Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MicroCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-0704-1
Object of Declaration: UCS1003-1 Evaluation Board

EU Declaration of Conformity

Manufacturer: Microchip Technology Inc.
2355 W. Chandler Blvd.
Chandler, Arizona, 85224-6199
USA

This declaration of conformity is issued by the manufacturer.

The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission's Guide for the EMC Directive 2004/108/EC (8th February 2010).

This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

This development/evaluation tool, when incorporating wireless and radio-telecom functionality, is in compliance with the essential requirement and other relevant provisions of the R&TTE Directive 1999/5/EC and the FCC rules as stated in the declaration of conformity provided in the module datasheet and the module product page available at www.microchip.com.

For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip's standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.

Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson
VP Development Tools

12-Sep-19
Date
Table of Contents

Preface .. 7

Chapter 1. Product Overview
- 1.1 Introduction .. 11
- 1.2 UCS1003-1 Evaluation System .. 11
- 1.3 What the UCS1003-1 Evaluation Board Kit Contains 12

Chapter 2. Installation and Operation
- 2.1 Introduction ... 13
- 2.2 Connectors on the Evaluation Board ... 13
- 2.3 LEDs on the Evaluation Board ... 14
- 2.4 Jumpers on the Evaluation Board .. 15
- 2.5 Data Test Points on the Evaluation Board ... 17
- 2.6 Ground Test Points on the Evaluation Board .. 18
- 2.7 Software Installation ... 19

Chapter 3. Hardware Description
- 3.1 UCS1003-1 Device ... 23
- 3.2 Evaluation Board Power Source ... 23
- 3.3 MCP2221 USB-to-SMBus Bridge ... 24
- 3.4 MCP23018 I/O expander ... 24
- 3.5 Direct SMBus Connect Option ... 24

Chapter 4. Software Description
- 4.1 Overview ... 25
- 4.2 Interface Description and Operation ... 27
- 4.3 Tab Descriptions ... 30
- 4.4 Troubleshooting .. 42

Appendix A. Schematic and Layouts
- A.1 Introduction ... 43
- A.2 Board – Schematic .. 44
- A.3 Board – Top Silk .. 45
- A.4 Board – Top Copper and Silk .. 45
- A.5 Board – Top Copper ... 46
- A.6 Board – Bottom Copper ... 46
- A.7 Board – Bottom Copper and Silk .. 47
- A.8 Board – Bottom Silk .. 47

Appendix B. Bill of Materials (BOM) ... 49

Worldwide Sales and Service ... 52

© 2016 Microchip Technology Inc.
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our website (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXXXXA”, where “XXXXXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the UCS1003-1 Evaluation Board. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Website
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the UCS1003-1 Evaluation Board. The manual layout is as follows:

• **Chapter 1. “Product Overview”** – Important information about the UCS1003-1 Evaluation Board.
• **Chapter 2. “Installation and Operation”** – Includes instructions on how to configure the UCS1003-1 Evaluation Board.
• **Chapter 3. “Hardware Description”** – Describes the UCS1003-1 Evaluation Board features and functionalities.
• **Chapter 4. “Software Description”** – Describes the PC Graphical User Interface that operates the UCS1003-1 Evaluation Board.
• **Appendix A. “Schematic and Layouts”** – Shows the schematic and layout diagrams for the UCS1003-1 Evaluation Board.
• **Appendix B. “Bill of Materials (BOM)”** – Lists the parts used to build the UCS1003-1 Evaluation Board.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Emphasized text</td>
<td>the Output window</td>
<td>the only compiler</td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Settings dialog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>select Enable Programmer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
<td></td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
<td></td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
<td></td>
</tr>
<tr>
<td>N'Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
<td></td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
<td></td>
</tr>
</tbody>
</table>

Courier New font:

Plain Courier New

Sample source code	#define START
Filenames	autoexec.bat
File paths	c:\mcc18\h
Keywords	_asm, _endasm, static
Command-line options	-Opa+, -Opa-
Bit values	0, 1
Constants	0xFF, 'A'

