MCP3424
Evaluation Board
User’s Guide
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Microchip makes no representations or warranties of any kind, whether express or implied, written or oral, statutory or otherwise, related to the information, including but not limited to its condition, quality, performance, merchantability or fitness for purpose. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, KeeLoq logo, MPLAB, PIC, PiCmicro, PICSTART, PRO MATE, rPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ISCIP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICKit, PICDEM, PICDEM.net, PiClaw, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rPIC, Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
Table of Contents

Preface .. 1
Introduction .. 1
Document Layout ... 1
Conventions Used in this Guide .. 2
Recommended Reading ... 3
The Microchip Web Site ... 3
Customer Support ... 3
Document Revision History ... 3

Chapter 1. Quick Start Instructions
1.1 Introduction ... 5
1.2 Description of the MCP3424 Evaluation Board .. 5
1.3 Getting Started with PICkit™ Serial Analyzer .. 6
1.4 Experiment with Inputs Other Than CH1 ... 21

Appendix A. Schematic and Layouts
A.1 Introduction ... 23
A.2 Board – Schematic ... 24
A.3 Board – Top Layer ... 25
A.4 Board – Top Metal Layer ... 26
A.5 Board – Bottom Layer .. 27
A.6 Board – Bottom Metal Layer .. 28

Appendix B. Bill Of Materials (BOM)
Worldwide Sales and Service .. 30
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXX A”, where “XXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP3424 Evaluation Board. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP3424 Evaluation Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

• Chapter 1. “Quick Start Instructions” – this chapter provides an overview of the MCP3424 Evaluation Board and instructions on how to use the MCP3424 Evaluation Board with the PICkit Serial Analyzer.
• Appendix A. “Schematic and Layouts” – shows the schematic and layout diagrams for the MCP3424 Evaluation Board.
• Appendix B. “Bill Of Materials (BOM)” – lists the parts used to build the MCP3424 Evaluation Board.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Arial font:</td>
</tr>
<tr>
<td>Italic characters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quotes</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
</tr>
<tr>
<td>Bold characters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N'Rnnnn</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
</tr>
<tr>
<td>Courier New font:</td>
</tr>
<tr>
<td>Plain Courier New</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
</tr>
<tr>
<td>Square brackets []</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
</tr>
<tr>
<td>Ellipses...</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDED READING

This user’s guide describes how to use MCP3424 Evaluation Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

PICkit™ Serial Analyzer User’s Guide (DS51647)
Consult this document for instructions on how to use the PICkit Serial Analyzer hardware and software.

MCP3424 Data Sheet, “18-Bit Analog-to-Digital Converter with 4 Input Channels, I²C Interface and On-Board Reference” (DS22088)
This data sheet provides detailed information regarding the MCP3424 product family.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (July 2008)
• Initial Release of this Document.
Chapter 1. Quick Start Instructions

1.1 INTRODUCTION

The following sections provide an overview of the MCP3424 Evaluation Board and demonstrate how to use it with using the PICkit™ Serial Analyzer (P/N: DV164122). The following topics are covered:

- Description of the MCP3424 Evaluation Board
- How to use MCP3424 Evaluation Board with the PICkit Serial Analyzer

1.2 DESCRIPTION OF THE MCP3424 EVALUATION BOARD

The MCP3424 Evaluation Board (P/N MCP3424EV) contains an MCP3424 18-bit Delta-Sigma Analog-to-Digital Converter (ADC). The MCP3424 is a 4-channel ADC device with various configuration options. The board has analog input connection pads and various test pads. The user can connect inputs and test the conversion results using the PICkit Serial Analyzer and its PC graphic user interface (GUI). The MCP3424 Evaluation Board has the following interfaces:

- PICkit Serial Analyzer (P/N: DV164122) for writing configuration register bits and reading the conversion data.

Note: The user can use this board without the PICkit Serial Analyzer as long as the VDD, SCL, and SDA are provided through J1 connector. This Evaluation Board does not include MCU.

The board has test points for SDL, SDA, and analog inputs. By connecting an oscilloscope to these test points, the user can examine the data communications through the I²C™ bus line and observe the resulting conversion output. Refer to Appendix A. “Schematic and Layouts”

1.2.1 I²C Address Bits and A0 Address Bit Selection

The I²C device code and address bits of the MCP3424 device are:

- Device Code: ‘1101’
- A2, A1, A0 Address Bits: determined by the JP2 (Adr1 pin) and JP3 (Adr0 pin).
- See Table 1-1 for the I²C Device Address bits and JP2 and JP3 connections.
1.3 GETTING STARTED WITH PICKIT SERIAL ANALYZER

Figure 1-1 shows the MCP3424 Evaluation Board, and Figure 1-2 shows the MCP3424 and PICkit Serial Analyzer.

