Transition Socket Specification
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, Hi-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-069-0

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
INTRODUCTION

Transition sockets are products that allow header boards (for next generation in-circuit emulators or in-circuit debuggers) or device adapters (for the MPLAB ICE 2000 in-circuit emulator) to interface to sockets on target applications.

Typically, header boards or device adapters have connectors that match development cycle device formats, such as DIP or PLCC. However, target sockets will match compact production device formats, such as SOIC, SSOP, QFP, or QFN. The solution is transition sockets. A transition socket is specifically designed to provide compatibility between two differing types of IC package formats.

Transition sockets are typically composed of two parts: the adapter socket and the adapter header. The adapter socket is designed to plug into the header board or device adapter on one side, and the adapter header on the other. The adapter header is then soldered down to the target application.

WHY SHOULD I USE TRANSITION SOCKETS IN MY PRODUCT DESIGN?

There are two very significant advantages to using transition sockets:

1. Shorter product development cycle
2. Reduced expense in the design, layout and prototype testing

A typical product design cycle has two important phases: the prototype design phase and the production design phase. Traditionally, these phases were different simply because the prototype used a microcontroller with a different package type. However, with the availability of the transition sockets, the prototype design can be identical to the production design because a transition socket can be used to bridge microcontroller package differences.

WHAT TRANSITION SOCKETS ARE CURRENTLY AVAILABLE?

Microchip Technology currently offers the transition sockets listed in the “Table of Contents” following this introductory section.

Use the on-line Development Tools Selector (DTS) to find the transition sockets available for each header board or for each device adapter. For more on header boards or device adapters, see:

- Header Board Specification (DS51292)
- MPLAB® ICE 2000 Processor Module and Device Adapter Specification (DS51140)
- MPLAB® ICE 4000 Processor Module and Device Adapter Specification (DS51298)

Please see the Microchip web site (www.microchip.com) for the DTS and most current version of all documents.

HOW CAN I OBTAIN MAXIMUM BENEFIT FROM THE USE OF TRANSITION SOCKETS?

Attention to component placement should be considered to provide adequate clearance for the transition socket interface to the PCB footprint. This is especially true for any tall components such as connector headers, radial components or voltage regulators. Refer to the transition socket mechanical drawings for dimensions.
TRANSITION SOCKET APPLICATIONS – COMMENTS AND SUGGESTIONS

Attention to component placement should be considered in mating the adapter sockets to the SOIC/SSOP headers.

The placement of vias around the Surface Mount Technology (SMT) layout area should be examined. Vias immediately adjacent to the end of a SMT pad may inadvertently come into contact with the header leads. Vias should be placed along the center line of the SMT pad to lessen the chance of pin-to-pin shorts while soldering.

Care should be taken when soldering some transition sockets to target boards. See the related section for specific instructions.

For information on packaging dimensions, please refer to the Packaging Specification (DS00049).

GLOSSARY

Terms used in this document:

DFN – Dual Flat No lead
DIP – Dual In-line Package
MQFP – Metric Quad Flat Pack
PDIP – Plastic Dual In-line Package
PLCC – Plastic Leaded Chip Carrier
QFN – Quad Flat No lead
QFP – Quad Flat Pack
SOIC – Small Outline IC
SOT – Small Outline Transistor
SSOP – Shrink Small Outline Package
TQFP – Thin Quad Flat Pack
Table of Contents

Current Sockets

SOIC Transition Socket

<table>
<thead>
<tr>
<th>Socket Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT08SO-1</td>
<td>8-lead DIP to 8-lead SOIC</td>
<td>9</td>
</tr>
<tr>
<td>XLT08SN-1</td>
<td>8-lead DIP to 8-lead SOIC (Narrow)</td>
<td>10</td>
</tr>
<tr>
<td>XLT14SO-1</td>
<td>14-lead DIP to 14-lead SOIC</td>
<td>10</td>
</tr>
<tr>
<td>XLT18SO-1</td>
<td>18-lead DIP to 18-lead SOIC</td>
<td>11</td>
</tr>
<tr>
<td>XLT20SO1-1</td>
<td>20-lead DIP to 20-lead SOIC</td>
<td>11</td>
</tr>
<tr>
<td>XLT28SO-1</td>
<td>28-lead DIP to 28-lead SOIC</td>
<td>12</td>
</tr>
</tbody>
</table>

SSOP Transition Socket

<table>
<thead>
<tr>
<th>Socket Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT14SS-1</td>
<td>14-lead DIP to 14-lead SSOP</td>
<td>13</td>
</tr>
<tr>
<td>XLT20SS-1</td>
<td>18-lead DIP to 20-lead SSOP</td>
<td>14</td>
</tr>
<tr>
<td>XLT20SS1-1</td>
<td>20-lead DIP to 20-lead SSOP</td>
<td>14</td>
</tr>
<tr>
<td>XLT28SS-1</td>
<td>28-lead DIP to 28-lead SSOP</td>
<td>15</td>
</tr>
<tr>
<td>XLT28SS2-1</td>
<td>28-lead DIP to 28-lead SSOP (PIC16X55/57)</td>
<td>15</td>
</tr>
</tbody>
</table>

PLCC Transition Socket

<table>
<thead>
<tr>
<th>Socket Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT44L2</td>
<td>44-lead PLCC (0.050")</td>
<td>16</td>
</tr>
</tbody>
</table>

