Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
FilterLab® 2.0
User’s Guide

Table of Contents

General Information
Introduction .. 1
About This Guide .. 2
The Microchip Internet Web Site ... 2
Customer Support ... 3

Chapter 1. Dialog Boxes
1.1 Dialog Boxes .. 5

Chapter 2. Wizards
2.1 Anti-Aliasing Wizard .. 19
2.2 Filter Selection Wizard ... 25

Chapter 3. Toolbar
3.1 Buttons .. 35
3.2 Approximation Combo Box ... 38
3.3 Frequency Textboxes .. 39

Chapter 4. Menus
4.1 File .. 41
4.2 Edit .. 44
4.3 View .. 45
4.4 Filter .. 46
4.5 Window ... 47
4.6 Help .. 47

© 2003 Microchip Technology Inc.
Chapter 5. Window Views

5.1 Frequency View ... 49
5.2 Circuit View .. 50
5.3 Spice Listing View .. 51

Appendix A. FilterLab 2.0 to SPICE Interface

A.1 Introduction And Highlights .. 53

Appendix B. Filter Magnitude Templates

B.1 Introduction ... 57

Appendix C. Group Delay

C.1 Introduction ... 63

Appendix D. Bessel Filter Response

D.1 Introduction ... 65

Appendix E. Op Amp Selection

E.1 Introduction ... 67

Appendix F. Selected References

F.1 Introduction ... 71

Worldwide Sales and Service ... 72
INTRODUCTION

FilterLab® 2.0 is an innovative software tool that simplifies active filter design. Available at no cost from Microchip’s web site (www.microchip.com), the FilterLab 2.0 active filter software design tool provides full schematic diagrams of the filter circuit with recommended component values and displays the frequency response.

FilterLab 2.0 allows the design of low-pass filters up to an 8th order filter with Chebychev, Bessel or Butterworth responses from frequencies of 0.1 Hz to 1 MHz. FilterLab 2.0 also can be used to design band-pass and high-pass filters with Chebychev and Butterworth responses. The circuit topologies supported by FilterLab 2.0 are the Sallen Key and Multiple Feedback (MFB). The low-pass filters can use either the Sallen Key or MFB, the band-pass is available with the MFB and the high-pass uses the Sallen Key.

Users can select a flat pass band or sharp transition from pass band to stopband. Options (such as minimum ripple factor, sharp transition and linear phase delay) are available. Once the filter response has been identified, FilterLab 2.0 generates the frequency response and the circuit. For maximum design flexibility, changes in capacitor values can be implemented to fit the demands of the application. FilterLab 2.0 will recalculate all values to meet the desired response, allowing real-world values to be substituted or changed as part of the design process.

FilterLab 2.0 also generates a SPICE model of the designed filter. Extraction of this model will allow time domain analysis in SPICE simulations, streamlining the design process.

Further consideration is given to designs used in conjunction with an Analog-to-Digital Converter (ADC). A suggested filter can be generated by simply inputting the bit resolution and sample rate via the Anti-Aliasing Wizard. This eliminates erroneous signals folded back into the digital data due to the aliasing effect.

This section also covers the following topics:

• About This Guide
• The Microchip Internet Web Site
• Customer Support
ABOUT THIS GUIDE

Document Layout
The User’s Guide layout is as follows:

• General Information – this section describes how to use the FilterLab® 2.0 User’s Guide.
• Chapter 1: Dialog Boxes – this section describes the dialog boxes and their uses.
• Chapter 2: Wizards – this section describes the Filter Selection Wizard and helps you design a filter.
• Chapter 3: Toolbars – this section describes the toolbars and their functions.
• Chapter 4: Menus – this section describes the menus and their functions.
• Chapter 5: Window Views – this section describes the window views and how they are used.
• Worldwide Sales and Service – this section gives the address, telephone and fax number for Microchip Technology Inc. sales and service locations throughout the world.

THE MICROCHIP INTERNET WEB SITE

Microchip provides on-line support on the Microchip World Wide Web (WWW) site. The web site is used by Microchip as a means to make files and information easily accessible to customers. To view the site, the user must have access to the internet and a web browser, such as Netscape® Communicator or Microsoft® Internet Explorer®. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site
The Microchip web site is available by using your favorite Internet browser to connect to:

 http://www.microchip.com

The file transfer site is available by using an FTP program/client to connect to:

 ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User’s Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to Microchip Products
• Conferences for products, Development Systems, technical information and more
• Listing of seminars and events
CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Corporate Applications Engineer (CAE)
• Hot Line

Customers should call their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. See the back cover for a listing of sales offices and locations.

Corporate Applications Engineers (CAEs) may be contacted at (480) 792-7627.

In addition, there is a Systems Information and Upgrade Line. This line provides system users a listing of the latest versions of all of Microchip’s development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.

The Hot Line numbers are:

• 1-800-755-2345 for U.S. and most of Canada, and
• 1-480-792-7302 for the rest of the world
Chapter 1. Dialog Boxes

1.1 DIALOG BOXES

1.1.1 Filter Design Dialog
The Filter Design dialog enables the user to create a filter by specifying all aspects of the filter.

1.1.2 Filter Specification Tab
The Filter Specification tab enables the user to specify the approximation type, the selectivity and the gain. Select any approximation, the selectivity for the approximation and the overall filter gain. The maximum allowed gain is 10 V/V. After specifying the approximation, selectivity and gain, select OK or the Filter Parameters tab.

Note: Bessel approximations only support low-pass selectivities. Therefore, when the Bessel approximation is selected, the only available selectivity will be low-pass.

FIGURE 1-1: Filter Specification Tab
FIGURE 1-2: Filter Specification Tab with Bessel Selected
1.1.3 Filter Parameters Tab

Figures 1-4, 1-5 and 1-6 demonstrate the location of the pass band and stop band upper and lower frequencies. For all selectivities, a_{pass} and a_{stop} represent the pass band and stop band attenuations. For low-pass selectivities (Figure 1-4), f_{pass} and f_{stop} represent the pass band and stop band frequencies. For high-pass selectivities (Figure 1-5), f_{pass} and f_{stop} represent the pass band and stop band frequencies. For low-pass selectivities (Figure 1-6), $f_{\text{pass upper}}$ and $f_{\text{pass lower}}$ represent the pass band and upper and lower frequencies, while $f_{\text{stop upper}}$ and $f_{\text{stop lower}}$ represent the stop band and upper and lower frequencies.

![Filter Design](image)

FIGURE 1-3: Filter Parameters Tab

The *Filter Parameters* tab enables the user to modify the filter’s parameters. Figures 1-4, 1-5 and 1-6 provide a simplified representation of the filter specification parameters. A detailed discussion of the filter specification is provided in Appendix B, “Filter Magnitude Templates”.

© 2003 Microchip Technology Inc.
FIGURE 1-4: Parameter Definitions for Low-pass Selectivity

FIGURE 1-5: Parameter Definitions for High-pass Selectivity
FIGURE 1-6: Parameter Definitions for Band-pass Selectivity
1.1.3.1 FILTER ORDER

The Force Filter Order option enables the user to specify the filter order or have the program calculate the filter order based on the dialog entries. To force the filter order, select the Force Filter Order checkbox. When the checkbox is selected, the user specifies the Pass Band Attenuation and the Pass Band frequencies. FilterLab 2.0 then calculates the Stop Band Attenuation and Stop Band frequencies based on the order. When the checkbox is not selected, the user specifies the attenuation and all frequency values. FilterLab 2.0 then calculates the order based on the attenuation and frequency values.