Italic Courier New

| A variable argument | file.o, where file can be any valid filename |

Square brackets []

| Optional arguments | mcc18 [options] file [options] |

Curly brackets and pipe character: { | }

| Choice of mutually exclusive arguments; an OR selection | errorlevel {0|1} |

Ellipses...

| Replaces repeated text | var_name [, var_name...] |

| Represents code supplied by user | void main (void) |

| | { ... } |
RECOMMENDED READING

This user's guide describes how to use UCS1003-1 Evaluation Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

- UCS1003-1/2/3 Data Sheet - “USB Port Power Controller with Charger Emulation” (DS200005346)
- MCP2221 Data Sheet - “USB 2.0 to I²C/UART Protocol Converter with GPIO” (DS200005292)
- AN24.14 - “UCS1002 Fundamentals of Custom Charger Emulation” (DS200005234)

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included at the back of this document.

Technical support is available through the website at: http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (June 2016)

- Initial release of this document.
Chapter 1. Product Overview

1.1 INTRODUCTION

This document provides a description of the software and hardware used to evaluate the features of the UCS1003-1.

1.2 UCS1003-1 EVALUATION SYSTEM

The evaluation system has several components, as shown in Figure 1-1:
- Customer-provided Windows® PC
- UCS1003-1 graphical user interface (GUI) program. The software is identical to the UCS81003 Evaluation Board GUI. Refer to Section 2.7 “Software Installation” for details.
- UCS1003-1 Evaluation Board
- USB Cable for GUI communications (Standard-A plug to mini-B plug)
- 5V power source (V₅)
- Customer-provided portable device and OEM USB charging cable (with Standard-A plug at board’s end)

![Figure 1-1: UCS1003-1 Evaluation System.](image-url)
1.3 WHAT THE UCS1003-1 EVALUATION BOARD KIT CONTAINS

The UCS1003-1 Evaluation Board kit includes:

- UCS1003-1 Evaluation Board (ADM00668)
- Important Information Sheet
- 5V AC-DC Wall Adapter
- Standard-A plug to mini-B plug USB Cable
Chapter 2. Installation and Operation

2.1 INTRODUCTION

This chapter identifies the main connectors, LEDs, jumpers and test points that can be found on the UCS1003-1 Evaluation Board. It also explains the steps necessary for the installation of the board’s graphical user interface.

2.2 CONNECTORS ON THE EVALUATION BOARD

Figure 2-1 shows the top of the evaluation board and highlights the connectors.

![UCS1003-1 Evaluation Board Top View – Connectors.](image)
TABLE 2-1: CONNECTOR DESCRIPTION

<table>
<thead>
<tr>
<th>Designator</th>
<th>Connector Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>Power jack</td>
<td>External 5V power supply</td>
</tr>
<tr>
<td>J2</td>
<td>USB Mini-B receptacle</td>
<td>This connects the board to the PC with the GUI software</td>
</tr>
<tr>
<td>J3</td>
<td>USB Standard-A plug</td>
<td>This connects the evaluation board to the USB host</td>
</tr>
<tr>
<td>J10</td>
<td>Right-Angle USB Standard-A receptacle</td>
<td>This connects the board to the portable device</td>
</tr>
</tbody>
</table>

2.3 LEDS ON THE EVALUATION BOARD

Figure 2-2 shows the top of the Evaluation Board and highlights the LEDs.

TABLE 2-2: LED DESCRIPTION

<table>
<thead>
<tr>
<th>Designator</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>USB_OK</td>
<td>When lit, this green LED means the MCP2221 USB bridge is connected to the PC.</td>
</tr>
<tr>
<td>LD2</td>
<td>SM_ACT</td>
<td>When flashing, this green LED indicates SMBus communication activity.</td>
</tr>
<tr>
<td>LD3</td>
<td>ALERT#</td>
<td>When lit, this red LED indicates an alert signal is active.</td>
</tr>
<tr>
<td>LD4</td>
<td>A_DET#</td>
<td>When lit, this green LED indicates a device is attached for the UCS1003-1.</td>
</tr>
</tbody>
</table>
2.4 JUMPERS ON THE EVALUATION BOARD

Figure 2-3 shows the top of the Evaluation Board and highlights the jumpers.