QFP Transition Socket

<table>
<thead>
<tr>
<th>Socket Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT44PT3</td>
<td>44-lead QFP (0.8 mm)</td>
<td>18</td>
</tr>
<tr>
<td>XLT64PT5, XLT80PT3</td>
<td>64/80-lead QFP (0.5 mm)</td>
<td>18</td>
</tr>
<tr>
<td>XLT80PT2</td>
<td>80-lead QFP (0.65 mm)</td>
<td>19</td>
</tr>
</tbody>
</table>

SOT/DFN/QFN Transition Sockets

<table>
<thead>
<tr>
<th>Socket Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT06SOT</td>
<td>14-lead DIP to 6-lead SOT-23</td>
<td>22</td>
</tr>
<tr>
<td>XLT08DFN2</td>
<td>14-lead DIP to 8-lead DFN</td>
<td>22</td>
</tr>
</tbody>
</table>
XLT16QFN1, XLT28QFN3, XLT28QFN4, XLT44QFN2, XLT44QFN3, XLT44QFN4, XLT44QFN5
Multi-lead DIP to Multi-lead QFN, Top View ... 23
Multi-lead DIP to Multi-lead QFN, Side View ... 23
Multi-lead DIP to Multi-lead QFN Cables .. 23

XLT20QFN-1
20-lead DIP Adapter Socket ... 24
20-lead QFN Header (Surface Foot) .. 24
XLT20QFN-1 Soldering Suggestions ... 25
Transition Socket Specification

Discontinued Sockets

PDIP Transition Socket

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT28XP (Discontinued)</td>
<td>28-lead DIP 0.300-inch Male to 0.600-inch Female</td>
<td>26</td>
</tr>
</tbody>
</table>

SOIC Transition Socket

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT08SO (Discontinued – see XLT08SO-1 or XLT08SN-1)</td>
<td>8-lead DIP to 0.050-inch Adapter Socket</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>8-lead SOIC Header</td>
<td></td>
</tr>
<tr>
<td>XLT14SO (Discontinued – see XLT14SO-1)</td>
<td>14-lead DIP to 0.050-inch Adapter Socket</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>14-lead SOIC Header</td>
<td></td>
</tr>
<tr>
<td>XLT18SO (Discontinued – see XLT18SO-1)</td>
<td>18-lead DIP to 0.050-inch Adapter Socket</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>18-lead SOIC Header</td>
<td></td>
</tr>
<tr>
<td>XLT20SO1 (Discontinued – see XLT20SO1-1)</td>
<td>20-lead DIP to 0.050-inch Adapter Socket</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>20-lead SOIC Header</td>
<td></td>
</tr>
<tr>
<td>XLT28SO (Discontinued – see XLT28SO-1)</td>
<td>28-lead DIP to 0.050-inch Adapter Socket</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>28-lead SOIC Header</td>
<td></td>
</tr>
<tr>
<td>XLT28SS (Discontinued – see XLT28SS-1)</td>
<td>28-lead DIP to 0.8 mm Adapter Socket</td>
<td>30</td>
</tr>
<tr>
<td>XLT20SS (Discontinued – see XLT20SS-1)</td>
<td>20-lead DIP to 0.8 mm Adapter Socket</td>
<td>31</td>
</tr>
<tr>
<td>XLT20SS1 (Discontinued – see XLT20SS1-1)</td>
<td>20-lead DIP to 0.8 mm Adapter Socket</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>20-lead SSOP Header</td>
<td></td>
</tr>
<tr>
<td>XLT28SS (Discontinued – see XLT28SS-1)</td>
<td>28-lead DIP to 0.8 mm Adapter Socket</td>
<td>32</td>
</tr>
<tr>
<td>XLT28SS2 (Discontinued – see XLT28SS2-1)</td>
<td>28-lead SSOP Header</td>
<td>32</td>
</tr>
</tbody>
</table>

SSOP Transition Socket

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT14SS (Discontinued – see XLT14SS-1)</td>
<td>14-lead DIP to 0.8 mm Adapter Socket</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>14-lead SSOP Header</td>
<td></td>
</tr>
<tr>
<td>XLT20SS (Discontinued – see XLT20SS-1)</td>
<td>18-lead DIP to 0.8 mm Adapter Socket</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>20-lead SSOP Header</td>
<td></td>
</tr>
<tr>
<td>XLT20SS1 (Discontinued – see XLT20SS1-1)</td>
<td>20-lead DIP to 0.8 mm Adapter Socket</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>20-lead SSOP Header</td>
<td></td>
</tr>
<tr>
<td>XLT28SS (Discontinued – see XLT28SS-1)</td>
<td>28-lead DIP to 0.8 mm Adapter Socket</td>
<td>32</td>
</tr>
<tr>
<td>XLT28SS2 (Discontinued – see XLT28SS2-1)</td>
<td>28-lead SSOP Header</td>
<td>32</td>
</tr>
</tbody>
</table>

PLCC Transition Socket

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT68L1, XLT84L1 (Discontinued)</td>
<td>68/84-lead Adapter Socket</td>
<td>34</td>
</tr>
</tbody>
</table>

QFP Transition Socket

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT44PT (Discontinued – see XLT44PT3)</td>
<td>44-lead QFP to 0.8 mm Adapter Socket</td>
<td>35</td>
</tr>
<tr>
<td>XLT64PT1 (Discontinued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XLT64PT2 (Discontinued – see XLT64PT5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XLT80PT (Discontinued – see XLT80PT3)</td>
<td>64/80-lead QFP to 0.5 mm Adapter Socket</td>
<td>36</td>
</tr>
<tr>
<td>XLT64PT3 (Discontinued – see XLT64PT5)</td>
<td>64-lead QFP to 0.8mm Adapter Socket</td>
<td>36</td>
</tr>
<tr>
<td>XLT64PT4 (Discontinued – see XLT64PT5)</td>
<td>64-lead QFP (0.8 mm)</td>
<td>37</td>
</tr>
</tbody>
</table>
Transition Socket Specification