Note: Bessel approximations only support forced filter orders. When the Bessel approximation is selected, the Force Filter Order checkbox will be checked and disabled.
1.1.3.2 PASS BAND ATTENUATION

The Pass Band Attenuation is the change in magnitude of the frequencies in the pass band. The Pass Band Attenuation for each selectivity (low-pass, high-pass, band-pass) is shown in Figures 1-4, 1-5 and 1-6. The allowable range is -0.01 dB to -3 dB. If a value beyond this range is entered in the Filter Parameters tab, the error message shown in Figure 1-9 will appear.
1.1.3.3 STOP BAND ATTENUATION

The Stop Band Attenuation is the minimum reduction in magnitude of the frequencies in the stop band relative to the pass band. The Stop Band Attenuation for each selectivity is shown in Figures 1-4, 1-5 and 1-6. The allowable range is -10 dB to -100 dB. If a value beyond this range is entered in the Filter Parameters tab, the error message shown in Figure 1-10 will appear.

![Error Message](image1)

FIGURE 1-10: Error Message

1.1.3.4 PASS BAND FREQUENCY

The Pass Band Frequency is the starting point of the pass band, as shown in Figures 1-4, 1-5 and 1-6. The allowable range is 0.1 Hz to 1,000,000 Hz. If a value beyond this range is entered in the Filter Parameters tab, the error message shown in Figure 1-11 will appear.

![Error Message](image2)

FIGURE 1-11: Error Message

1.1.3.4.1 Low-pass

The Pass Band Frequency must be lower than the Stop Band Frequency for low-pass filters. If a value is entered in the Filter Parameters tab which is larger than the Stop Band Frequency, the error message shown in Figure 1-12 will appear.

![Error Message](image3)

FIGURE 1-12: Error Message
1.1.3.4.2 High-pass

The **Pass Band Frequency** must be greater than the **Stop Band Frequency** for high-pass selectivities. If a value is entered in the **Filter Parameters** tab that is smaller than the **Stop Band Frequency**, the error message shown in Figure 1-13 will appear.

![Error Message](image1.png)

FIGURE 1-13: Error Message

1.1.3.4.3 Band-pass

The **Pass Band Lower Frequency** must be lower than the **Pass Band Upper Frequency** and both **Stop Band Frequencies** for band-pass selectivities. If a value is entered in the **Filter Parameters** tab that is greater than the **Stop Band Frequency** or **Pass Band Upper Frequency**, the error message shown in Figures 1-14 and 1-15 will appear.

![Error Message](image2.png)

FIGURE 1-14: Error Message

![Error Message](image3.png)

FIGURE 1-15: Error Message
1.1.3.5 STOP BAND FREQUENCY

The Stop Band Frequency is the starting point of the stop band, as shown in Figures 1-4, 1-5 and 1-6. The allowable range is 0.1 Hz to 1,000,000 Hz. If a value beyond this range is entered in the Filter Parameters tab, the error message shown in Figure 1-16 will appear.

![Error Message](image1)

FIGURE 1-16: Error Message

1.1.3.5.4 Low-pass

The Stop Band Frequency must be greater than the Pass Band Frequency for low-pass selectivities. If a value is entered in the Filter Parameters tab that is smaller than the Pass Band Frequency, the error message shown in Figure 1-17 will appear.

![Error Message](image2)

FIGURE 1-17: Error Message

1.1.3.5.5 High-pass

The Pass Band Frequency must be greater than the Stop Band Frequency for High-pass selectivities. If a value is entered in the Filter Parameters tab that is smaller than the Stop Band Frequency, the error message shown in Figure 1-18 will appear.

![Error Message](image3)

FIGURE 1-18: Error Message
1.1.3.5.6 Band-pass

The Pass Band Lower Frequency must be lower than the Pass Band Upper Frequency and both Stop Band Frequencies for band-pass selectivities. If a value is entered in the Filter Parameters tab that is greater than the Stop Band Frequency or Pass Band Upper Frequency, the error message shown in Figures 1-19 and 1-20 will appear.

FIGURE 1-19: Error Message

FIGURE 1-20: Error Message
1.1.4 Circuit Tab

The Circuit tab enables the user to modify the circuit topology and component values.

![Diagram of Circuit Tab]

FIGURE 1-21: Circuit Tab

1.1.4.1 RESISTOR SELECTION

The Resistor Selection enables the user to change from standard 1% resistors to the exact calculated value. Changing the Resistor Selection affects all stages.

1.1.4.2 TOPOLOGY SELECTION

The Topology Selection enables the user to change the topology for Low-pass selectivities.

Note: Band-pass selectivities only support Multiple Feedback (MFB) topologies, while the high-pass selectivities only support Sallen Key topologies. Changing the topology only affects the stage for the active tab.

1.1.4.3 CAPACITOR SELECTION

The Capacitor Selection enables the user to change the value of a capacitor from the default value calculated by FilterLab 2.0. FilterLab 2.0 automatically scales the other resistors and capacitors of the filter section to maintain the desired filter specifications. Changing the capacitor value only affects the capacitor that is selected. The capacitor combo box is disabled unless a capacitor has been selected (Figure 1-21). To modify a capacitor's value, select the appropriate stage tab, then select the capacitor to be modified by left-clicking it with the mouse. When a capacitor is selected, it will be highlighted and the capacitor combo box will be enabled (Figure 1-22). Select “Automatic” from the combo box to automatically calculate the capacitor value. Select a value to force the capacitor to that value.
1.1.5 Cancel
To cancel changes made to the Specification, Parameters or Circuit tabs, select Cancel.

1.1.6 OK
To implement changes made to the Specification, Parameters or Circuit tabs, select OK.
2.1 ANTI-ALIASING WIZARD

The Anti-Aliasing Wizard assists the user in designing a low-pass filter used with an A/D converter. The wizard prompts the user for the bandwidth, the sampling frequency, the resolution and the signal-to-noise ratio of the A/D converter.

![Anti-Aliasing Wizard Welcome]

Welcome to the Anti-Aliasing Wizard

This wizard helps you design a filter. Select next to continue.

FIGURE 2-1: Anti-Aliasing Wizard
2.1.1 Anti-Aliasing Wizard Filter Bandwidth Page

The Cut-off Frequency (Figure 2-2) determines the bandwidth of the anti-aliasing filter. The frequency range is limited to values from 0.1 Hz to 1 MHz. If a value outside this range is entered, the error message shown in Figure 2-3 will appear.

FIGURE 2-2: Filter Bandwidth

FIGURE 2-3: Error Message
2.1.2 Anti-Aliasing Wizard Sampling Frequency Page

Enter the sampling frequency of the A/D converter. The sampling frequency must be greater than 2 * cut-off frequency. If a value which is less than 2 * cut-off frequency is entered, the error message shown in Figure 2-5 will appear.

FIGURE 2-4: Sampling Frequency

FIGURE 2-5: Error Message
2.1.3 Anti-Aliasing Wizard Resolution Page

Enter the Resolution of the A/D converter. The Resolution must be between 8 and 24 bits. If a value outside this range is entered, the error message shown in Figure 2-7 will appear.

FIGURE 2-6: Resolution

FIGURE 2-7: Error Message
2.1.4 Anti-Aliasing Wizard Signal-to-Noise Page

Enter the desired Signal to Noise Ratio. The default value is $6.02 \times \text{bits} + 1.76$. Decreasing the value will decrease the order of the filter, while increasing the value will increase the filter order.

