Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, Keeloq logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rFPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Preface .. 1

Chapter 1. LIN Serial Analyzer Overview ... 5
 1.1 Introduction ... 5
 1.2 Highlights .. 5
 1.3 LIN Serial Analyzer Contents ... 5
 1.4 LIN Serial Analyzer Development Tool ... 5
 1.5 LIN Serial Analyzer Hardware ... 6
 1.6 LIN Serial Analyzer Software ... 8

Chapter 2. Getting Started – Quick Setup ... 9
 2.1 Highlights .. 9
 2.2 Using the LIN Serial Analyzer for the First Time ... 9
 2.3 Software Installation ... 9
 2.4 Running LIN Serial Analyzer Program ... 9

Chapter 3. LIN Serial Analyzer PC Program ... 11
 3.1 Highlights ... 11
 3.2 Interface Overview .. 11
 3.3 Transaction Window ... 12
 3.4 File Functions .. 14
 3.5 Setup Functions .. 16
 3.6 Tools Functions .. 18
 3.7 Start/Stop Logging Button ... 19
 3.8 Master Message Group Box .. 19
 3.9 Status Bar .. 22

Appendix A. LIN Serial Analyzer Technical Information ... 23
 A.1 Highlights ... 23
 A.2 LIN Serial Analyzer Schematic ... 23

Index ... 25

Worldwide Sales and Service .. 27
INTRODUCTION

This chapter contains general information that will be useful to know before using the LIN Serial Analyzer. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the LIN Serial Analyzer. The manual layout is as follows:

• Chapter 1. “LIN Serial Analyzer Overview” – What the LIN Serial Analyzer is, what makes it a desirable development tool and what features are available.
• Chapter 2. “Getting Started – Quick Setup” – Describes the supplies needed to set up and begin to use the LIN Serial Analyzer.
• Chapter 3. “LIN Serial Analyzer PC Program” – Describes the primary elements of the interface.
• Appendix A. “LIN Serial Analyzer Technical Information” – Provides the detailed schematic of the LIN Serial Analyzer.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td>Reference books</td>
<td>MPLAB® IDE User’s Guide</td>
</tr>
<tr>
<td>Italic characters</td>
<td>Emphasized text</td>
<td>is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>N’Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Courier New font:</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>File names</td>
<td>autoexec.bat</td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>Constants</td>
<td>0xFF, ‘A’</td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid file name</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
</tr>
</tbody>
</table>
| Ellipses... | Replaces repeated text | *var_name* [,
| | | *var_name*...]* |
| | Represents code supplied by user | void main (void) {
| | | ...} |
RECOMMENDED READING

This user’s guide describes how to use LIN Serial Analyzer. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

It is recommended that you become familiar with the documents listed below before using the LIN Serial Analyzer.

PICkit™ Serial Analyzer User’s Guide (DS51647)

LIN Specification Package 2.1

LIN Network for Vehicle Applications – Surface Vehicle Recommended Practice (J2602/1)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.

DOCUMENT REVISION HISTORY

Revision A (June 2007)

- Initial release of this document.
Chapter 1. LIN Serial Analyzer Overview

1.1 INTRODUCTION

The LIN Serial Analyzer development system enables a Personal Computer (PC) to communicate with a LIN (Local Interface Network) bus. The PC program uses a graphical user interface to enter and display message frames occurring on the target bus. The LIN Serial Analyzer connects to the system network using a three-position terminal block.

Chapter 2. “Getting Started” will guide you through installing the PC program, the Windows® operating system drivers and setting up the hardware.

1.2 HIGHLIGHTS

This chapter discusses:
- LIN Serial Analyzer Contents
- LIN Serial Analyzer Development Tool
- LIN Serial Analyzer Hardware
- LIN Serial Analyzer Software

1.3 LIN SERIAL ANALYZER CONTENTS

The LIN Serial Analyzer kit contains the following items:
- LIN Serial Analyzer
- Mini-B USB Cable
- LIN Serial Analyzer CD-ROM

1.4 LIN SERIAL ANALYZER DEVELOPMENT TOOL

The LIN Serial Analyzer consists of several components, that together, make a network debug and analysis tool. The user interface program runs on Microsoft® Windows® operating system compatible computers with a USB port.