SOT/DFN/QFN Transition Sockets

<table>
<thead>
<tr>
<th>Transition Socket</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT08DFN (Discontinued – see XLT08DFN2)</td>
<td>8-lead DIP to 0.025-inch Adapter Socket</td>
<td>39</td>
</tr>
<tr>
<td>XLT28QFN (Discontinued – see XLT28QFN4)</td>
<td>28-lead DIP to 0.025-inch Adapter Socket</td>
<td>39</td>
</tr>
<tr>
<td>XLT28QFN2 (Discontinued – see XLT28QFN3)</td>
<td>18-lead DIP to 0.025-inch Adapter Socket</td>
<td>40</td>
</tr>
<tr>
<td>XLT44QFN (Discontinued – see XLT44QFN2)</td>
<td>40-lead DIP to 0.025-inch Adapter Socket</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>44-lead QFN Header</td>
<td>40</td>
</tr>
</tbody>
</table>
CURRENT SOCKETS

The transition sockets in this section are currently available from Microchip.

SOIC TRANSITION SOCKET

An SOIC transition socket and associated hardware is shown in Figure 1.

FIGURE 1: SOIC TRANSITION SOCKET

There are two components of the SOIC transition socket:
1. Adapter socket that connects to the DIP device adapter
2. SOIC header that is to be soldered down to the target application

Microchip offers the following SOIC transition sockets:
• XLT08SO-1: One 8-lead DIP adapter socket and one 8-lead SOIC header (5.28mm body size)
• XLT08SN-1: One 8-lead DIP adapter socket and one 8-lead SOIC header (3.9mm body size)
• XLT14SO-1: One 14-lead DIP adapter socket and one 8-lead SOIC header
• XLT18SO-1: One 18-lead DIP adapter socket and one 18-lead SOIC header
• XLT20SO1-1: One 20-lead DIP adapter socket and one 20-lead SOIC header
• XLT28SO-1: One 28-lead DIP adapter socket and one 28-lead SOIC header

See the drawings in this section for layout dimensions.

XLT08SO-1
8-lead DIP to 8-lead SOIC

Tolerances: diameters ±0.03 mm [±0.001"], PCB perimeters ±0.13 mm [±0.005"], PCB thicknesses ±0.18 mm [±0.007"], pitches (from true position) ±0.08 mm [±0.003"], all other tolerances ±0.13 mm [±0.005"] unless stated otherwise.
Transition Socket Specification

XLT08SN-1
8-lead DIP to 8-lead SOIC (Narrow)

XLT14SO-1
14-lead DIP to 14-lead SOIC

Tolerances: diameters ±0.03 mm [±0.001"],
PCB perimeters ±0.13 mm [±0.005"],
PCB thicknesses ±0.18 mm [±0.007"],
pitches (from true position) ±0.08 mm [±0.003"],
all other tolerances ±0.13 mm [±0.005"] unless
stated otherwise.
Transition Socket Specification

XLT18SO-1

18-lead DIP to 18-lead SOIC

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.86mm</td>
<td>[0.900"]</td>
</tr>
<tr>
<td>10.16mm</td>
<td>[0.400"]</td>
</tr>
<tr>
<td>7.62mm</td>
<td>[0.300"]</td>
</tr>
</tbody>
</table>

Top View

- 13.95mm ± 0.38mm assembled [0.548" ± 0.015”]
- 10.11mm ± 0.38mm assembled [0.398" ± 0.015”]

Side View

- 9.43mm typ. [0.370”]
- 1.27mm typ. [0.050”]

End View

- 9.93mm [0.391”]

Tolerances:
- Diameters ±0.03 mm [±0.001”],
- PCB perimeters ±0.13 mm [±0.005”],
- PCB thicknesses ±0.18 mm [±0.007”],
- Pitches (from true position) ±0.08 mm [±0.003”],
- All other tolerances ±0.13 mm [±0.005”] unless stated otherwise.

XLT20SO1-1

20-lead DIP to 20-lead SOIC

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.40mm</td>
<td>[1.000"]</td>
</tr>
<tr>
<td>10.16mm</td>
<td>[0.400"]</td>
</tr>
<tr>
<td>7.62mm</td>
<td>[0.300"]</td>
</tr>
</tbody>
</table>

Top View

- 13.92mm ± 0.381mm [0.548" ± 0.015”] assembled

Side View

- 9.43mm typ. [0.370”]
- 1.27mm typ. [0.050”]

End View

- 12.40mm [0.488”] assembled
- 9.42mm [0.371”]

Tolerances:
- Diameters ±0.03 mm [±0.001”],
- PCB perimeters ±0.13 mm [±0.005”],
- PCB thicknesses ±0.18 mm [±0.007”],
- Pitches (from true position) ±0.08 mm [±0.003”],
- All other tolerances ±0.13 mm [±0.005”] unless stated otherwise.
XLT28SO-1
28-lead DIP to 28-lead SOIC

Tolerances: diameters ±0.03 mm [±0.001"],
PCB perimeters ±0.13 mm [±0.005"],
PCB thicknesses ±0.18 mm [±0.007"],
pitches (from true position) ±0.08 mm [±0.003"],
all other tolerances ±0.13 mm [±0.005""] unless stated otherwise.
Transition Socket Specification

SSOP TRANSITION SOCKET

An SSOP transition socket and associated hardware is shown in Figure 2.