FIGURE 2-8: Signal to Noise Ratio
2.1.5 Anti-Aliasing Wizard Completion Page

The completion page summarizes the selections and presents the filter options. If the previous settings cause a filter to have a higher order than allowed by the program, the radio button for that option will be disabled.

Note: Filters with an order greater than 8 typically are not practical. If the calculated filter order is greater than 8, the user should evaluate increasing the sampling rate.

FIGURE 2-9: Completion Page

Anti-Aliasing Wizard Completion

Completing the Anti-Aliasing Wizard.

You have successfully completed the Anti-Aliasing Wizard. Select the desired approximation:

- Passband frequency (Hz): 10000.0
- Sampling frequency (Hz): 60000.0
- Signal to noise ratio (dB): -74.0

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Order</th>
<th>Stopband Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterworth</td>
<td>8</td>
<td>76.6</td>
</tr>
<tr>
<td>Chebychev</td>
<td>8</td>
<td>86.0</td>
</tr>
</tbody>
</table>

To close this wizard, select Finish.
2.2 FILTER SELECTION WIZARD

The Filter Selection Wizard allows the specification of the selectivity, attenuation and frequencies, then presents a table of data showing the order, frequencies and attenuations for each approximation.

![Filter Selection Wizard](image)

Welcome to the Filter Selection Wizard

This wizard helps you design a filter. Select next to continue.

FIGURE 2-10: Filter Selection Wizard
2.2.1 Filter Selection Wizard Selectivity Page

The Filter Selectivity page allows the modification of the selectivity. The response of the selected selectivity is displayed in the property page.

FIGURE 2-11: Filter Selectivity
Filter Selection Wizard Specification Page

The Filter Specification page allows the modification of the filter parameters, attenuations and frequencies. The values are defined in Figures 1-4, 1-5 and 1-6. The response of the selectivity is displayed in the property page.

FIGURE 2-12: Filter Specification – Filter Parameters

2.2.2.1 PASS BAND ATTENUATION

The Pass Band Attenuation is the change in magnitude of the frequencies in the pass band. The Pass Band Attenuation for each selectivity is shown in Figures 1-4, 1-5 and 1-6. The allowable range is -0.01 dB to -3 dB. If a value beyond this range is entered, the error message shown in Figure 2-13 will appear.

FIGURE 2-13: Error Message
2.2.2.2 STOP BAND ATTENUATION

The Stop Band Attenuation is the change in magnitude of the frequencies in the stop band. The Stop Band Attenuation for each selectivity is shown in Figures 1-4, 1-5 and 1-6. The allowable range is -10 dB to -100 dB. If a value beyond this range is entered, the error message shown in Figure 2-14 will appear.

![Error Message](image)

FIGURE 2-14: Error Message

2.2.2.3 PASS BAND FREQUENCY

The Pass Band Frequency is the starting point of the pass band, as shown in Figures 1-4, 1-5 and 1-6. The allowable range is 0.1 Hz to 1,000,000 Hz. If a value beyond this range is entered, the error message shown in Figure 2-15 will appear.

![Error Message](image)

FIGURE 2-15: Error Message

2.2.2.3.1 Low-pass

The Pass Band Frequency must be lower than the Stop Band Frequency for low-pass selectivities. If a value is entered which is larger than the Stop Band Frequency, the error message shown in Figure 2-16 will appear.

![Error Message](image)

FIGURE 2-16: Error Message
2.2.2.3.2 High-pass

The *Pass Band Frequency* must be greater than the *Stop Band Frequency* for high-pass selectivities. If a value is entered that is smaller than the *Stop Band Frequency*, the error message shown in Figure 2-17 will appear.

![Error Message](image)

FIGURE 2-17: Error Message

2.2.2.3.3 Band-pass

The *Pass Band Lower Frequency* must be lower than the *Pass Band Upper Frequency* and both *Stop Band Frequencies* for band-pass selectivities. If a value is entered that is greater than the *Stop Band Frequency* or *Pass Band Upper Frequency*, the error message shown in Figures 2-18 and 2-19 will appear.

![Error Message](image)

FIGURE 2-18: Error Message

![Error Message](image)

FIGURE 2-19: Error Message
2.2.2.4 STOP BAND FREQUENCY

The *Stop Band Frequency* is the starting point of the stop band, as shown in Figures 1-4, 1-5 and 1-6. The allowable range is 0.1 Hz to 1,000,000 Hz. If a value beyond this range is entered, the error message shown in Figure 2-20 will appear.

![Error Message](image1)

FIGURE 2-20: Error Message

2.2.2.4.4 Low-pass

The *Stop Band Frequency* must be greater than the *Pass Band Frequency* for low-pass selectivities. If a value is entered that is smaller than the *Pass Band Frequency*, the error message shown in Figure 2-21 will appear.

![Error Message](image2)

FIGURE 2-21: Error Message

2.2.2.4.5 High-pass

The *Pass Band Frequency* must be greater than the *Stop Band Frequency* for high-pass selectivities. If a value is entered that is smaller than the *Stop Band Frequency*, the error message shown in Figure 2-22 will appear.

![Error Message](image3)

FIGURE 2-22: Error Message
2.2.2.4.6 Band-pass

The Pass Band Lower Frequency must be lower than the Pass Band Upper Frequency and both Stop Band Frequencies for band-pass selectivities. If a value is entered that is greater than the Stop Band Frequency or Pass Band Upper Frequency, the error message shown in Figures 2-23 and 2-24 will appear.

FIGURE 2-23: Error Message

FIGURE 2-24: Error Message
2.2.3 Filter Selection Wizard Approximation Page

The Filter Approximation page summarizes the filter settings and lists the calculated Order and Stop Band Attenuation for each approximation.

Note: If the calculated order for either approximation exceeds 8, the approximation will be disabled. The user should consider modifying either the pass band or stop band frequencies so that a more practical filter can be produced.

FIGURE 2-25: Filter Approximation

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Order</th>
<th>Passband Attenuation (dB)</th>
<th>Actual Stopband Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterworth</td>
<td>8</td>
<td>-3.0</td>
<td>-67.7</td>
</tr>
<tr>
<td>Chebychev</td>
<td>8</td>
<td>-3.0</td>
<td>-105.7</td>
</tr>
</tbody>
</table>

Passband Lower Frequency (Hz): 1000.0
Stopband Lower Frequency (Hz): 100.0
Passband Upper Frequency (Hz): 5000.0
Stopband Upper Frequency (Hz): 50000.0
2.2.4 Filter Selection Wizard Completion Page

The *Filter Completion* page summarizes all selections made. To implement the filter, click the *Finish* button.

![Completion Page](image)

FIGURE 2-26: Completion Page
Chapter 3. Toolbar

3.1 TOOLBAR

The toolbar provides a shortcut to FilterLab 2.0 program settings. Options available on the toolbar can also be accessed from the menus or dialog boxes.

![FilterLab Toolbar Diagram]

FIGURE 3-1: Toolbar

3.2 BUTTONS

3.2.1 Filter Design

The *Filter Design* toolbar button (Figure 3-2) opens the *Filter Design* dialog box.

FIGURE 3-2: Filter Design Button

3.2.2 Circuit Configuration

The *Circuit Configuration* toolbar button (Figure 3-3) opens the *Filter Design* dialog with the *Circuit* tab active.

FIGURE 3-3: Circuit Configuration Button
3.2.3 Overlay

The Overlay button (Figure 3-4) enables the overlay feature. The overlay feature overloads approximations selected from the toolbar's approximation combo box (Figure 3-5) in the response view. The overlay button functions as a radio button. When the overlay feature is enabled, the overlay button will be depressed. To overlay approximations in the response view, select the first approximation to overlay from the toolbar's approximation combo box. After the first approximation has been selected, select the overlay button. Once the overlay button has been selected, any approximations selected from the toolbar's approximation combo box will be overlaid with the original approximation. A checkmark will appear next to all approximations that have been selected to be overlaid. To disable the overlay feature, select the overlay toolbar button.

