Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLog, microD, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MIWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KeeLog® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Preface .. 1

Chapter 1. Product Overview

1.1 Introduction ... 5

1.2 What is the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board? 5

1.3 What the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board Kit includes 5

Chapter 2. Installation and Operation

2.1 Introduction ... 7

2.2 Features ... 7

2.3 Getting Started ... 7

Appendix A. Schematic and Layouts

A.1 Introduction ... 13

A.2 Board Schematic 14

A.3 Board - Top Layer ... 14

A.4 Board - Silk screen Layer ... 15

A.5 Board - Bottom Layer .. 15

Appendix B. Bill Of Materials (BOM)

Worldwide Sales and Service ... 18
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document.

INTRODUCTION

This chapter contains general information that will be useful to know before using the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board as a development tool. The manual layout is as follows:

- Chapter 1. “Product Overview” – Important information about the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board.
- Chapter 2. “Installation and Operation” – This chapter includes instructions on how to get started, with a detailed description of each of the board’s functions.
- Appendix A. “Schematic and Layouts” – Shows the schematic and layout diagrams for the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board.
- Appendix B. “Bill Of Materials (BOM)” – Lists the parts used to build the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Emphasized text</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
</tr>
<tr>
<td>Underlined, italic text with</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>right angle bracket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>N’Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td></td>
<td>Filenames</td>
<td>autoexec.bat</td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>Constants</td>
<td>0xFF, ‘A’</td>
</tr>
<tr>
<td></td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename*</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>*errorlevel {0</td>
</tr>
</tbody>
</table>
| Ellipses... | Replaces repeated text | *var_name [,
| | Represents code supplied by user | *var_name...]* |

RECOMMENDED READING

This user’s guide describes how to use TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board. The following Microchip documents are available and recommended as supplemental reference resources.

TC1047A Data Sheet, “Precision Temperature-to-Voltage Converter” (DS21498)

This data sheet provides detailed information regarding the TC1047A device.
THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Development Systems Information Line

Customers should contact their distributor, representative or field application engineer for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision B (July 2006)

• Add disclaimer to Bill of Materials regarding RoHS-Compliant part numbers.

Revision A (June 2004)

• Initial Release of this Document.
1.1 INTRODUCTION

This chapter provides an overview of the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board and covers the following topics:

- What is the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board?
- What the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board Kit includes

1.2 WHAT IS THE TC1047A TEMPERATURE-TO-VOLTAGE CONVERTER PICTAIL™ DEMO BOARD?

The TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board demonstrates how to interface the TC1047A to a PICmicro® microcontroller using the PICkit™ 1 Flash Starter Kit as a platform. A PIC16F676 14-pin Flash-based 8-bit CMOS microcontroller device is included with the Demo Board that can be used with PICkit 1 Flash Starter Kit, along with firmware that provides the interface to the TC1047A and the voltage-to-temperature conversion routines.

The TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board can also be used as a “stand-alone” module to quickly add thermal sensing capability to any existing application. This basic sensor functionality is implemented on a small Printed Circuit Board (PCB) and an interface via a standard 100 mil header.

1.3 WHAT THE TC1047A TEMPERATURE-TO-VOLTAGE CONVERTER PICTAIL™ DEMO BOARD KIT INCLUDES

This TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board Kit includes:

- The TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board
- TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board User’s Guide (DS51483)
- AN938, “Interfacing a TC1047A Analog Output Temperature Sensor to a PICmicro Microcontroller”, DS00938
- PIC16F676 14-pin Flash-based 8-bit CMOS Microcontroller
- PIC16F676 Firmware (TC1047A PICtail.HEX)
Chapter 2. Installation and Operation

2.1 INTRODUCTION

The TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board demonstrates how to interface the TC1047A device to a microcontroller for use by the system designer as an example of how to integrate an analog temperature sensor into their system.

2.2 FEATURES

The TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board has the following features:
- Small PCB layout
- Standard 100 mil 14-pin header (P1) for easy interface to PICkit™ 1 Flash Starter Kit or custom application

2.3 GETTING STARTED

This section describes how to quickly set up the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board and PICkit 1 Flash Starter Kit. A block diagram of the setup is presented in Figure 2-1. Refer to Application Note 938, "Interfacing a TC1047A Analog Output Temperature Sensor to a PICmicro® Microcontroller" (DS00938), for detailed information on the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board and the TC1047A PICtail.HEX firmware.

FIGURE 2-1: TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board Block Diagram.
2.3.1 Hardware Setup

1. Connect the P1 header of the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board to the J3 connector on the PICkit 1 Flash Starter Kit board. Refer to Figure 2-2 for proper orientation of the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board and Figure 2-3 for the simplified board schematic.