FIGURE 2: SSOP TRANSITION SOCKET

The SSOP transition sockets are similar to the SOIC transition sockets. There are two parts to the SSOP transition socket:

1. Adapter socket that connects to the DIP device adapter.
2. SSOP header that gets soldered down to the target application.

Microchip offers the following SSOP transition sockets:
- XLT14SS-1: One 14-lead DIP adapter socket and one 14-lead SSOP header
- XLT20SS-1: One 18-lead DIP adapter socket and one 20-lead SSOP header
- XLT20SS1-1: One 20-lead DIP adapter socket and one 20-lead SSOP header
- XLT28SS-1: One 28-lead DIP adapter socket and one 28-lead SSOP header
- XLT28SS2-1: One 28-lead DIP adapter socket and one 28-lead SSOP header (PIC16X55/57)

See the drawings in this section for layout dimensions and clearances for tall components.

XLT14SS-1

14-lead DIP to 14-lead SSOP

18.16mm

[0.715”]

6.35mm ±0.38mm

[0.250” ±0.015”]

Tolerances: diameters ±0.03 mm [±0.001”], PCB perimeters ±0.13 mm [±0.005”], PCB thicknesses ±0.18 mm [±0.007”], pitches (from true position) ±0.08 mm [±0.003”], all other tolerances ±0.13 mm [±0.005”] unless stated otherwise.
XLT20SS-1
18-lead DIP to 20-lead SSOP

Top View

Side View

End View

Tolerances: diameters ±0.03 mm [±0.001"],
PCB perimeters ±0.13 mm [±0.005"],
PCB thicknesses ±0.18 mm [±0.007"],
pitches (from true position) ±0.08 mm [±0.003"],
all other tolerances ±0.13 mm [±0.005"] unless
stated otherwise.

XLT20SS1-1
20-lead DIP to 20-lead SSOP

Top View

Side View

End View

Tolerances: diameters ±0.03 mm [±0.001"],
PCB perimeters ±0.13 mm [±0.005"],
PCB thicknesses ±0.18 mm [±0.007"],
pitches (from true position) ±0.08 mm [±0.003"],
all other tolerances ±0.13 mm [±0.005"] unless
stated otherwise.
XLT28SS-1
28-lead DIP to 28-lead SSOP

Tolerances: diameters ±0.03 mm [±0.001"], PCB perimeters ±0.13 mm [±0.005"], PCB thicknesses ±0.18 mm [±0.007"], pitches (from true position) ±0.08 mm [±0.003"], all other tolerances ±0.13 mm [±0.005"] unless stated otherwise.

XLT28SS2-1
28-lead DIP to 28-lead SSOP (PIC16X55/57)

Tolerances: diameters ±0.03 mm [±0.001"], PCB perimeters ±0.13 mm [±0.005"], PCB thicknesses ±0.18 mm [±0.007"], pitches (from true position) ±0.08 mm [±0.003"], all other tolerances ±0.13 mm [±0.005"] unless stated otherwise.
PLCC TRANSITION SOCKET

A PLCC transition socket and associated hardware is shown in Figure 3.

FIGURE 3: PLCC TRANSITION SOCKET

The PLCC transition socket is required for use along with the PLCC device adapters. The DAF18-1 device adapter is equipped with eight socket strips that interface with one of two transition sockets. The DAF18-3 device adapter is equipped with four socket strips that interface with one transition socket.

The PLCC transition sockets are designed with a threaded insert in the center of the footprint so that a 4/40 screw can securely fasten the transition socket to the device adapter.

The PLCC transition sockets are designed to be soldered to the target PCB PLCC surface mount pattern or inserted into a PLCC socket on the target PCB.

Note: To avoid solder bridging, do not place vias within 0.025-inch of the PLCC footprint. Also, any vias near the PLCC should be directly on the centerline of the pad.

Microchip offers the following PLCC transition sockets:
• XLT44L2: One 44-lead PLCC transition socket

RECOMMENDED PCB LAYOUT

Microchip offers the following PLCC transition sockets:
• XLT44L2: One 44-lead PLCC transition socket
QFP TRANSITION SOCKET

QFP (MQFP, TQFP, PQFP) transition sockets and associated hardware are shown below.

FIGURE 4: QFP TRANSITION SOCKET

The QFP transition socket is required for use along with the QFP device adapter. The device adapter is equipped with four socket strips that interface with the transition socket.

Note: To avoid solder bridging, do not place vias within 0.025-inch of the QFP footprint. Also, any vias near the QFP should be directly on the centerline of the pad.

There are two parts to the QFP transition socket:

1. Adapter socket that connects to the QFP device adapter
2. QFP header that gets soldered down to the target application

Microchip offers the following QFP transition sockets:

- XLT44PT3: One 44-lead QFP adapter socket and one 44-lead QFP header (0.8 mm)
- XLT64PT5: One 64-lead QFP adapter socket and one 64-lead QFP header (0.5 mm)
- XLT80PT2: One 80-lead QFP adapter socket and one 80-lead QFP header (0.65 mm)
- XLT80PT3: One 80-lead QFP adapter socket and one 80-lead QFP header (0.5 mm)

See the drawings in this section for layout dimensions and clearances for tall components.

QFP TRANSITION SOCKET

SOLDERING TIPS

- Use controlled soldering iron tip temperatures between 300°C and 325°C (570°F to 615°F)
- If possible, use a PACE mini wave soldering iron tip or an equivalent tip design.
- Plan to solder one (1 of 4) side first, then the opposite side, then the remaining two sides.
- Soldering iron tip movement should be in the direction of the leads (backward and forward), not across the leads; dragging the tip across the leads may cause lead damage.
- Use generous amounts of soldering flux to aid in the solder flow action.
XLT44PT3
44-lead QFP (0.8 mm)

XLT64PT5, XLT80PT3
64/80-lead QFP (0.5 mm)

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

Refer to the "Package Specification" for PCB footprint dimensions (DS00049).