The following describes how to use them together:

1. Connect the MCP3424 Evaluation Board's 6-pin socket to the PICkit Serial Analyzer as shown in Figure 1-2.
2. Connect the oscilloscope probes to the SCL and SDA test pins (optional).
3. \(V_{DD} \) Selection: You can use the \(V_{DD} \) from the PICkit Serial Analyzer or use your own external \(V_{DD} \). The JP1 connector selects the \(V_{DD} \) path.
 (a) Connect JP1, if using \(V_{DD} \) from PICkit Serial Analyzer,
 (b) Disconnect JP1 and apply \(V_{DD} \) at \(V_{DD1} \) pin, if you are using an external \(V_{DD} \).
 The \(\text{i}^{2}\text{C} \) device code and address bits of the MCP3424 device are:
 - MCP3424 \(\text{i}^{2}\text{C} \) device code: '1101'
 - A2, A1, A0 Address Bits: determined by the JP2 (Adr1 pin) and JP3 (Adr0 pin)
 - The JP2 and JP3 connectors are external address bit selections. Connect these pins to \(V_{SS} \), \(V_{DD} \), float, or connect any arbitrary voltage
 - See Table 1-1 for the \(\text{i}^{2}\text{C} \) Device Address bits and JP2 and JP3 connections
5. Connecting \(V_{DD} \): LED D1 turns on when \(V_{DD} \) is applied. The PICkit Serial Analyzer will provide \(V_{DD} \) automatically, if it is connected to the PC. Make sure LED D1 turns on, when you execute the command using the PICkit Serial Analyzer.
6. Connecting the analog inputs: If you need to measure a single-ended input, connect the unused pin (example, CHX-) to \(V_{SS} \).
 - Connecting the inputs: The MCP3424 Evaluation Board has input pads for analog inputs for each input channel. You can connect all inputs at the same time and multiplex the input channel using configuration register settings. You can also leave the unused channel inputs floating
7. Use the PICkit Serial Analyzer PC GUI to send \(\text{i}^{2}\text{C} \) write and read commands.
TABLE 1-1: I²C ADDRESS BITS VS. JP2 AND JP3 CONNECTORS

<table>
<thead>
<tr>
<th>I²C Device Address Bits</th>
<th>JP2 (Adr1 Pin)</th>
<th>JP3 (Adr0 Pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101 000 W/R</td>
<td>Connected to VSS</td>
<td>Connected to VSS</td>
</tr>
<tr>
<td>1101 001 W/R</td>
<td>Connected to VSS</td>
<td>Float</td>
</tr>
<tr>
<td>1101 010 W/R</td>
<td>Connected to VSS</td>
<td>Connected to VDD</td>
</tr>
<tr>
<td>1101 100 W/R</td>
<td>Connected to VDD</td>
<td>Connected to VSS</td>
</tr>
<tr>
<td>1101 101 W/R</td>
<td>Connected to VDD</td>
<td>Float</td>
</tr>
<tr>
<td>1101 110 W/R</td>
<td>Connected to VDD</td>
<td>Connected to VDD</td>
</tr>
<tr>
<td>1101 011 W/R</td>
<td>Float</td>
<td>Connected to VSS</td>
</tr>
<tr>
<td>1101 111 W/R</td>
<td>Float</td>
<td>Connected to VDD</td>
</tr>
<tr>
<td>1101 000 W/R</td>
<td>Float</td>
<td>Float</td>
</tr>
</tbody>
</table>

Note 1: W/R bit = “0” for writing, “1” for reading.

Note 2: Float: (a) Leave pin without connecting to anything, or (b) apply Addr_Float voltage. See MCP3424 Data Sheet for more details.
1.3.1 PICkit Serial Analyzer PC Software Setup for the MCP3424 Evaluation Board

The following steps describe how to set up and use the PICkit Serial Analyzer PC Graphic User Interface (GUI).

1. Install the PICkit Serial Analyzer software onto your personal computer (PC).
2. Connect the USB cable between the PICkit Serial Analyzer and the PC.
3. Run the PICkit Serial PC Software: It will open to the following GUI. Click the Next button and follow the instructions.
4. Select the Communication Mode type: **I²C Master**, and click the **Next** button.
5. Select 100 kHz or 400 kHz. Either one will be fine. Click the **Next** button.

