Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, IGSP, ICEPIC, MASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper. 11/12/04
Table of Contents

Preface ... 1

Chapter 1. Getting Started
1.1 Introduction .. 7
1.2 Highlights ... 7
1.3 Developer Board Features .. 7
1.4 System Configurations ... 17
1.5 PC Requirements ... 19

Chapter 2. MCP2120 Tutorial
2.1 Introduction .. 21
2.2 Highlights ... 21
2.3 MCP2120 Tutorial Setup .. 21
2.4 Hardware Setup .. 22
2.5 Setting Up the Terminal Program .. 25
2.6 Transmitting/Receiving Data ... 31

Chapter 3. MCP2150 Tutorial
3.1 Introduction .. 35
3.2 Highlights ... 35
3.3 MCP2150 Tutorial .. 35

Chapter 4. Using a PICDEM™ 1 or PICDEM 2 Board as Host
4.1 Using the PICDEM™ 1 Board .. 37
4.2 Application Notes ... 38
4.3 Using the PICDEM™ 2 Board .. 38

Appendix A. Hardware Detail
A.1 Introduction .. 41
A.2 Power Supply ... 41
A.3 Power Indicator .. 41
A.4 RS-232 Serial Port ... 41
A.5 Jumpers ... 42
A.6 Oscillator Options .. 44
A.7 Board Layout ... 45
A.8 Schematics .. 46

Index ... 49

Worldwide Sales and Service .. 50
INTRODUCTION

The MCP2120/MCP2150 Developer’s Kit demonstrates the capabilities of the MCP2120 and MCP2150 infrared communication products. Items discussed in this chapter include:

- About This Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
OVERVIEW

The MCP2120 and MCP2150 Developer’s Board can be connected to either a PC via the DB9 connector, or to another system (such as a PICDEM™ 2 board) via the four pin header.

The MCP2120/MCP2150 Developer’s Kit comes with the following:

1. Two MCP2120 Developer Boards.
2. One MCP2150 Developer Board.
3. Two serial cables.
4. One 9V power supply, with power cord.
5. One pair 18” (45 cm) power jumper cables.
6. Sample kit (one MCP2120 device and one MCP2150 device) – not shown.

Each kit comes with one MCP2120 device and one MCP2150 device. This allows a prototype system to be developed that can be used with an MCP2120 Developer’s Board or an MCP2150 Developer’s Board.

7. MCP2120/MCP2150 Developer’s Kit User’s Guide (this document) – not shown.

If you are missing any part of the kit, please contact your nearest Microchip sales office listed in the back of this publication for help.

FIGURE 1-1: MCP2120/MCP2150 DEVELOPER’S KIT
ABOUT THIS GUIDE

Document Layout

This document describes the MCP2120/MCP2150 Developer’s Kit and tutorials, giving the user a brief overview of Microchip’s MCP2120 and MCP2150 family of infrared communication products. Detailed information on the individual device may be found in the device’s respective data sheet. Detailed information on the PICDEM 2 development board may be found in the *PICDEM 2 User’s Guide* (DS30374). The manual layout is as follows:

• **Chapter 1: Getting Started** – This chapter gives an overview of the MCP2120 and MCP2150 Developer’s Boards, the hardware features of each Developer’s Board, the system configurations that can be used to demonstrate the MCP2120 and MCP2150 devices, and the PC requirements.

• **Chapter 2: MCP2120 Tutorial** – This chapter provides a detailed description of the steps to get the MCP2120 Developer’s board operating. These steps include the configuration of the Developer’s boards and the Terminal Emulation program (Hyperterminal) used on the PC.

• **Chapter 3: MCP2150 Tutorial** – This chapter provides a detailed description of the steps to get the MCP2150 Developer’s board operating. These steps include the configuration of the Developer’s boards, the Terminal Emulation program (Hyperterminal) used on the PC and the installation and configuration of the PC IrDA™ standard drivers.

• **Chapter 4: Using PICDEM™ 1 or PICDEM 2 Board as Host** – This chapter discusses the use of the PICDEM boards as a demonstration platform as a Host Controller for an MCP2120 Developer’s Board or an MCP2150 Developer’s Board. This chapter makes reference to Application Notes which contain demonstration code.

• **Appendix A: Hardware Description** – This appendix describes in detail the hardware of the MCP2120 Developer’s board and MCP2150 Developer’s board. This includes the component layout of each board (silkscreen) and the schematic of each board.
Conventions Used in this Guide

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
</tr>
<tr>
<td>Emphasized text</td>
<td>is the only compiler...</td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>‘bnnnn</td>
<td>A binary number where n is a digit</td>
<td>‘b00100, ‘b10</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <code><Enter>, <F1></code></td>
</tr>
<tr>
<td>Courier font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier</td>
<td>Sample source code</td>
<td><code>#define START</code></td>
</tr>
<tr>
<td></td>
<td>Filenames</td>
<td><code>autoexec.bat</code></td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td><code>c:\mcc18\h</code></td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td><code>_asm, _endasm, static</code></td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td><code>-Opa+, -Opa-</code></td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td><code>0, 1</code></td>
</tr>
<tr>
<td>Italic Courier</td>
<td>A variable argument</td>
<td><code>file.o, where file can be any valid filename</code></td>
</tr>
<tr>
<td>0xnnnn</td>
<td>A hexadecimal number where n is a hexadecimal digit</td>
<td><code>0xFFF0, 0x007A</code></td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td><code>mcc18 [options] file [options]</code></td>
</tr>
<tr>
<td>Curly brackets and pipe character: {}</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>`errorlevel {0</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td><code>var_name [, var_name...</code></td>
</tr>
</tbody>
</table>
| | Represents code supplied by user | `void main (void) {
 ...
 }` |
RECOMMENDED READING

The following Microchip documents are available and recommended as supplemental reference resources.