The LIN Serial Analyzer connects to the PC using a mini-B USB cable. The LIN Serial Analyzer interfaces to the target network using a three-position, screw-type terminal block. Figure 1-1 illustrates the LIN Serial Analyzer tool connected to a network.
1.5 LIN SERIAL ANALYZER HARDWARE

The LIN Serial Analyzer connects to a Microsoft® Windows® operating system compatible computer using a USB port. It interfaces to the target network using a three-position, screw-type terminal block.

1.5.1 Status LEDs

The Status LEDs indicate the status of the LIN Serial Analyzer. An illuminated LED means:

- USB (green) – Power has been applied to the LIN Serial Analyzer by the USB port.
- Busy (yellow) – The LIN Serial Analyzer is communicating with the LIN network.
- LIN (blue) – The LIN Serial Analyzer is connected to the target bus.
1.5.2 USB Port Connection

The USB port connection is a USB mini-B connector. Connect the LIN Serial Analyzer to the PC using the cable supplied with the device.

FIGURE 1-3: LIN SERIAL ANALYZER NETWORK AND POWER

1.5.3 Network Communication Connector

The communication connector connects to the target device using a three-position, screw clamp terminal block. The pin assignments, labeled on the top of the device, are:

- VBAT – Positive battery connection for voltage supplied by the vehicle
- LIN – Bidirectional data I/O
- GND – Common chassis, power and serial ground

1.5.4 Power Jack

The device uses a standard, 6.5 x 2.5 DC power plug. The center pin is positive. Power can be supplied either through the power plug or the network connector as the two are internally connected.
1.6 LIN SERIAL ANALYZER SOFTWARE

1.6.1 User Interface Program

The LIN Serial Analyzer PC program displays all of the board's bus activity via the software’s Transaction window, displayed on the connected PC. This is useful for “sniffing” the bus and tracking message frames. Chapter 3. “LIN Serial Analyzer PC Program” explains the installation and operation of the program.

1.6.2 Firmware

1.6.3 Dynamically Linked Library (DLL)

The LIN Serial Analyzer DLL is explained in Chapter 10. “PICkit™ Serial Analyzer DLL” of the “PICkit™ Serial Analyzer User’s Guide” (DS51647).
Chapter 2. Getting Started – Quick Setup

2.1 HIGHLIGHTS

This chapter discusses:
• Using the LIN Serial Analyzer for the First Time
• Software Installation
• Running LIN Serial Analyzer Program

2.2 USING THE LIN SERIAL ANALYZER FOR THE FIRST TIME

The LIN Serial Analyzer is shipped preprogrammed and ready for use. The user needs to supply:
• A wiring harness with appropriate connections to its system network
• A power supply (nominal 13.8V)

Before making any connections, the software must be installed on the host system. The user must have administrator level rights to install some of the required programs. For more information, see Section 2.3 “Software Installation”.

Power is supplied either through the round, power plug or the terminal block. The positive and negative terminals and power plug are common. Supplied power must be in the range of 8.0V to 30.0V with a nominal value of 12.0-14.4V. Less than 5.0 mA of current is required to power the LIN transceiver section of the unit.

Internal jumper, E1, configures the unit as either a master or slave node. A 1.0 k\(\Omega\) bus pull-up resistor is enabled when E1 is connected across A and B. With the jumper removed, an internal 30 k\(\Omega\) resistor is retained.

The unit is configured as a master node as shipped.

2.3 SOFTWARE INSTALLATION

All necessary files are contained on the Compact Disc (CD) supplied with the device.