6. Select **No** on Enable Pull-ups and click the **Next** button.

Note: The MCP3424 device supports the I²C bus data rate up to 3.4 MHz, but the current version of the PICkit Serial Analyzer supports the I²C bus data rate up to 400 kHz only.

Note: The MCP3424 Evaluation Board has its own pull-up resistors.
7. Select the V_{DD} voltage of the MCP3424 Evaluation Board and click the Next button.

Case 1: When you use V_{DD} from the PICkit Serial Analyzer:

If you choose **PICkit Serial will power your device** and 5 Volts as shown below, the MCP3424 Evaluation Board is powered by the 5V DC from the PICkit Serial Analyzer through the JP1 jumper. In this case, make sure that the JP1 jumper on the MCP3424 Evaluation Board is connected.

Case 2: When you use your own V_{DD}:

You can also provide your own V_{DD} voltage by applying a V_{DD} voltage at VD1 test point. In this case, make sure that the JP1 jumper is disconnected.
8. Click the **OK** button. You have made all of the PICkit Serial Analyzer Configuration Setups. You are now ready to program the MCP3424 Evaluation Board using the PICkit Serial Analyzer.

![Configuration Wizard and You're Done! dialog box](image)
1.3.2 Creating Script Files:

In order to make a communication connection between the PICkit Serial Analyzer and the MCP3424 Evaluation Board, a script file is needed. The following shows how to create script files and how to use them.

- Select Communication ----> Script ---> Script Builder
1.3.2.1 CREATING SCRIPT FILE FOR CONFIGURATION BYTE WRITING

1. Click on WriteBlockAddrA8 in “Example I2C Scripts” column.
 This will result in filling in the spaces under the Script Detail column. You can now modify the Script Detail column parameters by clicking with the right mouse button.

How to modify the parameters box in Script Details:

1. Under the Script Detail box, select the item in the parameter box.
2. Right click the mouse button and an option box appears to the right of your selection. These are the options available for the parameter selected.
3. Select the desired option and delete or insert the parameter box.
4. Keep the parameters in order as shown below.

```
I2CSTART *
I2CWRTBYT *
02
DC
9C
I2CSTOP *
```

Note: All 6 parameters above must be listed in order. The parameter above with * are not modifiable. Address bits (A2, A1, A0) = (1,1,0) if both JP2 and JP3 are tied to VDD. You can use different address bits by rearranging the connectors. See MCP3424 Data Sheet for more information on address bit sections.
FIGURE 1-3: Script file example for I2C Write Command.

1.3.2.2 SAVE THE SCRIPT FILE AND PROGRAMMING THE MCP3424 CONFIGURATION REGISTER

1. Change the 2nd and 3rd data bytes you want in the Script Detail.
2. Type in any script name (i.e., MCP3424_Write) in the space below the Script.
3. Click **Save Script** button.
4. Click **Execute Script** button.

Note: At this point, the PICkit Serial transmits the I²C Write Command to the MCP3424 device. The saved file name will appear in **Users I2C Scripts** column, and can be re-used any time by selecting the file name.

5. You can also see the SCL and SDA waveforms using the Oscilloscope.

Note: When you click on the “Execute Script” menu, the “Busy” LED on the PICkit Serial Analyzer will momentarily turn on and then turn off. If the LED remains ON, a communications problem has occurred. Remove the PICkit Serial Analyzer from your computer and recheck the parameter values including the order of parameters under the “Script Detail” column, and try again until the “Busy” LED turns OFF immediately after sending the I²C command.

FIGURE 1-4: I²C Write Command Waveforms for the MCP3424.
1.3.3 Reading the Conversion Data using the PICkit Serial Analyzer

You can read back the conversion data with the following steps.

1.3.3.1 CREATING SCRIPT FILE TO READ CONVERSION DATA

1. Click on **ReadAddrA8** in “Example I2C Scripts” column.

 This will result in filling in the spaces under **Script Detail** column.

 Now you can modify the parameter boxes (delete or insert) in the **Script Detail** column with options. The list of options will appear if you click the right mouse button at the parameter box. You can delete the parameter box or add a new one.

2. Make sure you have the “Script Detail” parameters are listed in order as follows:

<table>
<thead>
<tr>
<th>Script Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2CSTART</td>
</tr>
<tr>
<td>I2CWRTBYT</td>
</tr>
<tr>
<td>01</td>
</tr>
<tr>
<td>DD</td>
</tr>
<tr>
<td>I2CRDBYTNLB</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>I2CSTOP</td>
</tr>
</tbody>
</table>

 * * * * *
 * * * * *
 * * * * *

 Note: All 7 parameters above must be listed in order. The permeates above with * are not modifiable. Address bits (A2, A1, A0) = (1,1,0) if both JP2 and JP3 are tied to VDD. You can use different address bits by rearranging the JP1 and JP2 connectors. See MCP3424 Data Sheet for more information on address bit selections.
3. Type in any script name (i.e., MCP3424_Read) in the space below the Script Name menu.
4. Click Save Script button.
5. Click Execute Script button.