MCP2120 Data Sheet (DS21618)
MCP2150 Data Sheet (DS21655)
MPASM™ User’s Guide with MPLINK™ Linker and MPLIB™ Library (DS33014)
PRO MATE® II User’s Guide (DS30082)
PICSTART® Plus User’s Guide (DS51028)
MPLAB® ICE User’s Guide (DS51159)
MPLAB® ICD User’s Guide (DS51184)
AN756, “Using the MCP2120 for Infrared Communication” (DS00756)
AN758, “Using the MCP2150 to Add IrDA® Standard Wireless Connectivity” (DS00758)
TB046, “Connecting the MCP2150 to the Psion Operating System” (DS91046)
TB047, “Connecting the MCP2150 to the Windows® CE Operating System” (DS91047)
TB048, “Connecting the MCP2150 to the Windows® Operating System” (DS91048)
TB049, “Connecting the MCP2150 to the Palm™ Operating System” (DS91049)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
• **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives
CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support@microchip.com

In addition, there is a Development Systems Information Line which lists the latest versions of Microchip’s development systems software products. This line also provides information on how customers can receive currently available upgrade kits.

The Development Systems Information Line numbers are:
1-800-755-2345 – United States and most of Canada
1-480-792-7302 – Other International Locations
Chapter 1. Getting Started

1.1 INTRODUCTION

This chapter covers an overview of the MCP2120 and MCP2150 Developer’s Boards features, the system configurations that they can be used in and the system requirements for the tutorials.

1.2 HIGHLIGHTS

Items discussed in this chapter are:
• MCP2120 Developer’s Board Features
• MCP2150 Developer’s Board Features
• System Configurations
• PC Requirements

1.3 DEVELOPER BOARD FEATURES

1.3.1 MCP2120 Developer’s Board Features

The MCP2120 Developer’s Board, as shown in Figure 1-1, has the following hardware features:

1. On-board +5V regulator for direct input from 9V, 750 mA AC/DC wall adapter or 9V battery.
2. Hooks for a +5V, 750 mA regulated DC supply.
3. DB-9 connector and associated hardware for direct connection to MCP2120 UART (DB-9 interface requires RS-232 signal levels).
4. Four-pin header connection to UART interface (Header requires TTL level signals).
5. Two jumpers to select source of UART signals. Either DB-9 connector or the four-pin header.
6. Three jumpers to select desired baud rate.
7. Green power-on indicator LED.
8. Two IR Transceiver options (two jumpers select transceiver).
9. Jumper to disable MCP2120 device operation.
12. Socketed crystal.

Note: A schematic of the MCP2120 Developer’s Board is shown in Figure A-5
1.3.2 Selecting UART Source and Optical Transceiver Interface

Figure 1-2 shows two pairs of jumpers used to route signals to and from the MCP2120. Jumpers J1 and J4 are used to determine the source of the signals used by the UART interface. When the header has the pins closest to the "DB9" label jumpered to the center pin, the DB9 is the source of the UART signal. When the header has the pins closest to the "Header" label jumpered to the center pin, the four-pin header is the source of the UART signal.

Jumpers J6 and J7 are used to determine the source and destination of the infrared data signals used by the interface between the MCP2120 and Optical Transceiver. When the header has the pins closest to the "Integrated Transceiver" label jumpered to the center pin, the integrated transceiver is used. When the header has the pins closest to the "Component Transceiver" label jumpered to the center pin, the component transceiver logic is used.

FIGURE 1-2: MCP2120 SELECTING SOURCES

These two jumpers select the source of the Host signals. J1 and J4

Header is source.

DB9 is source.

These two jumpers select the optical transceiver logic. Both jumpers should connect the same pin positions J6 and J7

Component Transceiver

Integrated Transceiver
1.3.3 Selecting Baud Rate

Figure 1-3 shows the three Baud Rate Select Jumpers (JP3:JP1) and the baud rate formula that is specified (baud rate dependant on MCP2120 operational frequency). Table 1-1 shows the baud rates for some crystal frequencies.

These three jumpers select the baud rate:

 - Fosc/768
 - Fosc/384
 - Fosc/192

 - Fosc/128
 - Fosc/64
 - Software Baud Mode

FIGURE 1-3: MCP2120 BAUD RATE

TABLE 1-1: HARDWARE BAUD RATE SELECTION VS. FREQUENCY

<table>
<thead>
<tr>
<th>Fosc Frequency (MHz)</th>
<th>0.6144 (1)</th>
<th>2.000</th>
<th>3.6864</th>
<th>4.9152</th>
<th>7.3728</th>
<th>14.7456 (2)</th>
<th>20.000 (2)</th>
<th>Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUD2:BAUD0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>800</td>
<td>2604</td>
<td>4800</td>
<td>6400</td>
<td>9600</td>
<td>19200</td>
<td>26042</td>
<td>Fosc / 768</td>
</tr>
<tr>
<td>001</td>
<td>1600</td>
<td>5208</td>
<td>9600</td>
<td>12800</td>
<td>19200</td>
<td>38400</td>
<td>52083</td>
<td>Fosc / 384</td>
</tr>
<tr>
<td>010</td>
<td>3200</td>
<td>10417</td>
<td>19200</td>
<td>25600</td>
<td>38400</td>
<td>78600</td>
<td>104167</td>
<td>Fosc / 192</td>
</tr>
<tr>
<td>011</td>
<td>4800</td>
<td>15625</td>
<td>28800</td>
<td>38400</td>
<td>57600</td>
<td>115200</td>
<td>156250</td>
<td>Fosc / 128</td>
</tr>
<tr>
<td>100</td>
<td>9600</td>
<td>31250</td>
<td>57600</td>
<td>78600</td>
<td>115200</td>
<td>230400</td>
<td>312500</td>
<td>Fosc / 64</td>
</tr>
</tbody>
</table>

Note 1: An external clock is recommended for frequencies below 2 MHz.