2.3.1 Installing the LIN Serial Analyzer Program

1. Run \texttt{setup.exe} from the CD.
2. Select \texttt{Install} when prompted and follow any instructions.

\textbf{Note:} The LIN Serial Analyzer program requires the Microsoft\textregistered .NET Framework version 2.0.

The PC host program is uninstalled with the control panel’s add/remove utility.

2.4 RUNNING LIN SERIAL ANALYZER PROGRAM

Before starting the LIN Serial Analyzer software:
• The analyzer must be connected to the PC by a USB cable
• The analyzer must be powered up

The analyzer’s green \textbf{USB} and blue \textbf{LIN} lights will be on when these conditions are met.
There is a hard-wired, loopback bus path, so connection to a network is not needed for testing the installation.

To start the software:

1. On the Windows operating system taskbar, click **Start**.
2. Click **All Programs>Microchip Technology Inc.>LIN Serial Analyzer**.
3. Click **Setup>COM port**.
4. From the pull-down menu, select the USB port to be used.

 Note: Only available, plugged in USB ports are displayed by the pull-down menu. If the correct serial port is not displayed, verify that the USB hardware is correctly installed.

5. In the menu’s text box, type the appropriate baud rate value.
6. Click **OK**.
7. Verify operation by selecting one of the preset messages from the Master Message area.

 Bus activity is indicated by the analyzer’s yellow **BUSY** light flickering.

 A message will be displayed in the Bus Transaction window with:

 - A time-stamp
 - The correct ID parity bits
 - The calculated checksum
 - Any detected error conditions
Chapter 3. LIN Serial Analyzer PC Program

3.1 HIGHLIGHTS

This chapter discusses:
- Interface Overview
- Transaction Window
- File Functions
- Setup Functions
- Tools Functions
- Start/Stop Logging Button
- Master Message Group Box
- Status Bar

3.2 INTERFACE OVERVIEW

When the LIN Serial Analyzer’s software program starts, the window, shown in Figure 3-1, appears. The commands are accessed through the pull-down menus at the top of the interface.

FIGURE 3-1: LIN SERIAL ANALYZER USER INTERFACE
3.3 TRANSACTION WINDOW

This window, shown in Figure 3-2, constantly monitors and displays bus traffic when in the “Display All” mode. Any message frames seen on the bus are shown, regardless of the source.

The data is displayed as it is seen on the bus without modification.

This section describes the window’s fields.

FIGURE 3-2: MESSAGE FRAMES DISPLAY

<table>
<thead>
<tr>
<th>TimeStamp</th>
<th>ID</th>
<th>Data</th>
<th>Checksum</th>
<th>ChkSumType</th>
<th>Baud</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>000042.204</td>
<td>20</td>
<td>00 22 33 44</td>
<td>66</td>
<td>classic</td>
<td>9600</td>
<td>n/A</td>
</tr>
<tr>
<td>000045.673</td>
<td>30</td>
<td>00 00 00 00</td>
<td>FF</td>
<td>classic</td>
<td>9600</td>
<td>n/A</td>
</tr>
</tbody>
</table>

3.3.1 TimeStamp

This field of the Transaction window displays the time, in seconds, since the last frame was received. The value is reset to zero when the window is cleared.

The value can also be cleared by clicking on the “TimeStamp” column label.

3.3.2 ID (Identifier)

This field displays the ID byte, including the upper two parity bits.

3.3.3 Data

From zero to eight data bytes are displayed in this field. The data is in the hexadecimal format (without the leading characters, ‘0x’), with the bytes separated by spaces.

3.3.4 Checksum

The last field of a frame is the checksum. The checksum contains the inverted, eight-bit sum with carry, over all data bytes or all data bytes and the protected identifier.

3.3.5 ChkSumType

This field indicates whether a “classic” or “enhanced” equation was used for the checksum calculation. For messages sent via the Master Message group box, the type of calculation is configured in the checksum portion of the Master Message group box (see Section 3.8.3 “Checksum Group”).