Note: Bessel approximations cannot be overlayed. Therefore, if you select the Bessel approximation from the toolbar's approximation combo box, it will not be overlayed with the other approximations.

FIGURE 3-4: Overlay Button

FIGURE 3-5: Approximation Combo Box

3.2.4 Low-pass

The Low-pass toolbar button (Figure 3-6) changes the selectivity to low-pass and the frequencies to the default values with a pass band frequency of 1,000 Hz and a stop band frequency of 10,000 Hz.

FIGURE 3-6: Low-pass Button
3.2.5 High-pass

The High-pass toolbar button (Figure 3-7) changes the selectivity to high-pass and the frequencies to the default values with a pass band frequency of 10,000 Hz and a stop band frequency of 1,000 Hz. The High-pass toolbar button is disabled for Bessel approximations.

![High-pass Button](image)

FIGURE 3-7: High-pass Button

Note: Bessel approximations only support low-pass selectivities. The High-pass toolbar button will be disabled when Bessel approximations are selected.

3.2.6 Band-pass

The Band-pass toolbar button (Figure 3-8) changes the selectivity to band-pass and the frequencies to the default values with a lower pass band frequency of 1,000 Hz, an upper pass band frequency of 5,000 Hz, a lower stop band frequency of 100 Hz and an upper stop band frequency of 50,000 Hz. The Band-pass toolbar button is disabled for Bessel approximations.

![Band-pass Button](image)

FIGURE 3-8: Band-pass Button

Note: Bessel approximations only support low-pass selectivities. The Band-pass toolbar button will be disabled when Bessel approximations are selected.

3.2.7 Zoom-In

The Zoom-In button (Figure 3-9) zooms the response view towards the center of the response. The zoom button has no affect on the Circuit or the SPICE views.

![Zoom-In Button](image)

FIGURE 3-9: Zoom-In Button

3.2.8 Zoom-Out

The Zoom-Out button (Figure 3-10) zooms the response view out from the center of the response. The Zoom-Out button has no affect unless the response has been previously zoomed with the Zoom-In button (Figure 3-9). The zoom button has no affect on the Circuit or the SPICE views.

![Zoom-Out Button](image)

FIGURE 3-10: Zoom-Out Button
3.2.9 Filter Order

The Filter Order button (Figure 3-11) displays the filter's order and modifies that order. Selecting the Filter Order arrow buttons will increase or decrease the order of the filter. When the minimum or maximum order of the program is reached, the order will automatically roll over. If the current design filter had the order automatically calculated and one of the Filter Order arrow buttons is selected, the program automatically sets the Force Filter Order flag (Figure 1-7) and forces the filter order to the value in the Force Filter Order text box. Band-pass selectivities only have even order selectivities. Therefore, the order will increment by two when a band-pass selectivity is selected.

![Filter Order](image1)

FIGURE 3-11: Filter Order

3.3 APPROXIMATION COMBO BOX

The Approximation combo box (Figure 3-12) changes the filter approximation. Selecting All will enable the overlay feature and overlay all approximations, excluding the Bessel approximation. The Bessel approximation is only available for low-pass selectivities and forced filter orders. Therefore, when the Bessel approximation is selected, the selectivity will be changed to low-pass and the Force Filter Order flag will be enabled.

![Filter Approximation](image2)

FIGURE 3-12: Filter Approximation

Note: Bessel approximations only support low-pass selectivities. Choosing a selectivity other than low-pass changes the selectivity to low-pass and resets the frequency values.
3.4 FREQUENCY TEXT BOXES

The frequency text boxes provide a shortcut for modifying the pass band and stop band frequencies. The range of values is limited to 0.1 Hz to 1,000,000 Hz.

The text boxes are enabled and disabled depending on the currently specified selectivity and whether the filter order is forced or calculated by the program. If the frequency order is forced, there is only one frequency value that can be adjusted for low-pass and high-pass selectivities and only two frequencies that can be adjusted for band-pass selectivities. Therefore, only one text box will be enabled for low-pass and high-pass selectivities and two text boxes will be enabled for band-pass selectivities.

3.4.1 Low-pass

When the Low-pass selectivity is specified, the left-most enabled text box represents the filter's pass band frequency and the rightmost enabled text box represents the filter's stop band frequency (Figure 3-13). When the filter order is forced only, the filter's pass band frequency can be modified. Therefore, only the left most text box is enabled (Figure 3-14).

![FIGURE 3-13: Frequency Text Boxes - Order Unforced](image1)

![FIGURE 3-14: Frequency Text Boxes - Order Forced](image2)

3.4.2 High-pass

When the High-pass selectivity is specified, the leftmost enabled text box represents the filter's stop band frequency and the right most enabled text box represents the filter's pass band frequency (Figure 3-15). When the filter order is forced only, the filter's pass band frequency can be modified. Therefore, only the right most text box is enabled (Figure 3-16).

![FIGURE 3-15: Frequency Text Boxes - Order Unforced](image3)

![FIGURE 3-16: Frequency Text Boxes - Order Forced](image4)
3.4.3 Band-pass

When the band-pass selectivity is specified, the left most text box represents the filter's lower stop band frequency. The second textbox represents the filter's lower pass band, while the third text box represents the filter's upper pass band. The right most text box represents the filter's pass band frequency (Figure 3-17). When the filter order is forced, only the filter's lower and upper pass band frequencies can be modified. Therefore, only the center text boxes are enabled (Figure 3-18).

FIGURE 3-17: Frequency Text Boxes - Order Unforced

FIGURE 3-18: Frequency Text Boxes - Order Forced
Chapter 4. Menus

4.1 MENUS

![Menu Bar](image)

Figure 4-1: Menu Bar

4.2 FILE

![File Menu](image)

Figure 4-2: File Menu

4.2.1 New

The New menu item (Figure 4-2) creates a new project with filter properties that are independent of the original project. When selected, a new window will open for the new project.
4.2.2 Open

The Open menu item (Figure 4-2) opens a saved project. Select Open, then select the previously saved project in the Open Project dialog box (Figure 4-3).

![Open Project Dialog]

FIGURE 4-3: Open Project Dialog

4.2.3 Close

The Close menu item (Figure 4-2) closes the currently active project.

4.2.4 Save

The Save menu item (Figure 4-2) saves the currently active project and changes the title bar's file name (Figure 4-5) and spice listing's macro-model title (Figure 4-6), to the specified file name in the Save File dialog box (Figure 4-4).

![Save Project Dialog]

FIGURE 4-4: Save Project Dialog
4.2.5 Print
The Print menu item (Figure 4-2) prints the active view.

4.2.6 Print Preview
The Print Preview menu item (Figure 4-2) previews the active view.

4.2.7 Print Setup
The Print Setup menu item (Figure 4-2) opens the Print Setup dialog box (Figure 4-7).

4.2.8 Exit
The Exit menu item (Figure 4-2) exits the program.
4.3 EDIT

![Edit Menu](image)

FIGURE 4-8: Edit Menu

4.3.1 Select All

The Select All menu item (Figure 4-8) selects the text in the SPICE listing for copying and pasting. The Select All menu item is only available when the SPICE view has focus.