Note 2: For frequencies above 7.5 MHz, the TXIR pulse width (MCP2120 Data Sheet, Electrical Specification, parameter IR121) will be shorter than the minimum pulse width of 1.6 ms in the IrDA standard specification.
1.3.4 UART Mode

Figure 1-4 shows the jumper which determines if the MCP2120 Developer’s Board is to be used in Hardware Baud operation, or Software Baud operation. When in Software Baud operation, an additional signal is required, Request To Send (RTS), which is used to drive the RESET pin low to cause a change of baud rate to occur.

FIGURE 1-4: MCP2120 UART

PC UART configuration for Hardware/Software Baud mode

- Hardware Baud Selection
- Software Baud Selection
1.3.5 Disabling the MCP2120

Figure 1-5 shows the jumper, JP4, which will enable or disable the MCP2120 device. When the MCP2120 is disabled, the device will consume less current.

FIGURE 1-5: MCP2120 ENABLE/DISABLE

In most cases, this jumper will be open. It may be closed to test system operation when the MCP2120 is disabled. The Host Controller board may control the operation of the MCP2120 by connecting a signal to the JP4 header as shown in Figure 1-6.

FIGURE 1-6: HOST CONTROLLER DISABLING THE MCP2120
1.3.6 MCP2150 Developer’s Board Features

The MCP2150 Developer’s Board, as shown in Figure 1-7, has the following hardware features:

1. On-board +5V regulator for direct input from 9V, 750 mA AC/DC wall adapter or 9V battery.
2. Hooks for a +5V, 750 mA regulated DC supply.
3. DB-9 connector and associated hardware for direct connection to MCP2150 UART (DB-9 interface requires RS-232 signal levels).
4. Ten-pin header connection to UART interface (Header requires TTL level signals).
5. Three jumpers to select source of UART signals. Either DB-9 connector or the eight-pin header.
6. Two jumpers to select desired baud rate.
7. Green power-on indicator LED.
9. Two IR Transceiver options (two jumpers select transceiver).
10. Jumper to disable MCP2150 device operation.
11. Hardware Baud selection.

Note: A schematic of the MCP2150 Developer’s Board is shown in Figure A-6.

FIGURE 1-7: MCP2150 BOARD HARDWARE
1.3.7 Selecting UART Source and Optical Transceiver Interface

Figure 1-8 shows two sets of jumpers used to route signals to and from the MCP2150. Jumpers J2, J3 and J4 are used to determine the source of the signals used by the UART interface. When the header has the pins closest to the “DB9” label jumpered to the center pin, the DB9 is the source of the UART signal. When the header has the pins closest to the “Header” label jumpered to the center pin, the four-pin header is the source of the UART signal.

Jumpers J7 and J8 are used to determine the source and destination of the IrDA signals used by the interface between the MCP2150 and Optical Transceiver. When the header has the pins closest to the “Integrated Transceiver” label jumpered to the center pin, the integrated transceiver is used. When the header has the pins closest to the “Component Transceiver” label jumpered to the center pin, the component transceiver logic is used.

FIGURE 1-8: MCP2150 SELECTING SOURCES
1.3.8 Selecting Baud Rate

Figure 1-9 shows the two Baud Rate Select jumpers (JP2:JP1) and the baud rate. Table 1-2 shows the baud rates for some crystal frequencies.

FIGURE 1-9: MCP2150 BAUD RATE

TABLE 1-2: SERIAL BAUD RATE SELECTION VS. FREQUENCY

<table>
<thead>
<tr>
<th>BAUD1:BAUD0</th>
<th>Baud Rate @ 11.0592 MHz</th>
<th>Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>9600</td>
<td>Fosc / 1152</td>
</tr>
<tr>
<td>01</td>
<td>19200</td>
<td>Fosc / 576</td>
</tr>
<tr>
<td>10</td>
<td>57600</td>
<td>Fosc / 192</td>
</tr>
<tr>
<td>11</td>
<td>115200</td>
<td>Fosc / 96</td>
</tr>
</tbody>
</table>
1.3.9 Disabling the MCP2150

Figure 1-10 shows the jumper (JP3) which will enable or disable the MCP2150 device. When the MCP2150 is disabled, the device will consume less current.

FIGURE 1-10: MCP2150 ENABLE/DISABLE

In most cases, this jumper will be open. It may be closed to test system operation when the MCP2150 is disabled. The Host Controller board may control the operation of the MCP2150 by connecting a signal to the JP3 header as shown in Figure 1-11.

FIGURE 1-11: HOST CONTROLLER DISABLING THE MCP2150
1.4 SYSTEM CONFIGURATIONS

There are five configurations that one would use for initial evaluation of these two Developer’s Boards. These configurations are shown in Table 1-3.