Note: At this point, the PICkit Serial transmits the I²C Read Command to the MCP3424 device. The saved file name will appear in Users I²C Scripts column, and can be re-used any time by selecting the file name.

6. You can also see the SCL and SDA waveforms using the Oscilloscope.

Note: When you click on the “Execute Script” menu, the “Busy” LED on the PICkit Serial Analyzer will momentarily turn on and then turn off. If the LED remains ON, a communications problem has occurred. Remove the PICkit Serial Analyzer from your computer and recheck the parameter values including the order of parameters under the “Script Detail” column, and try again until the “Busy” LED turns OFF immediately after sending the I²C command.
FIGURE 1-5: Reading Conversion Results: Note that the Input = 0.996V is applied at CH1. The reading indicates the measured value is 0.996 Volts.
FIGURE 1-6: Read Command and Data on \(^2\)C bus. Note the RDY bit in 4th byte is "0". This means the conversion data just read is the latest conversion data. The RDY bit becomes "1" in the 5th byte (repeated byte). This means the device is now in the process of new conversion and the new result is not ready yet.
1.4 EXPERIMENT WITH INPUTS OTHER THAN CH1

Repeat Section 1.3.2 “Creating Script Files:” to Section 1.3.3 “Reading the Conversion Data using the PICkit Serial Analyzer” for the input channels 2, 3, and 4.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP3424 Evaluation Board:

- Board – Schematic
- Board – Top Layer
- Board – Top Metal Layer
- Board – Bottom Layer
A.4 BOARD – TOP METAL LAYER

MCP3424 Evaluation Board

Power
D1
R5

VDD1

CH1+

GND

CH1−

CH2+

GND

CH2−

CH3−

CH3+

CH4−

CH4+

U1 (MCP3424)

C2
C1
R1
R2
R3
R4

JP1

JP2

JP3

A1
Address Select

A0

SDA

GND

SCL

VDD

VSS
A.6 BOARD – BOTTOM METAL LAYER
Appendix B. Bill Of Materials (BOM)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>CAP .1UF 25V CERAMIC X7R 0805</td>
<td>Panasonic® - ECG</td>
<td>ECJ-2VB1E104K</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>CAP CERAMIC 10UF 6.3V X5R 0805</td>
<td>Panasonic - ECG</td>
<td>ECJ-2FB0J106K</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>LED RED ORANGE CLEAR 0805 SMD</td>
<td>LITE-ON INC</td>
<td>LTST-C170EKT</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>RoHS Compliant Bare PCB, MCP3424 Evaluation Board</td>
<td>—</td>
<td>104-00215</td>
</tr>
<tr>
<td>2</td>
<td>R1, R3</td>
<td>RES 4.99K OHM 1/8W 1% 0805 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-6ENF4991V</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>RES 470 OHM 1/8W 5% 0805 SMD</td>
<td>Panasonic - ECG</td>
<td>ERJ-6GEYJ471V</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>CONN HEADER 6POS .100 R/A TIN</td>
<td>Molex®/Waldom® Electronics Corp</td>
<td>22-05-2061</td>
</tr>
<tr>
<td>1</td>
<td>JP1</td>
<td>CONN HEADER 2POS .100 VERT TIN</td>
<td>Molex/Waldom Electronics Corp</td>
<td>22-03-2021</td>
</tr>
<tr>
<td>2</td>
<td>JP2, JP3</td>
<td>CONN HEADER 3POS .100" STR TIN</td>
<td>Molex/Waldom Electronics Corp</td>
<td>90120-0123</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>4 Channel 18 Bit Data Sigma ADC</td>
<td>Microchip Technology Inc.</td>
<td>MCP3424-E/ST</td>
</tr>
<tr>
<td>14</td>
<td>VDD1, CH1+, CH1-, CH2+, CH2-, CH3+, CH3-, CH4+, CH4-, A1, A0, SDA, SCL, GND</td>
<td>TEST POINT PC COMPACT SMT</td>
<td>Keystone Electronics®</td>
<td>5016</td>
</tr>
<tr>
<td>2</td>
<td>R2, R4</td>
<td>DO NOT POPULATE</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.