4.3.2 Copy

The Copy menu item (Figure 4-8) copies the active view or SPICE listing to the clipboard. It is enabled for the Response and Circuit views and is disabled for the SPICE view unless text has been selected.
4.4 VIEW

4.4.1 Filter Views
The Filter View menu items (Figures 4-9 and 4-10) change the current view.

4.4.2 Group Delay
The Group Delay menu item (Figure 4-9) changes the Response view's auxiliary data to group delay. The Group Delay menu item is enabled only when the Response view has focus.

4.4.3 Phase\Radians
The Phase\Radians menu item (Figure 4-9) changes the Response view's auxiliary data to radians. The Phase\Radians menu item is enabled only when the Response view has focus.

4.4.4 Phase\Degrees
The Phase\Degrees menu item (Figure 4-9) changes the Response view's auxiliary data to phase. The Phase\Degrees menu item is enabled only when the Response view has focus.
4.5 FILTER

FIGURE 4-11: Filter Menu

4.5.1 Design
The Design menu item (Figure 4-11) opens the Filter Design dialog box (Figure 1-1) with the Filter Specification tab active.

4.5.2 Filter Selection Wizard
The Filter Selection Wizard menu item (Figure 4-11) opens the Filter Selection Wizard dialog box (Figure 2-10).

4.5.3 Anti-Aliasing Wizard
The Anti-Aliasing Wizard menu item (Figure 4-11) opens the Anti-Aliasing Wizard dialog box (Figure 2-1).

4.5.4 Overlay
The Overlay menu item is used to display both the frequency and phase or group delay response of the filter.
4.6 WINDOW

FIGURE 4-12: Window Menu

4.6.1 New Window

The New Window menu item (Figure 4-12) creates a new window for the current project and changes to the filter design are represented in both windows. When a new window is created, the title bar will change to [ProjectName]:[Window Number]. The view listing in the View menu will have a new listing in the form [Project Name]:[Window Number].

4.6.2 Cascade

The Cascade menu item (Figure 4-12) cascades all windows.

4.6.3 Tile

The Tile menu item tiles all windows.

4.6.4 Arrange Icons

The Arrange Icons menu item (Figure 4-12) arranges the minimized window icons at the bottom of the main window.

4.7 HELP

FIGURE 4-13: Help Menu

4.7.1 About

The About FilterLab menu item (Figure 4-13) opens the About dialog box.
Chapter 5. Window Views

5.1 FREQUENCY VIEW

The Frequency View displays the filter response.

FIGURE 5-1: Frequency View

5.1.1 Axes

The left axis displays the attenuation of the filter. The default left axis scale is +10 dB to -80 dB. The right axis displays either the phase in degrees or radians, or the group delay. The frequency range is automatically set to three decades when the filter order is forced.
5.1.2 Pop-up Menu

5.1.2.1 PHASE/GROUP DELAY

The Phase/Group Delay pop-up menu item (Figure 5-1) changes the right axis to one of the three right axis options. These options are:

- Group Delay
- Phase/Radians
- Phase/Degrees

5.1.2.2 SAVE AS JPEG

The Save as JPEG pop-up menu item (Figure 5-1) saves the Response view as a JPEG file.

5.1.2.3 COPY

The Save as JPEG pop-up menu item (Figure 5-1) copies the Response view image to the clipboard.

5.2 CIRCUIT VIEW

5.2.1 Circuit Display

The Circuit View (Figure 5-2) displays the current circuit for the specified filter.

![Circuit View](image)
5.3 SPICE LISTING VIEW

5.3.1 Popup Menu

5.3.1.1 COPY

The Copy pop-up menu item (Figure 5-3) copies the selected SPICE listing to the clipboard. The Copy popup menu item is only enabled when spice text has been selected in the Edit menu.

5.3.1.2 SAVE

The Save pop-up menu item (Figure 5-3) saves the SPICE listing to a text file. The spice listings model name changes to the name of the file to which the listing is saved.

FIGURE 5-3: SPICE Listing View

Menu available by right clicking the mouse button
Appendix A. FilterLab 2.0 to SPICE Interface

A.1 INTRODUCTION AND HIGHLIGHTS

FilterLab 2.0 provides a net list of the filter circuit that can be imported to a SPICE simulator. The SPICE output of FilterLab 2.0 and the Microchip operational amplifiers macromodels are designed to be compatible with PSPICE™ or other SPICE 2G6 circuit simulators. Other simulators may require translation.

The FilterLab 2.0 to PSPICE interface consists of a three-step procedure. First, the filter is defined using either the Filter Design dialog box or the Filter Selection Wizard.

The second step consists of reviewing the frequency response and schematic of the filter design. The last step consists of copying the net list filter that is provided in the SPICE view to the SPICE simulator.

FilterLab 2.0 SPICE Design Example
**
**
* 1 KHz Low-pass Filter
* 2nd Order Butterworth Approximation
* Sallen-Key Circuit Topology
* MPC6001 Operational Amplifier PSPICE Macromodel
**
**
* AC Response Test
* Node 10 functions as the input to the filter network
V_IN 10 0 AC 1V
*
* N#pts Start/Stop Freq.
.AC DEC 100 1 10MEG
*
* OP-AMP Power (pin 3 = V+, pin 4 = V-)
V_PWR_PLUS 3 0 2.5V
V_PWR_NEG 4 0 -2.5V
*
*CALL FILTER_DEMO CIRCUIT
*CONNECTIONS:
* INPUT
* | | OUTPUT
* | | POSITIVE POWER SUPPLY
* | | NEGATIVE POWER SUPPLY
* | |
* 1 2 3 4
X1 10 20 3 4 FilterLab1
.
.PROBE
* SUBCIRCUIT FOR SINGLE SUPPLY LOW-PASS FILTER
* CREATED USING FILTERLAB ON 8/7/2003 AT 14:31:15
* This model is being supplied as an aid to circuit designs.
* While it reflects reasonable close similarity to the actual
* filter in terms of performance, it is not suggested as a
* replacement for breadboarding. Simulation should be used as
* a forerunner or a supplement to traditional lab testing.
* Neither this model nor any part may be copied without the
* express written consent of Microchip Technology, Inc.
*--

* 4TH ORDER BUTTERWORTH FILTER
* GAIN EQUALS 1
* CONNECTIONS: INPUT | OUTPUT
* | POSITIVE POWER SUPPLY
* | NEGATIVE POWER SUPPLY
* | 1 2 3 4
.SUBCKT FilterLab1 10 20 3 4

*************** Stage 1 ***************
R11 10 11 7870.000
R12 11 12 14700.000
C11 11 20 0.000000022
C12 12 0 0.00000001
X11 12 20 3 4 20 MCP6001
.ENDS

**
PSPICE OPERATIONAL MODELS ARE AVAILABLE AT www.microchip.com

.SUBCKT MCP6001 1 2 3 4 5
* | Output
* | Negative Supply
* | Positive Supply
* | Inverting Input
* | Non-inverting Input
* |

Software License Agreement
*The software supplied herewith by Microchip Technology Incorporated (the
"Company") is intended and supplied to you, the Company's customer, for use
solely and exclusively on Microchip products. The software is owned by
the Company and/or its supplier, and is protected under applicable
copyright laws. All rights are reserved. Any use in violation of the
foregoing restrictions may subject the user to criminal sanctions under
applicable laws, as well as to civil liability for the breach of the terms
and conditions of this license.
*
*THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO
WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY
CIRCUMSTANCES, BE LIABLE FOR * SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
Macromodel for the MCP6001/2/4 op amp family:
- MCP6001 (single)
- MCP6002 (dual)
- MCP6004 (quad)

Revision History:
- REV A: 21-Jun-02, KEB (created model)
- REV B: 16-Jul-02, KEB (improved output stage)
- REV C: 03-Jan-03, KEB (added MCP6001)

Recommendations:
- Use PSPICE (or SPICE 2G6; other simulators may require translation)
- For a quick, effective design, use a combination of: data sheet specs, bench testing, and simulations with this macromodel
- For high impedance circuits, set GMIN=100F in the .OPTIONS statement

Supported:
- Typical performance at room temperature (25 degrees C)
- DC, AC, Transient, and Noise analyses.
- Most specs, including: offsets, DC PSRR, DC CMRR, input impedance, open loop gain, voltage ranges, supply current, ... , etc.