FIGURE 2-3: Evaluation Board Top View – Jumper Placement

- **J4**: VDD source selection: V_S or V_{BUS} from J2
- **J5**: V_S source selection: 5V from J1 or from J3 V_{BUS}
- **J7**: SMBus data, clock
- **J18**: Current limit - Stand-Alone mode
- **J16**: Current limit - SMBus mode
- **J9**: PWR_EN, EM_EN, M1, M2
- **J6**: LATCH, S0
- **J19**: Address selection - PWR_EN Active High
- **J17**: Address selection - PWR_EN Active Low
- **J10**: Connects UCS1003-1, V_{BUS} output to J10
TABLE 2-3: JUMPER DESCRIPTION (Note 1)

<table>
<thead>
<tr>
<th>Designator</th>
<th>Function</th>
<th>Jumper Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J4</td>
<td>V_DD source selection</td>
<td>1-2</td>
<td>The jumper populated on this header selects the V_DD supply source for the digital circuits on the board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3</td>
<td>V_DD is connected to VBUS pin of the J2 USB connector.</td>
</tr>
<tr>
<td>J5</td>
<td>V_S source selection</td>
<td>1-2</td>
<td>The jumper populated on this header selects the voltage input source for the power switch inside the UCS1003-1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3</td>
<td>V_S source is the J1 power connector (external 5V power supply).</td>
</tr>
<tr>
<td>J6</td>
<td>LATCH, S0</td>
<td>1-2</td>
<td>The jumpers must be left off for SMBus communication to be enabled. If the UCS1003-1 is in Stand-Alone mode (as selected by using J18 instead of J16), then the header pins have the following functions:</td>
</tr>
<tr>
<td></td>
<td>Logic Inputs settings</td>
<td>3-4</td>
<td>Jumper placed S0 = Logic Low – Detect Power state disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No jumper S0 = Logic High – Detect Power state enabled.</td>
</tr>
<tr>
<td>J7</td>
<td>SMBus data and clock</td>
<td>1-2</td>
<td>If the UCS1003-1 is in SMBus mode (as selected by using J16 instead of J18), then two jumpers must be populated in 1-2 and 3-4 positions to connect the clock and data lines to the MCP2221 USB bridge. The jumpers must be left off if UCS1003-1 is in Stand-Alone mode.</td>
</tr>
<tr>
<td></td>
<td>lines</td>
<td>3-4</td>
<td>Jumper placed LATCH = Logic Low – “Auto-retry” fault handler enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No jumper LATCH = Logic High – “Latch” fault handler enabled.</td>
</tr>
<tr>
<td>J8</td>
<td>V_BUS output connection</td>
<td></td>
<td>This jumper connects the 5V pin of connector J10 to the UCS1003-1 V_BUS power output pins. A current probe or a multimeter can be connected to this header for measuring the charging current and the voltage, close to the USB connector.</td>
</tr>
<tr>
<td>J9</td>
<td>PWR_EN, EM_EN, M1, M2</td>
<td>1-2</td>
<td>When a jumper is installed, the corresponding UCS1003-1 input pin will be in Logic Low state. Otherwise, the corresponding pin will be in Logic High state.</td>
</tr>
<tr>
<td></td>
<td>Logic Inputs settings</td>
<td>3-4</td>
<td>PWR_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-6</td>
<td>EM_EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-8</td>
<td>M1</td>
</tr>
<tr>
<td>J16</td>
<td>Current Limit</td>
<td></td>
<td>Placing one jumper on this header selects the current limit and sets the UCS1003-1 in SMBus mode. In this case, no jumper must be populated on J18 header.</td>
</tr>
<tr>
<td></td>
<td>SMBus mode</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The following headers must be populated with one jumper for the UCS1003-1 Evaluation Board to be functional:

- J4, J5, J8
- J16 or J18
- J17 or J19
- If the UCS1003-1 is configured in SMBus mode (as selected by using J16 instead of J18, two jumpers must be populated on J7; J6 must be left unpopulated. If the UCS1003-1 is configured in Stand-Alone mode, the jumpers on J7 must be left off.)
2.5 DATA TEST POINTS ON THE EVALUATION BOARD

Figure 2-4 shows the top of the board and highlights the USB data line test points.