TABLE 1-3: CONFIGURATIONS FOR EVALUATION OF DEVELOPER’S BOARDS

<table>
<thead>
<tr>
<th>Developer’s Board #1</th>
<th>Developer’s Board #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MCP2120 Dev Board (ASCII)</td>
<td>MCP2120 Dev Board (ASCII)</td>
</tr>
<tr>
<td>2. MCP2120 Dev Board (IR Driver)</td>
<td>MCP2120 Dev Board (IR Driver)</td>
</tr>
<tr>
<td>3. MCP2150 Dev Board (ASCII)</td>
<td>MCP2120 Dev Board (IR Driver)</td>
</tr>
<tr>
<td>4. MCP2120 Dev Board (IR Driver)</td>
<td>IrDA standard port (Palm Pilot, cell phone, ...)</td>
</tr>
<tr>
<td>5. MCP2150 Dev Board (ASCII)</td>
<td>IrDA standard port (Palm Pilot, cell phone, ...)</td>
</tr>
</tbody>
</table>

The Host controller for each board can be either a Personal Computer (PC) or another system connected to the Host header. The PC operating system (OS) may be any desired OS that has a terminal emulation program which can connect to the serial port and can treat the IR port as a virtual serial port. For our tutorial, we will use the Windows 9x OS.

Note 1: Windows NT® 4.x (and lower) does not support the IrDA standard functionality. Third Party programs exist, but are not supported or recommended by Microsoft, so are also not recommended by Microchip.

Note 2: Windows 2000 does support the IrDA standard, but does not treat the IR port as a virtual serial port. This means that you cannot access the IR port as a serial port. This causes issues with some terminal emulation programs, such as Hyperterminal. Windows 2000 considers the IrDA port to be a network device. Applications that can access a network service through a network protocol (i.e., TCP/IP) can use the MCP2120 Developer’s Board using the appropriate Windows 2000 driver.
1.4.1 Configuration 1

<table>
<thead>
<tr>
<th>Developer’s Board #1</th>
<th>Developer’s Board #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP2120 Dev Board (ASCII)</td>
<td>MCP2120 Dev Board (ASCII)</td>
</tr>
</tbody>
</table>

This is the typical mode that will be used for the two MCP2120 Developer’s Board. In this configuration, the MCP2120 board receives data as a single ASCII byte. This byte is then translated to the IR data format, and transmitted out of the selected optical transceiver logic.

The host interface can be from either the DB-9 (PC or other UART) or the Header.

A PC running a terminal emulation program, such as Hyperterminal, connected to the serial port will create this ASCII data stream. The PC can then be connected to the Developer’s Board DB-9 connector.

1.4.2 Configuration 2

<table>
<thead>
<tr>
<th>Developer’s Board #1</th>
<th>Developer’s Board #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP2120 Dev Board (IR Driver)</td>
<td>MCP2120 Dev Board (IR Driver)</td>
</tr>
</tbody>
</table>

This is used to view the effects of the IrDA standard stack protocol on the data stream. This can be used to better understand the construction of the IrDA standard data packet, or as a diagnostic tool.

The host interface can be from either the DB-9 (PC or other UART) or the Header.

A PC running a terminal emulation program, such as Hyperterminal, connected to the IR port as a virtual serial port will create this ASCII data stream. The PC can then be connected to the MCP2120 Developer’s Board DB-9 connector.

1.4.3 Configuration 3

<table>
<thead>
<tr>
<th>Developer’s Board #1</th>
<th>Developer’s Board #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP2150 Dev Board (ASCII)</td>
<td>MCP2120 Dev Board (IR Driver)</td>
</tr>
</tbody>
</table>

This is the configuration when using one MCP2120 Developer’s Board and one MCP2150 Developer’s Board. The MCP2150 Developer’s Board can have the host interface be from either the DB-9 (PC or other UART) or the Header.

The MCP2120 Developer’s Board would interface to a PC running a terminal emulation program, such as Hyperterminal, that connects the IR port to a virtual serial port.
1.4.4 Configuration 4

<table>
<thead>
<tr>
<th>Developer’s Board #1</th>
<th>Developer’s Board #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP2120 Dev Board (IR Driver)</td>
<td>IrDA standard port (Palm Pilot, cell phone, ...)</td>
</tr>
</tbody>
</table>

This configuration is used to evaluate the MCP2120 for an IrDA system, where the Host Controller is responsible for the IrDA protocol stack.

The MCP2120 Developer’s Board interfaces to a PC running a terminal emulation program, such as Hyperterminal, that connects the IR port to a virtual serial port.

1.4.5 Configuration 5

<table>
<thead>
<tr>
<th>Developer’s Board #1</th>
<th>Developer’s Board #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP2150 Dev Board (ASCII)</td>
<td>IrDA standard port (Palm Pilot, cell phone, ...)</td>
</tr>
</tbody>
</table>

This configuration is used to evaluate the MCP2150 for adding the IrDA feature to a system. The Host controller only needs to send and receive the required ASCII data, while the MCP2150 handles the IrDA standard protocol stack.

The MCP2150 Developer’s Board can have the host interface be from either the DB-9 (PC or other UART) or the Header.

1.5 PC REQUIREMENTS

The PC used has three main requirements. These are:

2. Terminal Emulation Program.
3. IrDA standard driver installed, which treats the IR port as a virtual serial port.

A non-legacy-free Intel compatible model with Windows 9x/2000 Operating System (OS) would meet these requirements. The Windows OS includes a Terminal Emulation program called Hyperterminal. Section 2.5 shows instructions to configure Hyperterminal and demonstrate the Developer’s Boards.