- Classic – Checksum calculation over the data bytes only. Used for the master request frame, slave response frame and communications with LIN 1.x slaves. An eight-bit sum with carry is equivalent to the sum of all values and subtracts 255 every time the sum is greater than or equal to 256.
- Enhanced – Checksum calculation over the data bytes and the protected identifier byte. Used for communication with LIN 2.x slaves.

The checksum is calculated both ways when a message frame is received. A match is displayed either as “Classic” or “Enhanced”. If neither result matches the incoming data, “ERROR” is displayed.

3.3.6 Baud

This field shows the actual, calculated bit rate observed during the Auto-Baud Detect period of the current frame.
3.3.7 Errors

This field displays any of the error types described in this section. If multiple errors are detected, only one is displayed.

3.3.7.1 PARITY

The parity is calculated on the frame identifier bits as shown in Equation 3-1.

EQUATION 3-1: PARITY CALCULATIONS†

\[
P_0 = \text{ID0} \oplus \text{ID1} \oplus \text{ID2} \oplus \text{ID4} \\
P_1 = - (\text{ID1} \oplus \text{ID3} \oplus \text{ID4} \oplus \text{ID5})
\]

† P0 is bit 6 and P1 is bit 7 of the ID byte.

3.3.7.2 TX BIT

A slave or master node that is transmitting a bit on the bus also monitors the bus. A TX bit error is when the bit or byte value that is received is different from the bit or byte value that is transmitted.

Note: This function is not currently implemented.

3.3.7.3 CHECKSUM

A checksum error is when the inverted modulo-256 sum over all received data bytes and the protected identifier (when using enhanced checksum) and the received checksum byte field does not result in FF.

3.3.7.4 FRAMING

A byte field framing error is when the ninth bit after a valid Start bit is dominant. This check does not apply to the Break character.

Note: This function is not currently implemented.

3.3.7.5 NO ANSWER

This value displays when a new Break/Sync/ID header was detected, but no data was received within the bus time-out period.

3.3.7.6 BREAK

This displays when data characters were received before a valid Sync Break header was detected.

Note: This function is not currently implemented.

3.3.7.7 BUS TIME-OUT

This value indicates that the time interval allocated for an eight-byte message expired. This time is set to approximately 140% of a single bit time. The time-out may also be configured to a fixed value not dependent on baud rate.

3.3.7.8 SWBREAK

This value displays when a valid Sync Break is not detected by the UART. A Break was “assumed” because the first byte received was 0x00, but without a framing error.

Note: This function is not currently implemented.
3.4 FILE FUNCTIONS

3.4.1 Open

The “Open” dialog box loads configuration and master message frames from a user-selected file into the “Master Frames” field, so that they can be sent (see Section 3.8.1 “Master Frames Field”).

By default, the dialog box, shown in Figure 3-3, displays the file that was last used in the previous session.

To display the dialog box, go to the pull-down menus at the top of the user interface and select File>Open.

FIGURE 3-3: FILE OPEN WINDOW

3.4.2 Save

The “Save” dialog box saves configuration and master message frames, displayed in the “Master Frames” field, to a previously selected *.ini file (see Section 3.8.1 “Master Frames Field”). By default, the dialog box populates the file name that was last used in the previous session.

To display the dialog box, go to the pull-down menus at the top of the user interface and select File>Save.
3.4.3 **Save As**

The “Save As” dialog box saves or appends configuration and master message frames, displayed in the “Master Frames” field, to a preselected file (see Section 3.8.1 “Master Frames Field”). The default file name is the last used file from the previous session.

To display the dialog box, shown in Figure 3-4, go to the pull-down menus at the top of the user interface and select *File>*Save As.*

FIGURE 3-4: FILE “Save As” WINDOW

3.4.4 **Print, Print Setup, Print Preview**

These three functions relate to printing the contents of the Transaction window. *Print Setup* configures the printing attributes and *Print Preview* displays how the print will appear.

The printing function clears the contents of the Transaction window, but does not reset the time-stamp.