Not Supported:
- Variation in specs vs. Power Supply Voltage
- Distortion (detailed non-linear behavior)
- Temperature analysis
- Process variation
- Behavior outside normal operating region

Input Stage
V10 3 10 -300M
R10 10 11 6.90K
R11 10 12 6.90K
C11 11 12 115E-15
C12 1 0 6.00P
E12 1 14 POLY(4) 20 0 21 0 26 0 27 0 1.00M 20.1 20.1 1 1
I12 14 0 1.50P
M12 11 14 15 NMI L=2.00U W=42.0U
C13 14 2 3.00P
M14 12 2 15 NMI L=2.00U W=42.0U
I14 2 0 500E-15
C14 2 0 6.00P
I15 15 4 50.0U
V16 16 4 300M
D16 16 15 DL
V13 3 13 50M
D13 14 13 DL

Noise, PSRR, and CMRR
I20 21 20 423U
D20 20 0 DN1
D21 0 21 DN1
G26 0 26 POLY(1) 3 4 110U -20.0U
R26 26 0 1
G27 0 27 POLY(2) 1 3 2 4 -440U 80.0U 80.0U
R27 27 0 1

Open Loop Gain, Slew Rate
G30 0 30 POLY(1) 12 11 0 1.00K
R30 30 0 1
E31 31 0 POLY(1) 3 4 104 -2.33
D31 30 31 DL
E32 0 32 POLY(1) 3 4 140 -6.07
D32 32 30 DL
G33 0 33 POLY(1) 30 0 0 447
R33 33 0 1
C33 33 0 77.1M
G34 0 34 POLY(1) 33 0 0 1.00
R34 34 0 1.00
C34 34 0 50.2N
G35 0 35 POLY(2) 34 0 33 34 0 1.00 3.00
R35 35 0 1.00
*
* Output Stage
G50 0 50 POLY(1) 57 5 0 2.00
D51 50 51 DL
R51 51 0 1K
D52 52 50 DL
R52 52 0 1K
G53 3 0 POLY(1) 51 0 50.0U 1M
G54 0 4 POLY(1) 52 0 50.0U -1M
E55 55 0 POLY(2) 3 0 51 0 -10M 1 -40.0M
D55 57 55 DLS
E56 56 0 POLY(2) 4 0 52 0 10M 1 -40.0M
D56 56 57 DLS
G57 0 57 POLY(3) 3 0 4 0 35 0 0 1.00M 1.00M 2.00M
R57 57 0 500
R58 57 5 500M
C58 5 0 2.00P
*
* Models
.MOdel NMI NMOS
.MOdel DL D N=1 IS=1F
.MOdel DLS D N=10M IS=1F
.MOdel DN1 D IS=1F KF=146E-18 AF=1
*
. ENDS MCP6001

.END
Appendix B. Filter Magnitude Templates

B.1 INTRODUCTION

B.1.1 LOW-PASS FILTER MAGNITUDE RESPONSE
The magnitude response of low-pass filters is shown in Figure B-1.

FIGURE B-1: Low-pass Filter Template.
The nominal filter response is required to stay within the three regions shown (pass band, transition band and stop band). The relevant parameters for the three regions and the controlling inequalities are:

- **Pass Band**
 - H_M = Maximum Pass Band Gain (dB)
 - A = Attenuation (relative to H_M) (dB)
 - A_{p*} = Pass Band Ripple/Max. Attenuation (dB)
 - f_{p*} = Pass Band Frequency (Hz)
 - BW = -3 dB Bandwidth
 - $0 \leq f \leq f_p$
 - $0 \leq A \leq A_{p*}$
 - * sometimes referred to as cut-off

- **Transition Band**
 - $f_p \leq f \leq f_S$
 - $A_{p} \leq A \leq A_{S}$
• Stop Band
 \[f_S = \text{Stop Band Edge Frequency (Hz)} \]
 \[A_S = \text{Minimum Stop Band Attenuation (dB)} \]
 \[f_S \leq f \]
 \[A_S \leq A \]

The gain parameter in FilterLab (G) corresponds to the DC gain (for good sensitivity performance). Thus,

\[G = H_M; \quad \text{Bessel, Butterworth and Chebychev (n = 1, 3, 5, 7)} \]
\[G = H_M - A_P; \quad \text{Chebychev (n = 2, 4, 6, 8)} \]

Note: The *Frequency Response* plot in FilterLab 2.0 does not show even order Chebychev responses correctly.

The limits that FilterLab 2.0 enforces on these low-pass parameters are:

- \[0.1 \text{ Hz} \leq f_P < f_S \leq 1.0 \text{ MHz} \]
- \[A_P = 3.0 \text{ dB}, \text{Bessel Filters} \]
- \[0.01 \text{ dB} \leq A_P \leq 3.0 \text{ dB}, \text{Butterworth and Chebychev} \]
- \[10 \text{ dB} \leq A_S \leq 100 \text{ db} \]
- \[1V/V \leq G \leq 10V/V, (0 \text{ dB to } 20 \text{ dB}) \]
B.1.2 BAND-PASS FILTER MAGNITUDE RESPONSE

The magnitude response of band-pass filters is shown in Figure B-2.

FIGURE B-2: Band-pass Filter Template.

The nominal filter response is required to stay within the five regions shown (pass band, two transition bands and two stop bands). The relevant parameters for the three regions and the controlling inequalities are:

- **Lower Stop Band**
 \[f_{SL} = \text{Lower Stop Band Edge Frequency (Hz)} \]
 \[A_S = \text{Min. Stop Band Attenuation (dB)} \]
 \[f \leq f_{S} \]
 \[A_S \leq A \]

- **Lower Transition Band**
 \[f_{SL} < f < f_{PL} \]
 \[A_P < A < A_S \]

- **Pass Band**
 \[f_{PL} = \text{Lower Pass Band Frequency (Hz)} \]
 \[f_{PU} = \text{Upper Pass Band Frequency (Hz)} \]
 \[BW_L = \text{Lower -3 dB Bandwidth} \]
 \[BW_U = \text{Upper -3 dB Bandwidth} \]
 \[H_M = \text{Maximum Pass Band Gain (dB)} \]
 \[A = \text{Attenuation (relative to } H_M \text{) (dB)} \]
 \[A_P = \text{Pass Band Ripple/Max. Attenuation (dB)} \]
 \[f_{PL} \leq f \leq f_{PU} \]
 \[0 \leq A \leq A_P \]

* sometimes referred to as cut-off
• Upper Transition Band
 \[f_{PU} < f < f_{SU} \]
 \[A_P < A < A_S \]

• Upper Stop Band
 \[f_{SU} = \text{Upper Stop Band Edge Frequency (Hz)} \]
 \[A_S = \text{Min. Stop Band Attenuation (dB)} \]
 \[f_{SU} \leq f \]
 \[A_S \leq A \]

The gain parameter in FilterLab 2.0 (G) corresponds to the midband gain (for ease of implementation), where:

\[f_0 = \text{Midband Frequency} \]
\[= \left(f_{PL} f_{PU} \right)^{1/2} \]

Thus,

\[G = H_M; \text{ Bessel, Butterworth and Chebychev (n = 2, 6)} \]
\[G = H_M - A_P; \text{ Chebychev (n = 4, 8)} \]

Note: The Frequency Response plot in FilterLab 2.0 does not show Chebychev response correctly for orders 4 and 8.