Note 1: Windows 2000 does support the IrDA standard, but does not treat the IR port as a virtual serial port. This means that you cannot access the IR port as a serial port. This causes issues with some terminal emulation programs, such as Hyperterminal. Windows 2000 considers the IrDA port to be a network device. Applications that can access a network service through a network protocol (i.e., TCP/IP) can use the MCP2120 Developer’s Board using the appropriate Windows 2000 driver.
Chapter 2. MCP2120 Tutorial

2.1 INTRODUCTION

This chapter covers a tutorial for using the MCP2120 Developer’s Board.

2.2 HIGHLIGHTS

Items discussed in this chapter include:

- MCP2120 Tutorial Setup
- Hardware Setup
- Setting Up the Terminal Program
- Transmitting/Receiving Data

2.3 MCP2120 TUTORIAL SETUP

This tutorial will use both MCP2120 Developer’s Boards. The system will operate at 9600 Baud. Each board will be connected via the UART to the serial port of a personal computer (PC). This means that either two PCs are required, or a PC with two serial ports, as shown in Figure 2-1. It is assumed that two PCs will be used, and that each PC will have the Terminal Emulation program configured identically.

FIGURE 2-1: SYSTEM BLOCK DIAGRAM
2.4 HARDWARE SETUP

2.4.1 Oscillator

The crystal oscillator has pin receptacles to allow the changing of the MCP2120 oscillator frequency. For the tutorial, we will be using a crystal frequency of 7.3728 MHz. This crystal frequency is shipped in the kit.

2.4.2 Board Jumpers

The MCP2120 and MCP2150 Developer's Boards may use one of two host interfaces, the DB-9 interface to connect to a PC, or the header to connect to a controller board. For the tutorial, the host signal will come from the DB-9 connector and the infrared data signals will interface to the Integrated Optical Transceiver. Figure 2-2 shows how the two 3-pin jumpers need to be connected for this configuration.

FIGURE 2-2: MCP2120 DEVELOPER’S BOARD COMPONENT LAYOUT

These two jumpers select the source of the Host signals. J1 and J4

- DB9 is source.

These two jumpers select the optical transceiver logic. Both jumpers should connect the same pin positions J6 and J7

- Integrated Transceiver
Figure 2-3 shows the three Baud Rate Select jumpers (JP3:JP1) and the baud rate formula that is specified (baud rate dependant on MCP2120 operational frequency). The tutorial requires these jumpers to be open for a baud rate of 9600, when the crystal frequency is 7.3728 MHz.

FIGURE 2-3: MCP2120 BAUD RATE

These three jumpers select the Baud Rate

[Diagram showing the jumpers and their settings]

- Open = Fosc/768
Figure 2-4 shows jumpers JP4 and JP5 and their state. For the tutorial, both of these jumpers are required to be open.

FIGURE 2-4: MCP2120 UART MODE AND ENABLE MODE
2.5 SETTING UP THE TERMINAL PROGRAM

Windows 95 Operating System (OS) comes with a Terminal Emulation program called Hyperterminal. This tutorial uses this program to demonstrate the operation of the MPLAB C30 Developer’s Kit boards.

To open Hyperterminal, select Start > Programs > Accessories and select the Hyper-terminal folder. Then double-click the program file Hypertrm.exe. to start Hyperterminal. Figure 2-5 shows the initial screen once the Hyperterminal program is open. You will then need to select a name for this configuration.

FIGURE 2-5: HYPERTERMINAL® OPENING SCREEN

For the initial test, we will set up the system to operate at 9600 baud. Type the name as shown in Figure 2-6 and select any icon. Click OK.

FIGURE 2-6: CHOOSING NAME AND ICON
The menu in Figure 2-7 appears. You will need to select the port your serial port is on (Connect using). In our case, we are using COM1. Click OK.

FIGURE 2-7: SELECTING COMMUNICATIONS (COM) PORT

The Default settings for COM1 are displayed in Figure 2-8.

FIGURE 2-8: HYPERTERMIAL® DEFAULT COM PORT SETTINGS
The COM port settings need to be modified so the **Bits per second** is "9600" and the **Flow Control** is "None", as shown in Figure 2-9. Click **OK** when done.

FIGURE 2-9: DESIRED HYPERTERMINAL® COM PORT SETTINGS

The terminal window opens connected to the serial port as shown in Figure 2-10.

FIGURE 2-10: HYPERTERMINAL® SCREEN AFTER INITIAL SETUP
When the characteristics of the Hyperterminal session need to be modified, the program should be disconnected from the port. To disconnect, click on the icon with the handset with the down arrow onto the phone base as shown in Figure 2-11.

FIGURE 2-11: DISCONNECTING HYPERTERMINAL®

To modify the properties of this Hyperterminal session, select *File > Properties* as shown in Figure 2-12.

FIGURE 2-12: SELECTING HYPERTERMINAL® PROPERTIES MENU
The Hyperterminal Properties window will appear as shown in Figure 2-13. Clicking the "Configure..." button will open the COM Properties window shown in Figure 2-14.

FIGURE 2-13: HYPERTERMINAL® PROPERTIES MENU (CONNECT TO)

Verify the settings are as desired. If not, change the settings to match the settings in Figure 2-14. Click the OK button and you will return to the window shown in Figure 2-13.

FIGURE 2-14: CONFIGURE CONNECTION MENU
Click on the Settings tab. Figure 2-15 shows the default settings. The “Backscroll buffer lines” setting can be modified to 0, if desired. This will make viewing information in the Hyperterminal window more convenient.

FIGURE 2-15: HYPERTERMINAL® PROPERTIES MENU (SETTINGS)

Clicking on the “Input Translation...” button will bring up the following window. Click Cancel to close this window.