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

Drawing shown is for 64-lead.
Transition Socket Specification

XLT80PT2
80-lead QFP (0.65 mm)

Refer to the "Package Specification" for PCB footprint dimensions (DS00049).

TABLE 1: DVA/DAF INTERFACE SPECIFICATION FOR QFP PACKAGES

<table>
<thead>
<tr>
<th>Socket</th>
<th>Package Style*</th>
<th>DVA/DAF Interface Specification**</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT44PT3</td>
<td>44PT TQFP 44PQ MQFP 44KW PQFP</td>
<td>DVA-44PL</td>
</tr>
<tr>
<td>XLT64PT5</td>
<td>64PT</td>
<td>DVA-68PL</td>
</tr>
<tr>
<td>XLT80PT2</td>
<td>80PF</td>
<td>DVA-84PL</td>
</tr>
<tr>
<td>XLT80PT3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Refer to the "Package Specification" for PCB footprint dimensions (DS00049).

** Refer to the processor module and device adapter specification for interface and dimensions to DVA/DAF (ICE 2000: "MPLAB® ICE 2000 Processor Module and Device Adapter Specification" (DS51140); ICE 4000: "MPLAB® ICE 4000 Processor Module and Device Adapter Specification" (DS51298)).

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
SOT/DFN/QFN Transition Sockets

SOT/DFN/QFN transition sockets and associated hardware are shown below.

FIGURE 5: SOT TRANSITION SOCKET WITH CABLE

Two-part transition sockets consist of:
1. Adapter socket that connects to the DIP device adapter
2. QFN header that is to be soldered down to the target application

Microchip offers the following SOT/DFN/QFN transition sockets:
- XLT06SOT: One 14-lead DIP to 6-lead SOT-23 transition socket with cable
- XLT08DFN2: One 14-lead DIP to 8-lead DFN transition socket with cable
- XLT16QFN1: One 14-lead DIP to 16-lead QFN transition socket with cable
- XLT20QFN-1: One 20-lead DIP adapter socket and one 20-lead QFN header
- XLT28QFN3: One 18-lead DIP to 28-lead QFN transition socket with cable
- XLT28QFN4: One 28-lead DIP to 28-lead QFN transition socket with cable
- XLT44QFN2: One 40-lead DIP to 44-lead QFN transition socket with cable
- XLT44QFN3: One 28-lead DIP to 44-lead QFN transition socket with cable
- XLT44QFN4: One 28-lead DIP to 44-lead QFN transition socket with cable
- XLT44QFN5: One 18-lead DIP to 44-lead QFN transition socket with cable

See the drawings in this section for layout dimensions.
RECOMMENDED INSTALLATION OF TRANSITION SOCKETS WITH CABLES

For transition sockets that use a cable, follow these instructions for installing your transition socket on the target board.

PCB Layout Considerations:

Make sure you leave enough room on the PCB to accommodate the cable, i.e., space your target pads for each device far enough apart so that the cable from one pad group will not interfere with another pad group.

6-Pin SOT Solder Instructions:

1. Remove protective cable covering from end of cable.
2. Position cables on target board (see below). Tape down to prevent movement.
3. Solder each lead to target pad.
4. Remove tape and clean.

8-Pin DFN Solder Instructions:

1. Prepare leads by trimming narrowest portion to 0.10-inch maximum in length (see below).
2. Position cables on target board (see below). Tape down to prevent movement.
3. Solder each lead to target pad.
4. Remove tape and clean.

8-Pin DFN Assembly Instructions:

1. Start with cable associated with pin 1.
2. Fold cable up and over, forming a radius. Header pins will now be facing upwards.
3. Mate with the header on the underside of the transition socket assembly, making sure pin 1 mates with the pin labeled “DFN Pin 1”.
4. Fold over and mate the other cables.

16-Pin QFN Solder Instructions:

1. Remove protective cable jacket from stripped end of cable.
2. Lay out with long cables opposing each other and short cables opposing each other (see below).
3. Place center lead (6th lead for 44-pin, 4th lead for 28-pin) on center target pad to center each cable on the footprint (see below). Tape down each cable to prevent movement.
4. Solder each lead to target pad.
5. Remove tape and clean.

16-Pin QFN Assembly Instructions:

1. Start with cable associated with pin 1.
2. Fold cable up and over, forming a radius. Header pins will now be facing upwards.
3. Mate with the socket on the underside of the transition socket assembly, making sure pin 1 mates with the pin labeled “QFN Pin 1”.
4. Fold over and mate the other cables.

28/44-Pin QFN Solder Instructions:

1. Remove protective cable jacket from stripped end of cable.
2. Lay out the four cables in a “+” pattern (see below).
3. Place center lead (6th lead for 44-pin, 4th lead for 28-pin) on center target pad to center each cable on the footprint (see below). Tape down each cable to prevent movement.
4. Solder each lead to target pad.
5. Remove tape and clean.

28/44-Pin QFN Assembly Instructions:

1. Start with cable associated with pin 1.
2. Fold cable up and over, forming a radius. Header pins will now be facing upwards.
3. Mate with the socket on the underside of the transition socket assembly, making sure pin 1 mates with the pin labeled “QFN Pin 1”.
4. Fold over and mate the other cables.
RECOMMENDED PCB LAYOUT

The recommended target board footprint layout for different pin-counts is shown here.

