Insert the MCP6031 Photodiode PICtail™ Plus Demo Board into the Explorer 16 Development Board as shown in Figure 2-1. An exploded view is shown in the Figure 2-2.

FIGURE 2-1: MCP6031 Photodiode PICtail™ Plus Demo Board Set-Up.
2.4 MCP6031 PHOTODIODE PICtail™ PLUS DEMO BOARD OPERATION

Figure 2-2 shows data taken near an incandescent lamp powered by a battery.

FIGURE 2-2: MCP6031 Photodiode PICtail™ Plus Demo Board Operation.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP6031 Photodiode PICtail™ Plus Demo Board:

- Board – Schematic
- Board – Top Silk Layer
- Board - Top Metal And Top Silk Layers
- Board – Bottom Metal Layer
A.5 BOARD - BOTTOM METAL LAYER
Appendix B. Bill of Materials (BOM)

TABLE B-1: BILL OF MATERIALS (102-00219)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C2</td>
<td>CAP 33,000PF 50V CERM X7R 0805</td>
<td>Panasonic®</td>
<td>ECJ-2VB1H333K</td>
</tr>
<tr>
<td>2</td>
<td>C3, C4</td>
<td>CAP .1UF 25V CERAMIC X7R 0805</td>
<td>Panasonic®</td>
<td>ECJ-2VB1E104K</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
<td>CAP 1.0UF 16V CERAMIC X7R 0805</td>
<td>Kemet® Electronics Corp.</td>
<td>C0805C105K4RACTU</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>PIN PHOTODIODE</td>
<td>Panasonic®</td>
<td>PNZ334</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>RES 42.2K OHM 1/10W 1% 0805 SMD</td>
<td>Panasonic®</td>
<td>ERJ-6ENF4222V</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>RES 10.0K OHM 1/10W 1% 0805 SMD</td>
<td>Panasonic®</td>
<td>ERJ-6ENF1002V</td>
</tr>
<tr>
<td>3</td>
<td>TP1—TP3</td>
<td>TEST POINT PC COMPACT SMT</td>
<td>Keystone Electronics</td>
<td>5016</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>MCP6031, SOT-23-5</td>
<td>Microchip Technology Inc.</td>
<td>MCP6031T-E/OT</td>
</tr>
</tbody>
</table>

Note: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

TABLE B-2: BILL OF MATERIALS - UNPOPULATED PARTS

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>Not Populated when shipped to customer</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

- Atlanta
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- Boston
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088
- Chicago
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- Dallas
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924
- Detroit
 Farmington Hills, MI
 Tel: 248-538-0071
 Fax: 248-538-2260
- Kokomo
 Kokomo, IN
 Tel: 765-864-8360
 Fax: 765-864-8387
- Los Angeles
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
- Santa Clara
 Santa Clara, CA
 Tel: 408-961-6444
 Fax: 408-961-6445
- Toronto
 Mississauga, Ontario, Canada
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suits 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

- Australia - Sydney
 Tel: 61-2-9868-6733
 Fax: 61-2-9868-6755
- China - Beijing
 Tel: 86-10-8528-2100
 Fax: 86-10-8528-2104
- China - Chengdu
 Tel: 86-28-8665-5511
 Fax: 86-28-8665-7889
- China - Hong Kong SAR
 Tel: 852-2401-1200
 Fax: 852-2401-3431
- China - Nanjing
 Tel: 86-25-8473-2460
 Fax: 86-25-8473-2470
- China - Qingdao
 Tel: 86-532-8502-7355
 Fax: 86-532-8502-7205
- China - Shanghai
 Tel: 86-21-5407-5533
 Fax: 86-21-5407-5066
- China - Shenyang
 Tel: 86-24-2334-2829
 Fax: 86-24-2334-2393
- China - Shenzhen
 Tel: 86-755-8203-2660
 Fax: 86-755-8203-1760
- China - Wuhan
 Tel: 86-27-5980-5300
 Fax: 86-27-5980-5118
- China - Xi'an
 Tel: 86-26-9833-7252
 Fax: 86-26-9833-7256
- China - Zhuhai
 Tel: 86-756-3210040
 Fax: 86-756-3210049

ASIA/PACIFIC
India
Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

- India - New Delhi
 Tel: 91-11-4160-8631
 Fax: 91-11-4160-8632
- India - Pune
 Tel: 91-20-2566-1512
 Fax: 91-20-2566-1513
- Japan - Yokohama
 Tel: 81-45-471-6166
 Fax: 81-45-471-6122
- Korea - Daegu
 Tel: 82-53-744-4301
 Fax: 82-53-744-4302
- Korea - Seoul
 Tel: 82-2-554-7200
 Fax: 82-2-558-5932 or 82-2-558-5934
- Malaysia - Kuala Lumpur
 Tel: 60-3-6201-9857
 Fax: 60-3-6201-9859
- Malaysia - Penang
 Tel: 60-4-227-8870
 Fax: 60-4-227-4068
- Philippines - Manila
 Tel: 63-2-634-9065
 Fax: 63-2-634-9069
- Singapore
 Tel: 65-6334-8870
 Fax: 65-6334-8850
- Taiwan - Hsin Chu
 Tel: 886-3-572-9526
 Fax: 886-3-572-6459
- Taiwan - Kaohsiung
 Tel: 886-7-536-4818
 Fax: 886-7-536-4803
- Taiwan - Taipei
 Tel: 886-2-2500-6610
 Fax: 886-2-2508-0102
- Thailand - Bangkok
 Tel: 66-2-694-1351
 Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

- Denmark - Copenhagen
 Tel: 45-4450-2828
 Fax: 45-4485-2829
- France - Paris
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79
- Germany - Munich
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
- Italy - Milan
 Tel: 39-0331-742611
 Fax: 39-0331-466781
- Netherlands - Drunen
 Tel: 31-416-690399
 Fax: 31-416-690340
- Spain - Madrid
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91
- UK - Wokingham
 Tel: 44-118-921-5869
 Fax: 44-118-921-5820

© 2008 Microchip Technology Inc.