FIGURE 2-16: INPUT TRANSLATION MENU
Clicking on the “ASCII Setup...” button will bring up the ASCII Setup window. Make the changes as shown in Figure 2-17 by checking the “Echo typed characters locally” setting. Click OK to apply these changes and close the window.

![ASCII Setup Menu]

FIGURE 2-17: ASCII SETUP MENU

2.6 TRANSMITTING/RECEIVING DATA

Now both PCs should have their Hyperterminal program running in the connected mode with the same COM port settings. See Figure 2-9.

Each MCP2120 Developer’s Board should be powered. Use the pair of 18" (45 cm) power jumper cables to power MCP2120 Developer’s Board #2 from MCP2120 Developer’s Board #1. Optionally, MCP2120 Developer’s Board #2 could be powered from a 9V battery. When the MCP2120 Developer’s Board is powered, the green LED (labeled D3) will be on.

Each MCP2120 Developer’s Board should be connected to their respective PC serial port, so that Hyperterminal can communicate to the board.

The MCP2120 Developer’s Board should be oriented so that the integrated optical transceivers are aligned with each other (as shown in Figure 2-18). For the initial communication between the two boards, the MCP2120 Developer’s Boards should be approximately 6" (15 cm) apart.

Type a string of characters in the Hyperterminal window on PC #1. This same character string should appear in the Hyperterminal window of PC #2. Typing a string of characters in the Hyperterminal window on PC #2 should have the same character string appear in the Hyperterminal window of PC #1. Congratulations! You may now start modifying the system to evaluate/test the operation of the MCP2120 and MCP2120 Developer’s Board.
2.6.1 System Debug Tips

If you are not getting communications between the two boards, some debugging is in order. Here are some suggested steps:

- Verify that the Hyperterminal programs are set up correctly
- Verify that both Hyperterminal sessions are “connected”
- Verify that the MCP2120 Developer’s Boards are powered
- Verify that the MCP2120 Developer’s Boards are set up correctly

If that review does not locate the issue, then more in depth debugging is required. These steps require an oscilloscope. A digital 4-channel oscilloscope is recommended. By typing a data byte into Hyperterminal on the PC, the oscilloscope can be used to determine where in the system the data byte was “lost”.

Figure 2-19 and Figure 2-20 shows a debug flow to help troubleshoot the communications between the two MCP2120 Developer’s Boards. Figure 2-19 shows the steps for the transmit side of System #1 (PC #1 and MCP2120 Developer’s Board #1). If it appears that the TXIR signal is correct, then the receive side needs to be validated. Figure 2-20 shows the steps for the receive side of System #2 (PC #2 and MCP2120 Developer’s Board #2).

These steps can then be used to debug the transmit side of System #2 and the receive side of System #1.
FIGURE 2-19: DEBUG FLOWCHART – MCP2120 DEVELOPER’S BOARD
#1 SIDE

Debug Board #1

Set up digital oscilloscope to capture waveform on first falling edge (Start bit)

Type character in PC #1
Hyperterminal® window

Data appear on MCP2120 TX pin?
Yes

Data appear on MCP2120 TXIR pin?
Yes

Goto Debug Board #2

Problem with MCP2120
Verify device has power/ground
Ensure jumper JP4 is open
Ensure crystal oscillator is correct frequency and operating
Ensure Baud Rate is correct (jumpers JP1, JP2 and JP3)
Try replacing with new MCP2120

No

Data appear on MAX232 R1IN pin?
Yes

Verify that the connection from PC #1 to Board #1 is good.
Try communication with another serial device (such as PICSTART® Plus).

No

Data appear on MAX232 R1OUT pin?
Yes

Data appear on MCP2120 TX pin?
Yes

Verify 3 pin header J4 is jumpered correctly

No

It appears that the MAX232 device is damaged
FIGURE 2-20: DEBUG FLOWCHART – MCP2120 DEVELOPER’S BOARD #2 SIDE

Debug Board #2

Data appear on MCP2120 RXIR pin?

Yes

Data appear on MCP2120 RX pin?

No

Data appear on MAX232 T1IN pin?

No

Data appear on MAX232 T1OUT pin?

No

Verify that the connection for Board #1 TXIR to Optical Transceiver and Board #2 Optical Transceiver to RXIR (3 pin headers J6 and J7). Ensure that the Optical Transceivers are aligned. Ensure that distance between Board #1 and Board #2 is approximately 6” (15 cm). Try component transceiver option on each board (Board #1, then Board #2, and lastly both boards).

Problem with MCP2120
Verify device has power/ground
Ensure jumper JP4 is open
Ensure crystal oscillator is correct frequency and operating
Ensure Baud Rate is correct (jumpers JP1, JP2 and JP3)
Try replacing with new MCP2120

Yes

Verify 3 pin header J4 is jumpered correctly

Yes

Verify that the connection from PC #1 to Board #1 is good. Try communication with another serial device (such as PICSTART® Plus).

Yes

Disconnect serial cable to ensure T1OUT is not loaded down. If still no data, it appears that the MAX232 device is damaged.
Chapter 3. MCP2150 Tutorial

3.1 INTRODUCTION

This chapter covers a tutorial for using the MCP2150 Developer’s Board.

3.2 HIGHLIGHTS

Items discussed in this chapter include:

• MCP2150 Tutorial

3.3 MCP2150 TUTORIAL

This tutorial was not available for this revision of the MCP2120/MCP2150 Developer’s Kit User’s Guide. Please check in the Development Tools section of the Microchip web site (www.microchip.com) for revision D of the User’s Guide. Revision D is planned to include the tutorial on using the MCP2150 Developer’s Board with an MCP2120 Developer’s Board.