FIGURE 9: 6-PIN SOT, 8-PIN DFN

FIGURE 10: 16-PIN QFN

FIGURE 11: 20-PIN QFN

FIGURE 12: 28-PIN QFN

FIGURE 13: 44-PIN QFN

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

XLT06SOT
14-lead DIP to 6-lead SOT-23

XLT08DFN2
14-lead DIP to 8-lead DFN

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
Transition Socket Specification

XLT16QFN1, XLT28QFN3, XLT28QFN4, XLT44QFN2, XLT44QFN3, XLT44QFN4, XLT44QFN5

Multi-lead DIP to Multi-lead QFN, Top View

- XLT16QFN1 – 14L DIP to 16L QFN
- XLT28QFN3 – 18L DIP to 28L QFN (Shown)
- XLT44QFN5 – 18L DIP to 44L QFN

- XLT28QFN4 – 28L DIP to 28L QFN (Shown)
- XLT44QFN3 – 28L DIP to 44L QFN
- XLT44QFN4 – 28L DIP to 44L QFN

- XLT44QFN2 – 40L DIP to 44L QFN

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

Multi-lead DIP to Multi-lead QFN, Side View

Multi-lead DIP to Multi-lead QFN Cables

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

Drawing shown is for 28-lead DIP.
XLT20QFN-1
20-lead DIP Adapter Socket

Tolerances: diameters ±0.03 mm [±0.001"],
PCB perimeters ±0.13 mm [±0.005"],
PCB thicknesses ±0.18 mm [±0.007"],
pitches (from true position) ±0.08 mm [±0.003"],
all other tolerances ±0.13 mm [±0.005"] unless
stated otherwise.

20-lead QFN Header (Surface Foot)

Tolerances: diameters ±0.03 mm [±0.001"],
PCB perimeters ±0.13 mm [±0.005"],
PCB thicknesses ±0.18 mm [±0.007"],
pitches (from true position) ±0.08 mm [±0.003"],
all other tolerances ±0.13 mm [±0.005"] unless
stated otherwise.
XLT20QFN-1 Soldering Suggestions

This socket is difficult to solder since the device pins are not exposed, but embedded, into the socket's Surface Foot (SF).

1. To start, add tack flux to the target land pattern.
2. Visually align the QFN SF with the target land pattern. Then solder two opposite SF pins to the target lands so that the SF does not move around.
3. Finish soldering the rest of the SF pins.
4. If the SF has a middle ground pin, feed solder through the bottom side of the target board via holes. This will connect the center QFN SF pin to the target board.
5. Check each solder connection on the QFN SF pins.

You are now ready to attach the QFN header to the SF.
DISCONTINUED SOCKETS

The transition sockets in this section are discontinued and may no longer be ordered from Microchip. They are kept in this document as a reference for customers who still have these sockets.

PDIP TRANSITION SOCKET

A PDIP transition socket and associated hardware is shown in Figure 1.

FIGURE 1: PDIP TRANSITION SOCKET

The PDIP transition socket is a 0.300-inch Male to 0.600-inch Female adapter socket.

Microchip offers the following PDIP transition socket:
• XLT28XP: One 28-lead DIP transition socket and two 28-lead gold standoffs

See the drawings in this section for layout dimensions.
SOIC TRANSITION SOCKET

An SOIC transition socket and associated hardware is shown in Figure 2.

FIGURE 2: SOIC TRANSITION SOCKET

There are two components of the SOIC transition socket:
1. Adapter socket that connects to the PDIP device adapter
2. SOIC header that is to be soldered down to the target application

The following SOIC transition sockets have been discontinued:
• XLT08SO: One adapter socket and three 8-lead SOIC headers
• XLT14SO: One adapter socket and three 14-lead SOIC headers
• XLT18SO: One adapter socket and three 18-lead SOIC headers
• XLT20SO1: One adapter socket and three 20-lead SOIC headers
• XLT28SO: One adapter socket and three 28-lead SOIC headers

See the drawings in this section for layout dimensions.

Note: The SOIC header is designed for SOIC body width of 0.300-inch. The adapter leads should be cut to fit the 0.150-inch and 0.208-inch SOIC body widths.
XLT14SO (Discontinued – see XLT14SO-1)
14-lead DIP to 0.050-inch Adapter Socket

14-lead SOIC Header

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
The SOIC header is designed for an SOIC body width of 0.300-inch.
The adapter leads should be cut to fit the 0.150-inch and 0.208-inch SOIC body widths.

XLT18SO (Discontinued – see XLT18SO-1)
18-lead DIP to 0.050-inch Adapter Socket

18-lead SOIC Header

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
The SOIC header is designed for an SOIC body width of 0.300-inch.
The adapter leads should be cut to fit the 0.150-inch and 0.208-inch SOIC body widths.
Transition Socket Specification

XLT20SO1 (Discontinued – see XLT20SO1-1)
20-lead DIP to 0.050-inch Adapter Socket

XLT28SO (Discontinued – see XLT28SO-1)
28-lead DIP to 0.050-inch Adapter Socket

20-lead SOIC Header

28-lead SOIC Header

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
The SOIC header is designed for an SOIC body width of 0.300-inch.
The adapter leads should be cut to fit the 0.150-inch and 0.208-inch SOIC body widths.

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
The SOIC header is designed for an SOIC body width of 0.300-inch.
The adapter leads should be cut to fit the 0.150-inch and 0.208-inch SOIC body widths.
SSOP TRANSITION SOCKET

An SSOP transition socket and associated hardware is shown in Figure 3.