The limits that FilterLab 2.0 enforces on these band-pass parameters are:

\[0.1 \text{ Hz} \leq f_{SL} < f_{PL} < f_{PU} < f_{SU} \leq 1.0 \text{ MHz} \]
\[1.2210 \leq f_{PU}/f_{PL} \leq 5.8284 \]
\[0.01 \text{ dB} \leq A_P \leq 3.0 \text{ dB} \]
\[10 \text{ dB} \leq A_S \leq 100 \text{ dB} \]
\[1 \text{ V/V} \leq G \leq 10 \text{ V/V}, (0 \text{ dB to } 20 \text{ dB}) \]

If the ratio \(f_{PU}/f_{PL} \) is larger than 5.8284, the wider pass band can be designed by cascading a low-pass and high-pass filter. If the ratio \(f_{PU}/f_{PL} \) is smaller than 1.2210, the narrow pass band cannot be implemented with this version of FilterLab 2.0.
B.1.3 HIGH-PASS FILTER MAGNITUDE RESPONSE

The magnitude response of high-pass filters is shown in Figure B-3.

FIGURE B-3: High-pass Filter Template.

The nominal filter response is required to stay within the three regions shown (pass band, transition band and stop band). The relevant parameters for the three regions and the controlling inequalities are:

Pass Band

- \(f_P \) = Pass Band Frequency (Hz)
- \(\text{BW} \) = -3 dB Bandwidth
- \(\text{HM} \) = Maximum Pass Band Gain (dB)
- \(A \) = Attenuation (relative to \(\text{HM} \)) (dB)
- \(A_P \) = Pass Band Ripple/Max. Attenuation (dB)

\[
0 \leq f_P \leq \text{BW} \leq A_P^* \\
\text{HM} - A_P < A < \text{HM} - 3 \\
\text{HM} - \text{AP} \leq 0
\]

* sometimes referred to as cutoff

Transition Band

- \(f_S < f < f_P \)
- \(A_P < A < A_S \)

Stop Band

- \(f_S \) = Stop Band Edge Frequency (Hz)
- \(A_S \) = Min. Stop Band Attenuation (dB)

\[
f \leq f_S \leq A_S
\]
The gain parameter in FilterLab 2.0 (G) corresponds to the high-frequency gain (at "infinity" for good sensitivity performance). Thus,

\[G = H_M; \quad \text{Bessel, Butterworth and Chebychev (n = 1, 3, 5, 7)} \]
\[G = H_M - A_p; \quad \text{Chebychev (n = 2, 4, 6, 8)} \]

Note: The *Frequency Response* plot in FilterLab 2.0 does not show even order Chebychev responses correctly.

The limits that FilterLab 2.0 enforces on these high-pass parameters are:

- \(0.1 \, \text{Hz} \leq f_S < f_P \leq 1.0 \, \text{MHz} \)
- \(0.01 \, \text{dB} \leq A_p \leq 3.0 \, \text{dB} \)
- \(10 \, \text{dB} \leq A_S \leq 100 \, \text{dB} \)
- \(1 \, \text{V/V} \leq G \leq 10 \, \text{V/V}, (0 \, \text{dB} \text{ to } 20 \, \text{dB}) \)
Appendix C. Group Delay

C.1 INTRODUCTION

Group delay is a measure of time domain response. It focuses on the relative delay among sine waves of nearly equal frequency. Its usual definition is:

\[\Omega = \text{Radian Frequency (rad/s)} \]
\[\phi(\omega) = \text{Phase Response (rad)} \]
\[\tau_{gd}(\omega) = \text{group delay (s)} \]
\[= -\frac{d\phi(\omega)}{d\omega} \]

An equivalent definition, when frequency is in Hz and phase is in degrees, is:

\[f = \text{Frequency (Hz = cycles/s)} \]
\[\phi(f) = \text{Phase Response (°)} \]
\[\tau_{gd}(f) = \text{group delay (s)} \]
\[= \frac{1 \text{ cycle/360°}}{1 \text{ Hz}} \frac{d\phi(f)}{df} \]

Figure C-1 and Figure C-2 illustrate phase and group delay.

FIGURE C-1: Low-pass Phase Response.
FIGURE C-2: Low-pass Group Delay.

Some reasons that group delay has been traditionally used for filter work are:

- It is easier to manipulate mathematically (no arc-tangent functions)
- Group delay is easier to optimize
 - Its jump discontinuities are only at transmission zeros on the $j\omega$-axis (gain is zero)
 - It is a non-negative function for low-pass filters
- It applies directly to AM modulated signals
 - The information is delayed by the group delay (also known as envelope delay)
 - It maps directly to group delay at baseband
 - The carrier is delayed by a different time (total phase shift divided by carrier frequency)
- It is a good indicator of low-pass step response quality
 - Constant group delay in the pass band, and well into the transition band ($A < 10$ dB to 20 dB), indicates a very good step response
 - Group delay with peaking (usually near f_p) indicates overshoot and ringing
Appendix D. FilterLab 2.0 Filter Response

D.1 INTRODUCTION

Bessel (low-pass) filters are mainly used for applications that need excellent step response. The emphasis is on phase and group delay; the frequency selectivity is poor compared to the other classical filter response functions (e.g., Butterworth). Some typical applications are: PWM communications channels, instrumentation and simple anti-aliasing filters for ADCs.

Figure D-1 and Figure D-2 show the normalized frequency response. Increasing the filter order does not provide a significant improvement in the stop band rejection. Figure D-3 shows the normalized group delay, Figure D-4 shows the normalized step response. The step response overshoot is minimal.

FilterLab 2.0 does not allow the user to select Bessel filters based on their frequency response. Use Figure D-3 and Figure D-4 to choose the order based on group delay and step response.

FIGURE D-1: Normalized Bessel frequency response in the pass band.
FIGURE D-2: Normalized Bessel frequency response in the stop band.

FIGURE D-3: Normalized Bessel group delay.

FIGURE D-4: Normalized Bessel step response.
Appendix E. Op Amp Selection

E.1 INTRODUCTION

E.1.1 OP AMP SMALL SIGNAL BANDWIDTH

The op amps you select for your filter need to be fast enough to avoid problems with non-linear distortion and filter response distortion. A crude estimate of the op amp GBWP (Gain Bandwidth Product) that you need for a filter section is:

\[
\text{GBWP} = \begin{cases}
K \times 100 f_p, & \text{low-pass} \\
K \times Q \times 100 f_{pu}, & \text{band-pass} \\
K \max \{100 f_p, f_{max}\}, & \text{high-pass}
\end{cases}
\]

Where:

- \(K \) = Filter section's gain (V/V)
- \(f_p \) = Low-pass and high-pass filters' pass band frequency (Hz)
- \(f_{pu} \) = Band-pass filter's upper pass band frequency (Hz)
- \(Q \) = Band-pass filter's overall Q-factor
 = \(1/\text{fractional bandwidth} \)
 = \((f_{PL} f_{PU})^{1/2}/(f_{PU} - f_{PL}) \)
- \(f_{max} \) = Maximum pass band/signal frequency for high-pass response >> \(f_p \)

Try op amps with different GBWP's to see what you require. Small signal frequency response (typically \(\text{V}_{\text{OUT}} < 100 \text{ mV}_{\text{P-P}} \)) starts to peak as the GBWP goes too low. Harmonic distortion also grows as the GBWP goes lower.