Information on Microchip Development Tools can be located on the web site by using the Navigate window and selecting Developer’s Tool Box > Development Tools.
Chapter 4. Using a PICDEM™ 1 or PICDEM 2 Board as Host

4.1 USING THE PICDEM 1 BOARD

The PICDEM 1 board may be used as the host controller in an IrDA standard compatible system. PortB can be used to display received characters, while any of the other ports would be used for the UART and control signals. A PICmicro® microcontroller may be selected that has a hardware UART, or the UART functionality may be implemented in software.

Figure 4-1 shows the parts layout (silk-screen) for the PICDEM 1 board.

FIGURE 4-1: PICDEM™ 1 PARTS LAYOUT

Note 1: U1 is for use with any 40-pin PIC17C4X device.
Note 2: U2 is for use with any 18-pin PIC16C5X, PIC16CXXX device.
Note 3: U3 is for use with any 28-pin PIC16C5X, PIC16CXXX device.
4.2 APPLICATION NOTES

There are two Application Notes that show how to use the PICDEM 1 Board as a Host controller.

AN756, “Using the MCP2120 for Infrared Communication”, DS00756, uses the MCP2120 Developer’s Board and has two code examples. The first is using a PIC16F84 with the MCP2120 Developer’s Board in Hardware Baud mode. In this mode, only two signals need to be interfaced. The RX and TX signal. The second code example is also using a PIC16F84 with the MCP2120 Developer’s Board in Software Baud mode. In this mode, four signals need to be interfaced; RX, TX, MODE and RTS (used to reset the MCP2120).

AN758, “Using the MCP2150 to Add IrDA™ Standard Wireless Connectivity”, DS00758, uses the MCP2150 Developer’s Board and has one code example. For this application, seven signals need to be interfaced; RX, TX, DSR, DTR, CTS, RTS and CD.

4.2.1 For Additional PICDEM 1 Information

Additional information can located on the Microchip web site (www.microchip.com). Information on Microchip Development Tools can be located by using the Navigate window and selecting Developer’s Tool Box > Development Tools.

The PICDEM 1 User’s Guide literature number is DS33015, and the PICDEM 1 kit can be ordered with part number DM163001.

4.3 USING THE PICDEM 2 BOARD

The PICDEM 2 board may be used as the host controller in an IrDA standard compatible system. PortB can be used to display received characters, while any of the other ports would be used for the UART and control signals. A PICmicro microcontroller may be selected that has a hardware UART, or the UART functionality may be implemented in software.

Figure 4-2 shows the parts layout (silk-screen) for the PICDEM 2 board.
4.3.1 Application Notes

Currently there are no Application Notes that use the PICDEM 2 Board as a Host controller. The examples shown for the PICDEM 1 board can be easily modified to have the PICDEM 2 board operate as the Host controller.

4.3.2 For Additional PICDEM 2 Information

Additional information can located on the Microchip web site (www.microchip.com). Information on Microchip Development Tools can be located by using the Navigate window and selecting Developer’s Tool Box > Development Tools.

The PICDEM 2 User’s Guide literature number is DS30374, and the PICDEM 2 kit can be ordered with part number DM163002.

Note 1: U2 is for use with any 28-pin PIC16CXXX or PIC18CXXX device.

2: U1 is for use with any 40-pin PIC16CXXX or PIC18CXXX device.
Appendix A. Hardware Detail

A.1 INTRODUCTION

The MCP2120/MCP2150 Developer’s Board hardware is intended to illustrate the ease of use of Microchip’s infrared data communication solutions. The Developer’s Board features the following hardware elements.

A.2 POWER SUPPLY

There are three ways to supply power to the MCP2120/MCP2150 Developer’s Board:

• A 9V battery can be plugged into BT1.

• A 9V, 750 mA unregulated AC or DC supply can be plugged into J5.

• A +5V, 750 mA regulated DC supply can be connected to the two pins provided, labeled +5V and GND. A pair of 18” (45 cm) cables are provided to allow one board to power another.

A.3 POWER INDICATOR

One green LED indicates whether there is power applied to the MCP2120 and MCP2150 Developer Boards (LED lit) or not (LED off).

A.4 RS-232 SERIAL PORT

A.4.1 MCP2120 Developer’s Board

A MAX232 compatible level shifting IC has been provided with all necessary hardware to support connection of an RS-232 host through the DB-9 connector. The port can be connected to a PC using a straight through cable. Refer to the MCP2120 Data Sheet (DS21618) for more information.

A.4.2 MCP2150 Developer’s Board

A MAX3238E compatible level shifting IC has been provided with all necessary hardware to support connection of a RS-232 host through the DB-9 connector. The port can be connected to a PC using a straight through cable. Refer to the MCP2120 Data Sheet for more information.
A.5 JUMPERS

Jumpers are used to allow the Developer’s Board to be configured into the different modes that are possible. These modes include:

- Selection of baud rate
- Source of host signals
- Source of optical transceiver signals
- Device enable signal for power down operation

A.5.1 MCP2120 Developer’s Board

The MCP2120 Developer’s Board has the following jumpers:

1. Two jumpers to select source of UART signals. Either RS-232C socket or the four-pin header.
2. Three jumpers to select desired baud rate.
3. Two jumpers to select IR Transceiver options.
4. Jumper to disable device operation.

FIGURE A-1: MCP2120 DEVELOPER’S BOARD HARDWARE
A.5.2 MCP2150 Developer’s Board

The MCP2150 Developer’s Board has the following jumpers:

1. Three jumpers to select source of UART signals. Either RS-232C socket or the eight-pin header.
2. Two jumpers to select desired baud rate.
3. Two jumpers to select IR Transceiver options.
4. Jumper to disable device operation.
A.6 OSCILLATOR OPTIONS

The MCP2120 can be operated at different frequencies, while the MCP2150 only operates at a single fixed frequency.