FIGURE 3: SSOP TRANSITION SOCKET

The SSOP transition sockets are similar to the SOIC transition sockets. There are two parts to the SSOP transition socket:

1. Adapter socket that connects to the PDIP device adapter.
2. SSOP header that gets soldered down to the target application.

The following SSOP transition sockets have been discontinued:

- XLT14SS: One adapter socket and three 14-lead SSOP headers
- XLT20SS: One adapter socket and three 20-lead SSOP headers
- XLT20SS1: One adapter socket and three 20-lead SSOP headers
- XLT28SS: One adapter socket and three 28-lead SSOP headers
- XLT28SS2: One adapter socket and three 28-lead SSOP headers
 for PIC16C55/57

See the drawings in this section for layout dimensions and clearances for tall components.

XLT14SS (Discontinued – see XLT14SS-1)
14-lead DIP to 0.8 mm Adapter Socket

14-lead SSOP Header

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
Break-away tabs are to be removed prior to providing power.
Transition Socket Specification

XLT20SS (Discontinued – see XLT20SS-1)
18-lead DIP to 0.8 mm Adapter Socket

XLT20SS1 (Discontinued – see XLT20SS1-1)
20-lead DIP to 0.8 mm Adapter Socket

20-lead SSOP Header

Shipped with break-away tabs attached to leads
Remove prior to providing power
* Top drawing shown with clip-on shrouds installed

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
Break-away tabs are to be removed prior to providing power.
XLT28SS (Discontinued – see XLT28SS-1)
XLT28SS2 (Discontinued – see XLT28SS2-1)

28-lead DIP to 0.8 mm Adapter Socket

28-lead SSOP Header

Shipped with break-away tabs attached to leads
Remove prior to applying power.

* Top drawing shown with clip-on shrouds installed

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
Break-away tabs are to be removed prior to applying power.
PLCC TRANSITION SOCKET

A PLCC transition socket and associated hardware is shown in Figure 4.

FIGURE 4: PLCC TRANSITION SOCKET

The PLCC transition socket is required for use along with the PLCC device adapters. The DAF18-1 device adapter is equipped with eight socket strips that interface with one of two transition sockets. The DAF18-3 device adapter is equipped with four socket strips that interface with one transition socket.

The PLCC transition sockets are designed with a threaded insert in the center of the footprint so that a 4/40 screw can securely fasten the transition socket to the device adapter.

The PLCC transition sockets are designed to be soldered to the target PCB PLCC surface mount pattern or inserted into a PLCC socket on the target PCB.

Note: To avoid solder bridging, do not place vias within 0.025-inch of the PLCC footprint. Also, any vias near the PLCC should be directly on the centerline of the pad.

The following PLCC transition sockets have been discontinued:
- XLT68L1: One 68-lead PLCC transition socket
- XLT84L1: One 84-lead PLCC transition socket

RECOMMENDED PCB LAYOUT

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

Drawing shown is for 68-lead.
XLT68L1, XLT84L1 (Discontinued)
68/84-lead Adapter Socket

*Caution: Pin 1 on the device adapter side (top of socket) is 180 degrees from pin 1 on the target side (bottom of socket).

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
Drawing shown is for 68-lead.
QFP TRANSITION SOCKET

QFP (MQFP, TQFP, PQFP) transition sockets and associated hardware are shown below.

FIGURE 5: QFP TRANSITION SOCKET

The QFP transition socket is required for use along with the QFP device adapter. The device adapter is equipped with four socket strips that interface with the transition socket.

Note: To avoid solder bridging, do not place vias within 0.025-inch of the QFP footprint. Also, any vias near the QFP should be directly on the centerline of the pad.

The following QFP transition sockets have been discontinued:

- XLT44PT: One 44-lead QFP transition socket, 0.80 mm
- XLT64PT1: One 64-lead QFP transition socket, 0.5 mm (PIC16C92X)
- XLT64PT2: One 64-lead QFP transition socket, 0.5 mm (PIC17CXXX)
- XLT64PT3: One 64-lead QFP transition socket, 0.8 mm (dsPIC30F)
- XLT64PT4: One 64-lead QFP adapter socket and one 64-lead QFP header (0.8 mm)
- XLT80PT: One 80-lead QFP transition socket, 0.5 mm

QFP TRANSITION SOCKET SOLDERING TIPS

- Before soldering, consider keeping the break-away tabs in place during soldering.
- Use controlled soldering iron tip temperatures between 300°C and 325°C (570°F to 615°F)
- If possible, use a PACE mini wave soldering iron tip or an equivalent tip design.
- Plan to solder one (1 of 4) side first, then the opposite side, then the remaining two sides.
- Soldering iron tip movement should be in the direction of the leads (backward and forward), not across the leads; dragging the tip across the leads may cause lead damage.
- Use generous amounts of soldering flux to aid in the solder flow action.
- If the break-away tabs are removed after soldering (using a dental pick or equivalent), any solder bridging between leads can be repaired by simply gently touching the soldering tip to the lead tip.

CAUTION

The 64 and 80-pin QFP headers are very delicate and can be easily damaged!

XLT44PT (Discontinued – see XLT44PT3)

44-lead QFP to 0.8 mm Adapter Socket

Note: To avoid solder bridging, do not place vias within 0.025-inch of the QFP footprint. Also, any vias near the QFP should be directly on the centerline of the pad.

Note: The XLT64PT1 for the PIC16C92X is not symmetrical. Please note Pin 1 orientation prior to soldering to the target system.