2. Insert the PIC16F676 into the Evaluation socket of the PICkit 1 Flash Starter Kit board.

3. Connect the PICkit 1 Flash Starter Kit USB cable from the USB port of the PC to the USB port (J1) on the PICkit 1 Flash Starter Kit board. +5V power is supplied to the PICkit 1 Flash Starter Kit board via the USB cable. The green POWER LED and the red BUSY LED will turn on, indicating that power is being supplied to the board.

FIGURE 2-2: TC1047A PICtail™ Daughter Board and PICkit™ 1 Flash Starter Kit.

FIGURE 2-3: Simplified TC1047A PICtail™ Daughter Board Schematic.
2.3.2 Programming the PIC16F676

1. Download and install the PICkit 1 Flash Starter Kit software to your PC.
2. Copy the TC1047A PICtail.HEX file, supplied on the CD that came with this kit, to your PC.
3. When the PICkit 1 Flash Starter Kit is started, the main window will be displayed on the PC, as indicated in Figure 2-4.

4. Toggle device power to off by unchecking the Device Power box under Board Controls in the PICkit 1 Flash Starter Kit window (Figure 2-4). The BUSY LED on the PICkit 1 Flash Starter Kit board will turn off once the device power is turned off.
5. Click on the Erase button in the window to ensure that the PIC16F676 device has been erased.
6. From the File pull down menu, select Import HEX. A file window will appear. Select and open 'TC1047A PICtail.HEX'.
7. Click on the Write Device button in the PICkit 1 Flash Starter Kit window. The PIC16F676 device will be written to with the TC1047A PICtail.HEX firmware. When completed, the status bar at the bottom of the window will indicate Write Successful.
8. Toggle the device power on by checking the Device Power box under Board Controls in the PICkit 1 Flash Starter Kit window. The BUSY LED on the PICkit 1 Flash Starter Kit board will turn on when device power is turned on. Some of the red LEDs (D7-D0) will turn on as well.
At this point, the PIC16F676 device is reading the temperature data from the TC1047A and displaying the temperature on the eight red LEDs (D7-D0) on the PICkit 1 Flash Starter Kit board. The ten’s digit of the temperature data is represented by bits D7-D4, with D7 being defined as the Most Significant bit (MSb). The one’s digit is defined by bits D3-D0, with D3 serving as the MSb.

The temperature can be displayed in degrees Fahrenheit or Celsius. The board defaults to the temperature being displayed in Fahrenheit. To display the temperature in Celsius, depress the SW1 push button switch on the PICkit 1 Flash Starter Kit board. The display will change back to Fahrenheit once the SW1 push button switch is released.

Table 2-1 provides a list of the LED patterns that correspond to the BCD coding representation of the temperature measurement.

TABLE 2-1: BCD CODE REPRESENTATION ON PICkit™ 1 FLASH STARTER KIT LEDS

<table>
<thead>
<tr>
<th>Binary</th>
<th>BCD Number</th>
<th>D7 D3</th>
<th>D6 D2</th>
<th>D5 D1</th>
<th>D4 D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

For example, a temperature reading of 75°F will be displayed by turning on LEDs D6, D5, D4, D2 and D0 (LEDs D7, D3 and D1 will be turned off), as indicated in Figure 2-5.
The temperature display will change when the temperature of the TC1047A is varied. A simple example of this can be seen by pressing your finger on the TC1047A device (U1) on the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board. More dramatic changes can be seen by applying heat to the TC1047A with a hair dryer or hot air gun, or by cooling the device down.

Refer to the TC1047A Data Sheet, “Precision Temperature-to-Voltage Converter” (DS21498), for more information on the TC1047A, and Application Note 938, “Interfacing a TC1047A Analog Output Temperature Sensor to a PICmicro® Microcontroller”, for more information on the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board and the TC1047A PICtail.HEX firmware.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the TC1047A Temperature-to-Voltage Converter PICtail™ Demo Board User’s Guide:

- Board Schematic
- Board - Top Layer
- Board - Silk Screen Layer
- Board - Bottom Layer
A.2 BOARD SCHEMATIC

A.3 BOARD - TOP LAYER
A.4 BOARD - SILK SCREEN LAYER

PICtail™ Daughter Board
TC1047A Temperature Sensor

A.5 BOARD - BOTTOM LAYER
TABLE B-1: BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Qty</th>
<th>Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>Cap., 0.1 µF, 25V, Ceramic, X7R 0805</td>
<td>Panasonic®-ECG</td>
<td>ECJ-2VB1E104K</td>
</tr>
<tr>
<td>1</td>
<td>P1</td>
<td>Conn Hdr Brkway .100 40pos RT/A</td>
<td>AMP®/Tyco® Electronics</td>
<td>4-103765-0</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>TC1047A Precision Temperature To Voltage Converter</td>
<td>Microchip Technology Inc.</td>
<td>TC1047AVNB</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
World Wide Sales and Service

Americas

Corporate Office
2355 West Chandler Blvd. Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 508-540-0087
Fax: 508-540-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Europe

Austria - Wels
Tel: 43-7242-2244-3910
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820