![Figure 2-4: Evaluation Board Top View - Data Test Points.](image)
2.6 GROUND TEST POINTS ON THE EVALUATION BOARD

Figure 2-5 shows the top of the board and highlights the ground test points.

![Evaluation Board Top View – Ground Test Points.]

TABLE 2-4: DATA TEST POINTS DESCRIPTION

<table>
<thead>
<tr>
<th>Designator</th>
<th>Assigned Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>DP_IN</td>
<td>This test point connects to the D_{PIN} data line through a $1 , M\Omega$ series resistor.</td>
</tr>
<tr>
<td>TP2</td>
<td>DM_IN</td>
<td>This test point connects to the D_{MIN} data line through a $1 , M\Omega$ series resistor.</td>
</tr>
<tr>
<td>TP3</td>
<td>DM_OUT</td>
<td>This test point connects to the D_{MOUT} data line through a $1 , M\Omega$ series resistor.</td>
</tr>
<tr>
<td>TP4</td>
<td>DP_OUT</td>
<td>This test point connects to the D_{POUT} data line through a $1 , M\Omega$ series resistor.</td>
</tr>
</tbody>
</table>

TABLE 2-5: GROUND TEST POINTS DESCRIPTION

<table>
<thead>
<tr>
<th>Designator</th>
<th>Test Point Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J11, J12</td>
<td>Signal Ground</td>
<td>These test points connect to the signal ground of the board. These are the ground reference for the UCS1003-1.</td>
</tr>
<tr>
<td>J13, J14, J15</td>
<td>Earth Ground</td>
<td>These test points connect to the earth ground of the board (the shield of the USB connectors).</td>
</tr>
</tbody>
</table>
2.7 SOFTWARE INSTALLATION

To begin using the UCS1003-1 Evaluation Board, software must be installed on a Microsoft® Windows®-based computer with a USB port. The software is the same as the UCS81003 Evaluation Board GUI, with some actions that need to be done by the user, as explained in step 6.

1. Download the software archive for UCS81003 Evaluation Board from the board’s web page, unzip it and double-click the Setup.exe, to start the installation. Figure 2-6 shows the initial installation screen, which displays briefly as the setup program loads.

 ![Figure 2-6: Software Installation – Initialize Window.](image)

2. Click Next in the Destination Directory window, as shown in Figure 2-7. For proper operation, the files must be installed in the default locations. The default location for the software files is `C:\Program Files(x86)\Microchip\UCS81003\`, while for the LabVIEW software is `C:\Program Files(x86)\National Instruments`.

 ![Figure 2-7: Software Installation – Setting the Destination Directory.](image)
3. Read and accept the license agreement, then click **Next**.

![License Agreement](image)

FIGURE 2-8: Software Installation – Software License Agreement.

4. To use the LabVIEW software, read and accept the license agreement, then click **Next**.

![License Agreement](image)

FIGURE 2-9: Software Installation – LabVIEW License Agreement.

5. On the following screens, select **Next** and follow the on-screen instructions to complete the installation. When installation is complete, the program will run automatically. If a screen appears requiring a restart for the changes to take effect, reboot the computer.
6. Download the archive called "UCS1003-1 Configurations.zip" from the UCS1003-1 board's web page and unzip it. The archive contains a folder called "Configurations". Go to the location of the installation directory of the UCS81003 software (the default location for the software files is C:\Program Files(x86)\Microchip\UCS81003\) and overwrite the existing Configurations folder with the one from the archive. This step needs to be done once only, at installation. If the UCS81003 Evaluation Board software must be used on the same computer, then that software needs to be reinstalled in a different location.
Chapter 3. Hardware Description

3.1 UCS1003-1 DEVICE

The UCS1003-1 provides a single USB port power switch for precise control of up to 3.0A continuous current (2.85A typical) with overcurrent limiting, dynamic thermal management, latch/auto-recovery upon fault, selectable active low or high enable, under and overvoltage lockout, and back-drive protection.