Pin 1

TOP VIEW

ST92X

CAUTION

The 64 and 80-pin QFP headers are very delicate and can be easily damaged!

XLT44PT (Discontinued – see XLT44PT3)

44-lead QFP to 0.8 mm Adapter Socket
Transition Socket Specification

XLT64PT1 (Discontinued)
XLT64PT2 (Discontinued – see XLT64PT5)
XLT80PT (Discontinued – see XLT80PT3)

64/80-lead QFP to 0.5 mm Adapter Socket

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT64PT1</td>
<td>1.25</td>
<td>0.95</td>
<td>0.400</td>
<td>0.500</td>
</tr>
<tr>
<td>XLT64PT2</td>
<td>1.45</td>
<td>1.15</td>
<td>0.475</td>
<td>0.575</td>
</tr>
<tr>
<td>XLT80PT</td>
<td>1.45</td>
<td>1.15</td>
<td>0.475</td>
<td>0.575</td>
</tr>
</tbody>
</table>

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

Drawing shown is for 64-lead.
This drawing shown with break-away tabs attached to the leads.
Break-away tabs are to be removed prior to applying power.
XLT64PT4 (Discontinued – see XLT64PT5)
64-lead QFP (0.8 mm)

Refer to the "Package Specification" for PCB footprint dimensions (DS00049).

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.

** TABLE 1: DVA/DAF INTERFACE SPECIFICATION FOR QFP PACKAGES **

<table>
<thead>
<tr>
<th>Socket</th>
<th>Package Style*</th>
<th>DVA/DAF Interface Specification**</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLT44PT</td>
<td>44PT TQFP</td>
<td>DVA-44PL</td>
</tr>
<tr>
<td></td>
<td>44PQ MQFP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44KW PQFP</td>
<td></td>
</tr>
<tr>
<td>XLT64PT1</td>
<td>64PT special</td>
<td>DVA-68PL2</td>
</tr>
<tr>
<td></td>
<td>PIC16C923/4,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIC16C925/6 only</td>
<td></td>
</tr>
<tr>
<td>XLT64PT2</td>
<td>64PT</td>
<td>DVA-68PL</td>
</tr>
<tr>
<td>XLT64PT3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XLT64PT4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XLT80PT</td>
<td>80PT</td>
<td>DVA-84PL</td>
</tr>
</tbody>
</table>

* Refer to the "Package Specification" for PCB footprint dimensions (DS00049).

** Refer to the processor module and device adapter specification for interface and dimensions to DVA/DAF (ICE 2000: "MPLAB® ICE 2000 Processor Module and Device Adapter Specification" (DS51140); ICE 4000: "MPLAB® ICE 4000 Processor Module and Device Adapter Specification" (DS51298)).
Transition Socket Specification

SOT/DFN/QFN TRANSITION SOCKETS

SOT/DFN/QFN transition sockets and associated hardware are shown below.

FIGURE 6: DFN/QFN TWO-PART TRANSITION SOCKET

The following SOT/DFN/QFN transition sockets have been discontinued:

- XLT08DFN: One 8-lead DFN transition socket. (Replaced by XLT08DFN2.)
- XLT28QFN: One 28-lead QFN transition socket. (Replaced by XLT28QFN4.)
- XLT28QFN2: One 28-lead QFN transition socket. (Replaced by XLT28QFN3.)
- XLT44QFN: One 44-lead QFN two-part transition socket. (Replaced by XLT44QFN2.)

See the drawings in this section for layout dimensions.

RECOMMENDED PCB LAYOUT

The recommended target board footprint layout for different pin-counts is shown here.

FIGURE 8: 8-PIN DFN

FIGURE 9: 28-PIN QFN

FIGURE 10: 44-PIN QFN
Transition Socket Specification

XLT08DFN (Discontinued – see XLT08DFN2)
8-lead DIP to 0.025-inch Adapter Socket

[Diagram of XLT08DFN]

XLT28QFN (Discontinued – see XLT28QFN4)
28-lead DIP to 0.025-inch Adapter Socket

[Diagram of XLT28QFN]
XLT28QFN2 (Discontinued – see XLT28QFN3)
18-lead DIP to 0.025-inch Adapter Socket

XLT44QFN (Discontinued – see XLT44QFN2)
40-lead DIP to 0.025-inch Adapter Socket

44-lead QFN Header

UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES.
APPENDIX A: REVISION HISTORY

A.1 Revision N (February 2006)

The following is a list of modifications:
1. Added Appendix A: Revision History.
2. Removed “Preliminary” from the document’s footer.
3. Added notes referring user to the “Packaging Specification” (DS00049) for PCB footprint dimensions in the “Two-Part QFP Sockets” section.

A.2 Revision P (September 2006)

The following is a list of modifications:
1. Removed “MPLAB ICE 2000/4000” from the name of the document. This document now applies to multiple tools, and the document title was renamed to reflect this.
2. Updated document to reflect support of 4 tools.
3. Updated document to include break-away tab information for XLT64PT1, XLT64PT2 and XLT80PT.

A.3 Revision Q (July 2008)

The following is a list of modifications:
1. Update for new SOIC, SSOP and QFN sockets.

A.4 Revision R (July 2009)

The following is a list of modifications:
1. Updated the first paragraph in the “Introduction” section.

A.5 Revision S (March 2010)

The following is a list of modifications:
1. Obsoleted XLT28XP and XLT64PT4
2. Added XLT44QFN4 and XLT44QFN5.
WorldWide Sales and Service

Americas

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0088

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

Asia/Pacific

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5066
Fax: 86-21-5407-5000

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

Asia/Pacific

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2500-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Europe

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820