A.6.1 MCP2120 Developer's Board

The MCP2120 Developer's Board crystal has pin receptacles so that crystal frequencies can easily be changed. Table A-1 shows the baud rates for a given crystal frequency, based on the state of the BAUD2:BAUD0 pins.

<table>
<thead>
<tr>
<th>BAUD2:BAUD0</th>
<th>Bit Rate</th>
<th>0.6144(1)</th>
<th>2.000</th>
<th>3.6864</th>
<th>4.9152</th>
<th>7.3728</th>
<th>14.7456(2)</th>
<th>20.000(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Fosc / 768</td>
<td>800</td>
<td>2604</td>
<td>4800</td>
<td>6400</td>
<td>9600</td>
<td>19200</td>
<td>26042</td>
</tr>
<tr>
<td>001</td>
<td>Fosc / 384</td>
<td>1600</td>
<td>5208</td>
<td>9600</td>
<td>12800</td>
<td>19200</td>
<td>38400</td>
<td>52083</td>
</tr>
<tr>
<td>010</td>
<td>Fosc / 192</td>
<td>3200</td>
<td>10417</td>
<td>19200</td>
<td>25600</td>
<td>38400</td>
<td>76800</td>
<td>104167</td>
</tr>
<tr>
<td>011</td>
<td>Fosc / 128</td>
<td>4800</td>
<td>15625</td>
<td>28800</td>
<td>38400</td>
<td>57600</td>
<td>115200</td>
<td>156250</td>
</tr>
<tr>
<td>100</td>
<td>Fosc / 64</td>
<td>9600</td>
<td>31250</td>
<td>57600</td>
<td>76800</td>
<td>115200</td>
<td>230400</td>
<td>312500</td>
</tr>
</tbody>
</table>

Note 1: An external clock is recommended for frequencies below 2 MHz.

2: For frequencies above 7.5 MHz, the TXIR pulse width (MCP2120 Data Sheet electrical specification parameter IR121) will be shorter than the minimum pulse width of 1.6 µs in the IrDA standard specification.

A.6.2 MCP2150 Developer's Board

The MCP2150 Developer's Board requires a fixed frequency crystal (11.0592 MHz).

<table>
<thead>
<tr>
<th>BAUD1:BAUD0</th>
<th>Bit Rate</th>
<th>Fosc Frequency - 11.0592 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Fosc / 1152</td>
<td>9600</td>
</tr>
<tr>
<td>01</td>
<td>Fosc / 576</td>
<td>19200</td>
</tr>
<tr>
<td>10</td>
<td>Fosc / 192</td>
<td>57600</td>
</tr>
<tr>
<td>11</td>
<td>Fosc / 96</td>
<td>115200</td>
</tr>
</tbody>
</table>
A.7 BOARD LAYOUT

Figure A-3 shows the component layout (silkscreen) for the MCP2120 Board.

FIGURE A-3: MCP2120 DEVELOPER’S BOARD COMPONENT LAYOUT

Figure A-4 shows the component layout (silkscreen) for the MCP2150 Board.

FIGURE A-4: MCP2150 DEVELOPER’S BOARD COMPONENT LAYOUT
A.8 SCHEMATICS

Figure A-5 shows the schematic for the MCP2120 Developer's Board. Figure A-6 shows the schematic for the MCP2150 Developer's Board.

FIGURE A-5: MCP2120 DEVELOPER'S BOARD SCHEMATIC
FIGURE A-6: MCP2150 DEVELOPER'S BOARD SCHEMATIC
Index

B
- Board Layout
 - MCP2120 Developer’s Board
 - Component Layout 45
 - MCP2150 Developer’s Board
 - Component Layout 45

C
- Customer Support ... 6

D
- Disabling the MCP2120 .. 12
- Disabling the MCP2150 .. 16
- Documentation
 - Conventions ... 4
 - Layout ... 3

G
- Getting Started .. 7

H
- Hardware Setup
 - Board Jumpers .. 22
 - Oscillator .. 22

I
- Internet Address .. 5

J
- Jumpers
 - MCP2120 Developer’s Board 42
 - MCP2150 Developer’s Board 43

M
- MCP2120 Developer’s Board
 - Component Transceiver 9
 - Disable Device Operation 7
 - Hardware Baud Selection 7
 - Integrated Transceiver 9
 - IR Transceiver ... 7
 - Selecting Baud Rate 10
 - Software Baud Selection 7
 - UART Interface ... 7
- MCP2120 Tutorial .. 21
- MCP2150 Developer’s Board
 - Component Transceiver 14
 - Hardware Baud Selection 13
 - IR Transceiver ... 13, 14
 - Selecting Baud Rate 15
 - UART Interface ... 13
- MCP2150 Tutorial .. 35
- Microchip Web Site .. 5

O
- Oscillator Options
 - MCP2120 Developer’s Board 44
 - MCP2150 Developer’s Board 44

P
- PC Requirements ... 19
- PICDEM 1 Board ... 37
- PICDEM 2 Board ... 38
- Power Supply .. 41

R
- Reading, Recommended .. 5

S
- Schematics ... 46
- Serial Port .. 41
- System Configurations .. 17

T
- Terminal Program ... 25
- Tutorial Setup .. 21, 35

U
- UART Mode ... 11
- Using a PICDEM 1 or PICDEM 2 Board as Host 37

W
- WWW Address .. 5