USB Charging Port profiles are integrated into the UCS1003-1 to ensure compliance to multiple standards. In addition to power switching and USB Charging Port profiling, the UCS1003-1 provides automatic and configurable USB data line handshaking to enable charging of USB-IF Battery Charging 1.2 (CDP or DCP modes), Chinese Telecommunications Industry Standard YD/T 1591-2009, Apple® Inc., RIM® and many other mobile devices.

The UCS1003-1 provides a device attachment detection output, as well as a dedicated alert output, with current monitoring and charge rationing for controlled delivery of current regardless of a host’s power state. When the limit is reached, the UCS1003-1 will perform the user-programmed behavior (report and disconnect is the default).

3.2 EVALUATION BOARD POWER SOURCE

The UCS1003-1 has split power supply support:

- V_S is the voltage input to Power Switch. This supply rail is required to charge the portable device. V_S source is selected by populating a jumper on J5 header, as follows:

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>V_S is supplied from the external 5V power supply connected to J1 power jack.</td>
</tr>
<tr>
<td>2-3</td>
<td>V_S is supplied from the V_{BUS} pin of the J3 USB connector. Use this option only if the USB host port can supply the charging current for the portable device.</td>
</tr>
</tbody>
</table>

- V_{DD} is the power supply for chip functionality. The UCS1003-1 Evaluation Board contains two additional ICs, MCP2221 USB bridge and MCP23018 I/O expander, which are also powered from the V_{DD} supply rail. V_{DD} source is selected by populating a jumper on the J4 header, as follows:

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>V_{DD} is supplied from V_{BUS} pin of the J2 USB connector. When using the board in this configuration and the Attach Detection feature of the UCS1003-1 is used, the V_S voltage must not exceed $V_{DD} + 150$ mV, as specified in the data sheet.</td>
</tr>
<tr>
<td>2-3</td>
<td>V_{DD} is connected to V_S. This configuration is recommended when using the Attach Detection feature. If the board is evaluated with a PC running the GUI, then the V_S must be supplied after the USB cable is plugged into the J2 connector.</td>
</tr>
</tbody>
</table>
3.3 **MCP2221 USB-TO-SMBUS BRIDGE**

The MCP2221 is a USB-to-UART/i²C bridge that supports SMBus communication. It is controlled through USB interface by the GUI running on the PC. It is the master device on the SMBus/i²C bus. It is used to read and write the registers of the two devices connected to the SMBus/i²C interface: UCS1003-1 and MCP23018 I/O expander.

3.4 **MCP23018 I/O EXPANDER**

MCP23018 is a 16-bit I/O Expander with open-drain outputs and i²C interface. Its i²C address is configured to $0100_000_{(R/W)}$, different than all possible addresses of the UCS1003-1.

The I/O pins used in this application are configured as inputs. They are used to read the logic state of the following UCS1003-1 pins: ALERT#, ADET#, PWR_EN, EM_EN, M1, M2.

3.5 **DIRECT SMBUS CONNECT OPTION**

It is also possible to connect an external SMBus master to the UCS1003-1 Evaluation Board. Remove the jumpers on J7 and connect the SMBus master to the header pins that are linked directly to UCS1003-1 pins SMDATA/LATCH and SMCLK/S0. Note that ground must be connected to one of the test point grounds or header pins on the evaluation board. See Figure 3-1 for header pins description.