All of these functions are accessible through the *File* pull-down menu.

3.4.5 **Exit**

Selecting *File>*Exit* terminates the LIN Serial Analyzer software program.
3.5 SETUP FUNCTIONS

The Tools pull-down menu has the following commands.

3.5.1 Setup COM port

The “Setup COM port” function selects the USB communication port to use.

Note: The “COM port” drop-down list box displays only available, plugged-in USB ports. If the correct serial port is not displayed in the menu, verify that the USB hardware is correctly installed.

The menu also sets the baud rate to apply to master transactions. The “Timeout in mS” text box displays the current time-out value for a message frame and may be modified by the user. To enable the time-out value to vary with the baud rate, enter a value of 0.

FIGURE 3-5: “Setup COM port” WINDOW

To display the dialog box, select *Setup* > *COM port*.
3.5.2 Log File

The Log File setup function specifies the new or existing file that will store bus transactions.

If an existing file that already contains data is selected, any new messages will be appended to the end of the file.

FIGURE 3-6: LOG FILE SETUP WINDOW

To display the dialog box, select Setup>Log File.
3.6 TOOLS FUNCTIONS

This section lists the commands on the Tools pull-down menu.

3.6.1 Debug Mode

Selecting *Tools>Debug Mode* enables the user to debug bus or slave operational issues.

One function forces a user-supplied checksum to be appended to a master message to check a slave for proper error handling. In this mode, the generation of identifier parity bits is inhibited and the identifier byte is transmitted without modification.

3.6.2 Suppress Bus Time-out Error

The current implementation of the master task cannot refer to a LIN descriptor file, so there is no way to determine the length of any received message. To calculate an appropriate time-out value, multiply the length of an eight-byte frame times 140% of the bit rate.

This value can be overridden by entering a fixed time-out value in the COM Setup window, described in *Section 3.5.1 “Setup COM port”*.

3.6.3 Clear Monitor Window

This function clears the Transaction window and resets the time-stamp.

3.6.4 Transmit

This option selects the Transmit Only mode. No received messages are displayed in the Transaction window.

3.6.5 Listen (Filter)

This option selects the Listen Only mode. Only non-duplicated messages are displayed in the Transaction window.

When "snooping" bus message frames, this prevents the Transaction window from becoming cluttered with repeated frames.

3.6.6 Display All (Snoop) Default

This function selects the Display All mode. All messages seen on the bus are displayed.

This mode is best used with the data logging feature to capture all bus traffic for later analysis.
3.7 START/STOP LOGGING BUTTON

This button – located in the top, right corner of the interface – starts, pauses, or stops the capturing of messages to the log file.

Before starting the logging process, select and open a log file (see Section 3.5.2 “Log File”).

To pause the logging process, click the button a second time.

3.8 MASTER MESSAGE GROUP BOX

This functions in the group box to act as a master node on the LIN bus, sending the previously constructed frames to the slaves on the bus.

This window will cause a bus conflict if another master appears on the network. Any conflict will be shown in an active Transaction window as a bus error.

The group box, shown in Figure 3-7, consists of the:

- “Master Frames” field
- “Checksum” group
- Message controls

FIGURE 3-7: MASTER MESSAGE GROUP BOX

3.8.1 Master Frames Field

The “Master Frames” field is composed of 0 to \(n \) rows of one or more messages that can be sent over the bus for test purposes. These messages can be entered manually, loaded from a previously saved session, or both.

When the message is sent, it and any response is displayed in the Transaction window if it is open and active.

Messages in the “Master Frames” field can also be saved for reuse (see Section 3.4.2 “Save” and Section 3.4.3 “Save As”).

3.8.1.1 MESSAGE SYNTAX

Messages must consist of the ID byte without parity bits and the data bytes, all separated by spaces. All inputs are in hexadecimal radix.

The checksum is not included; it is calculated at send time.