E.1.2 OP AMP FULL-POWER BANDWIDTH

The op amps also need to handle large signals. The SR (Slew Rate) specified in our op amp data sheets is related to the full-power bandwidth as follows.

\[
\text{f}_{\text{FPBW}} = \frac{\text{SR}}{\pi \times \text{V}_{\text{OUT,P-P}}} \text{ (Hz)}
\]

Where:

- \(\text{V}_{\text{OUT,P-P}} \) = Filter section's maximum output voltage swing (V\text{P-P})
 < \(\text{V}_{\text{DD}} - \text{V}_{\text{SS}} \)
- \(\text{SR} \) = Slew rate (V/s); data sheets usually give units of V/\(\mu \)s
 (1 V/\(\mu \)s = 1,000,000 V/s)
- \(\text{f}_{\text{FPBW}} \) = op amp full-power bandwidth (Hz)

Sine waves faster than \(\text{f}_{\text{FPBW}} \) will not be faithfully reproduced because their derivative (slew rate) is too high.
In order to keep harmonic (non-linear) distortion to a minimum, the recommended minimum SR for all op amps in the filter is:

\[
 SR = X_{FF} \pi V_{OUT,P-P} f_P, \text{ low-pass} \\
 = X_{FF} \pi V_{OUT,P-P} f_{PU}, \text{ band-pass} \\
 = X_{FF} \pi V_{OUT,P-P} f_{max}, \text{ high-pass}
\]

Where:

- \(f_P \) = Low-pass and high-pass filters' pass band frequency (Hz)
- \(f_{PU} \) = Band-pass filter's upper pass band frequency (Hz)
- \(f_{max} \) = Maximum pass band/signal frequency for high-pass response >> \(f_P \)
- \(X_{FF} \) = rough fudge factor for distortion performance (relative to fundamental)
 - \(X_{FF} = 2 \), \(\text{THD}_{SR} = -60 \text{ dBC} \)
 - \(X_{FF} = 4 \), \(\text{THD}_{SR} = -72 \text{ dBC} \)
 - \(X_{FF} = 8 \), \(\text{THD}_{SR} = -84 \text{ dBC} \)
 - \(X_{FF} = 16 \), \(\text{THD}_{SR} = -96 \text{ dBC} \)

\(\text{THD}_{SR} \) = Slew Rate induced distortion level (dBc)

Note that non-linear distortion may include a DC offset term.

E.1.3 OP AMP OUTPUT LOADING

Choose the resistance values in your filter so that the op amp is not overloaded. A compromise among loading, noise and parasitic RC time constants needs to be made. To scale the resistor values, change the capacitor values in the *Filter Design* dialog box within FilterLab 2.0.

E.1.4 MINIMUM GAIN

Most op amps are unity gain stable (\(G \geq +1 \text{ V/V} \)). A few op amps need to be set at higher gains to remain stable (e.g., \(G \geq +10 \text{ V/V} \) for the MCP6141). If you need gain in your filter, this kind of part can give you the bandwidth and gain you need for less quiescent current. Note that inverting gains, used in Multiple Feedback (MFB) sections, have an equivalent "noise gain" that is used to determine stability. It is calculated as: 1 + \(|G|\) (e.g., a signal gain of -1 V/V gives a noise gain of +2 V/V).
E.1.5 CURRENT MICROCHIP OP AMPS

The following table shows the Microchip op amps recommended for new designs as of October 1, 2003. See our web site (www.microchip.com) for the latest information.

TABLE E-1: MICROCHIP OP AMPS

<table>
<thead>
<tr>
<th>Op Amp Family</th>
<th># Amplifiers</th>
<th>GBWP (Hz)</th>
<th>SR (V/µs)</th>
<th>Rail to Rail Input/Output</th>
<th>Supply Voltage (V)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP6041</td>
<td>1, 2, 4</td>
<td>14k</td>
<td>0.003</td>
<td>I/O</td>
<td>1.4-5.5</td>
<td></td>
</tr>
<tr>
<td>TC1034</td>
<td>1, 2, 4</td>
<td>90k</td>
<td>0.035</td>
<td>I/O</td>
<td>1.8-5.5</td>
<td>Also TC1026, TC1029, TC1030, TC1035</td>
</tr>
<tr>
<td>MCP6141</td>
<td>1, 2, 4</td>
<td>100k</td>
<td>0.024</td>
<td>I/O</td>
<td>1.4-5.5</td>
<td>Gain ≥ 10 V/V</td>
</tr>
<tr>
<td>MCP606</td>
<td>1, 2, 4</td>
<td>155k</td>
<td>0.08</td>
<td>O</td>
<td>2.5-5.5</td>
<td></td>
</tr>
<tr>
<td>MCP616</td>
<td>1, 2, 4</td>
<td>190k</td>
<td>0.08</td>
<td>O</td>
<td>2.3-5.5</td>
<td>Bipolar (PNP) input</td>
</tr>
<tr>
<td>TC7652</td>
<td>1</td>
<td>400k</td>
<td>1.0</td>
<td>O</td>
<td>6.5-16.0</td>
<td>Chopper Stabilized (V_{OS} ≤ ±5 µV)</td>
</tr>
<tr>
<td>MCP6001</td>
<td>1, 2, 4</td>
<td>1.0M</td>
<td>0.6</td>
<td>I/O</td>
<td>1.8-5.5</td>
<td></td>
</tr>
<tr>
<td>TC913</td>
<td>2</td>
<td>1.5M</td>
<td>2.5</td>
<td>—</td>
<td>6.5-16.0</td>
<td>Chopper Stabilized (V_{OS} ≤ ±15 µV)</td>
</tr>
<tr>
<td>TC7650</td>
<td>1</td>
<td>2.0M</td>
<td>2.5</td>
<td>O</td>
<td>6.5-16.0</td>
<td>Chopper Stabilized (V_{OS} ≤ ±5 µV)</td>
</tr>
<tr>
<td>MCP6271</td>
<td>1, 2, 4</td>
<td>2.0M</td>
<td>0.9</td>
<td>I/O</td>
<td>2.0-5.5</td>
<td></td>
</tr>
<tr>
<td>MCP601</td>
<td>1, 2, 4</td>
<td>2.8M</td>
<td>2.3</td>
<td>O</td>
<td>2.7-5.5</td>
<td></td>
</tr>
<tr>
<td>MCP6281</td>
<td>1, 2, 4</td>
<td>5.0M</td>
<td>2.5</td>
<td>I/O</td>
<td>2.2-5.5</td>
<td></td>
</tr>
<tr>
<td>MCP6291</td>
<td>1, 2, 4</td>
<td>10.0M</td>
<td>7.0</td>
<td>I/O</td>
<td>2.4-5.5</td>
<td></td>
</tr>
<tr>
<td>MCP6021</td>
<td>1, 2, 4</td>
<td>10.0M</td>
<td>7.0</td>
<td>I/O</td>
<td>2.5-5.5</td>
<td></td>
</tr>
</tbody>
</table>
Appendix F. Selected References

F.1 INTRODUCTION

F.1.1 FILTER TEXTBOOKS AND CLASSIC REFERENCES

F.1.2 APPLICATION NOTES