Comments or notes may be attached to each frame by prefacing it with a semi-colon (;). Any text after the semi-colon will be disregarded and not transmitted. All notes will be saved in the selected .ini file and reloaded when reopened.
3.8.1.2 DEVELOPING AND STORING MESSAGE CONTENT

To manually add message content to the “Master Frames” field:
1. Click in an empty row in the “Master Frames” field. A second window displays for creation of the new message.
2. Type the message in the text box.
3. Click OK.

To load a pre-existing message to the “Master Frames” field:

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importing a file into the “Master Frames” field overwrites any content that previously had been in that field.</td>
</tr>
</tbody>
</table>

1. From the pull-down menus, select File>Open. The “Open” dialog box appears.
2. In the dialog box’s list box, select the desired *.ini file.
3. Click Open.

To delete some message content:
1. In the “Master Frames” field, select the content to be deleted by doing one of the following:
 - To select adjacent rows of content – Click on the first row, scroll down to the last row and hold down <Shift> while clicking.
 - To select non-adjacent rows of content – Hold down <Ctrl> while clicking each row.
2. Click Delete.

To send a message:
1. In the “Master Frames” field, select the content to be sent by doing one of the following:
 - To select adjacent rows of content – Click on the first row, scroll down to the last row and hold down <Shift> while clicking.
 - To select non-adjacent rows of content – Hold down <Ctrl> while clicking each row.
2. Click Send.
 The highlighted message content is sent, working top-to-bottom through the “Master Frames” field.
 The message is sent once. (For information on continually sending the highlighted message content, see Section 3.8.2.3 “Continuous Button”.)

To store a message:
1. See Section 3.4.2 “Save” and Section 3.4.3 “Save As”.

3.8.1.3 MASTER FRAMES FIELD ELEMENTS

This section describes the “Master Frames” field’s two elements.

3.8.1.3.1 ID

The “ID” element displays the identifier byte to be sent without the upper two parity bits. Parity is calculated and appended at send time unless the application is in the Debug mode (see Section 3.6.1 “Debug Mode”).

The acceptable range of values is 00 to 3F hex (0 to 63 decimal).
3.8.1.3.2 DATA
The “Data” portion of the “Master Frames” field displays zero to eight-byte values, separated by spaces.

3.8.2 Message Controls

3.8.2.1 SEND BUTTON
Clicking this button transmits the message content that is highlighted in the “Master Frames” field (see the “Send” procedure in Section 3.8.1.2 “Developing and Storing Message Content”).
When the Send button is clicked, the message is sent once (see Section 3.8.2.3 “Continuous Button”).
If the Transaction window is open and active, the message and any response will be displayed.

3.8.2.2 DELETE BUTTON
Clicking the Delete button deletes the content that is highlighted in the “Master Frames” field. (see the “Delete” procedure in Section 3.8.1.2 “Developing and Storing Message Content”).

3.8.2.3 CONTINUOUS BUTTON
Clicking the Continuous button sends the selected message entry or entries continuously, at an interval defined in the time control text box, described next. A second click of the button stops the continuous transmissions.
Any number of messages may be selected for continuous broadcast. They will be transmitted in the order they appear in the “Master Frames” field.

3.8.2.4 TIME CONTROL
Used in conjunction with the Continuous button, this text box sets the interval, in milliseconds, between message frames being sent in the Continuous mode.

Note: Due to service latency time in the Windows operating system environment, the minimum time interval may be as high as 200 ms, regardless of desired time set in the control box. Intervals less than 200 ms will be serviced as fast as possible, but may not be less than the operating system minimum.
3.8.3 Checksum Group

The checksum value is computed at send time. Selecting one of the option buttons in the “Checksum” group, shown at right, determines the type of checksum that will be calculated for all transmitted master message frames, highlighted in the “Master Frames” field.

- **classic** – The checksum includes all data bytes.
- **enhanced** – The checksum includes identifier byte and all data bytes.
- **forced** – (Enabled only in Debug mode.) The last byte in the message string is sent in place of the calculated checksum. This is useful in checking slave error handling.

If a slave response is requested (a ID value with no data bytes), the checksum is not computed and the field is left blank.

The checksum returned by the slave will be displayed in the “Checksum” field of the Transaction window (see Section 3.3.5 “ChkSumType”.)

3.9 STATUS BAR

The status bar at the bottom of the Interface window displays:

- Currently selected baud rate of master messages
- Dynamic LIN network status
Appendix A. LIN Serial Analyzer Technical Information

A.1 HIGHLIGHTS

This chapter discusses:

- LIN Serial Analyzer Schematic

A.2 LIN SERIAL ANALYZER SCHEMATIC

The LIN Serial Analyzer management hardware diagram is shown in Figure A-1.
Index

B
- Buttons
 - Start/Stop Logging .. 19

C
- Clear Monitor Window Function 18
- Customer Support .. 3

D
- Data Field Element .. 21
- Debug Mode Function .. 18
- Display All (Snoop) Default Function 18

Documentation
- Additional Reading .. 3
- Conventions .. 2
- Layout .. 1

E
- Exit Function .. 15

F
- File Menu
 - Exit ... 15
 - Open ... 14
 - Print ... 15
 - Save ... 14
 - Save As ... 15

H
- Hardware
 - Connecting to PC ... 6
 - Contents of Kit ... 5
 - LIN Serial Analyzer Schematic 24
 - Network Connector .. 7
 - Overview ... 5
 - Power Jack .. 7
 - Status LEDs .. 6
 - USB Connection ... 7

I
- ID Field Element .. 20
- Installing Software ... 9
- Internet Address ... 3

L
- LIN Serial Analyzer User Interface 11
- Listen (Filter) Function ... 18
- Log File Function ... 17

M
- Master Frames Field
 - Data ... 21
 - Deleting Message Content 20
 - Developing and Storing
 - Message Content ... 20
 - ID ... 20
 - Loading Pre-Existing Message Content 20
 - Manually Creating a Message 20
 - Saving Message Content 20
 - Sending Messages ... 20
- Master Message Group Box 19
 - Checksum Group .. 22
 - Master Frames Field ... 19
 - Master Frames Field Elements 20
- Message Controls ... 21
 - Continuous Button ... 21
 - Delete Button ... 21
 - Send Button ... 21
 - Time Control ... 21
- Messages
 - Creating Manually ... 20
 - Deleting Message Content 20
 - Developing and Storing ... 20
 - Loading Pre-Existing Content 20
 - Saving Message Content 20
 - Sending ... 20
- Microchip Internet Web Site .. 3

O
- Open Function ... 14

P
- Print Function .. 15
- Print Preview Function ... 15
- Print Setup Function .. 15

S
- Save As Function ... 15
- Save Function .. 14
- Setup COM port Function .. 16
- Setup Menu .. 16
 - Log File ... 17
 - Setup COM port ... 16
Software

Dynamically Linked Library (DLL) 8
File Menu .. 14
Firmware ... 8
Installation .. 9
Interface Window 11
Master Message Group Box 19
Overview .. 8
Prelaunch Tasks .. 9
Setup Menu ... 16
Starting the Software 10
Status Bar ... 22
Tools Menu ... 18
Transaction Window 12
Start/Stop Logging Button 19
Suppress ‘Bus Timeout’ Error Function 18

Tools Menu .. 18

Clear Monitor Window 18
Debug Mode ... 18
Display All Default 18
Listen (Filter) ... 18
Suppress ‘Bus Timeout’ Error 18
Transmit .. 18

Transaction Window 12

Baud .. 12
Checksum .. 12
ChkSumType .. 12
Data .. 12
Errors ... 13
Break .. 13
Bus Time-out .. 13
Checksum .. 13
Framing ... 13
No Answer ... 13
Parity ... 13
SWBreak ... 13
TX Bit ... 13
ID (Identifier) .. 12
TimeStamp ... 12
Transmit Function 18

W
WWW Address ... 3