![Figure 3-1: UCS1003-1-to-SMBus Bridge Jumpers.](image)
Chapter 4. Software Description

4.1 OVERVIEW

To get the graphical interface and the evaluation board running, follow these instructions:

1. Start the UCS81003/UCS1003-1 GUI software: from the Windows Start menu, select Programs > Microchip > UCS81003.

2. Connect the USB mini connector end of the cable to the board and the standard USB connector of the cable to any available USB port on the PC. If the VDD supply is connected to VS (the jumper on J4 header is populated on position 2-3), then connect the VS supply. The USB Activity LED should light, indicating that the MCP2221 USB bridge is connected to the PC.

The UCS81003/UCS1003-1 Evaluation Board interface (Figure 4-1), consists of five tabs (Main, Configuration & General Status, Custom Charging, Register Set and Demo) and the right-side sections that are always visible (Panel Controls, Pin State & Attach Status and Active Mode Selection).

![Figure 4-1: UCS81003/UCS1003-1 Evaluation Board GUI Initial Window.](image-url)
4.1.1 Tips for Using the Evaluation Board GUI

- For many controls on the GUI panel, placing the mouse cursor over a control will pop up context help that indicates the register address or provides a description.
- After a power up of the evaluation board, the default settings are loaded. Users can save setting configurations to user-named files which can be reloaded at any time for quick reconfiguration (see Section 4.3.4.3 “Configuration Save and Load”).
- The GUI cannot be used to demonstrate UCS1003-1 behavior in Stand-Alone mode since SMBus communication is required.

4.1.2 GUI Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>Battery charging</td>
</tr>
<tr>
<td>CDP</td>
<td>Charging downstream port</td>
</tr>
<tr>
<td>DCE</td>
<td>Dedicated charger emulation</td>
</tr>
<tr>
<td>DCP</td>
<td>Dedicated charging port</td>
</tr>
<tr>
<td>EM</td>
<td>Emulation</td>
</tr>
<tr>
<td>EM_EN</td>
<td>Emulation enable</td>
</tr>
<tr>
<td>M1</td>
<td>Mode control pin number one</td>
</tr>
<tr>
<td>M2</td>
<td>Mode control pin number two</td>
</tr>
</tbody>
</table>

4.1.3 Keyboard Shortcuts

Some GUI controls have keyboard shortcuts, as shown in Table 4-1.

<table>
<thead>
<tr>
<th>TABLE 4-1: UCS1003-1 EVALUATION BOARD GUI KEYBOARD SHORTCUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI Control</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Run</td>
</tr>
<tr>
<td>Stop</td>
</tr>
</tbody>
</table>
4.2 INTERFACE DESCRIPTION AND OPERATION

4.2.1 Panel Controls

The Panel Controls section on the right side of the GUI, shown in Figure 4-2, affects the GUI operation. This section is always displayed.

![Panel Controls](image)

FIGURE 4-2: Panel Controls.

4.2.1.1 STOP AND RUN BUTTONS

Pressing the Stop button, shown in Figure 4-2, interrupts GUI software communication with the evaluation board. When this button is clicked, the Run button appears under an extended menu bar, as shown in Figure 4-3.

![Stop and Run Button](image)

FIGURE 4-3: Stop and Run Button.
4.2.1.2 RUN BUTTON

To restart communication between the software and the evaluation board, click the Run button. This button disappears when communication resumes.

Note: Stopping and restarting the GUI does not affect register settings. To restore default register settings, disconnect power from the board, then reconnect power.

To close the program, press the Close (X) button on the upper right corner of the window.

4.2.1.3 COM STATUS INDICATOR

The COM Status indicator shows the status of communications over the SMBus. During normal operation, COM Status is green. If SMBus communications fails, COM Status turns red (or alternates red and green).

4.2.1.4 REGISTER READ DELAY

The Register Read Delay sets the GUI control panel update speed. This affects the speed at which the software reads the registers, but will not affect the device’s sampling time. The default is 25 ms. This number can range from 0 to 5000 ms in increments of 25 ms.

4.2.1.5 SINGLE/CONTINUOUS READ

The panel defaults to continuous register reads (toggle switch in down position, as shown in Figure 4-2). To stop continuous register reads, check the “Single Read Enable” box. In order to capture the register values at a given time, click the switch, which will briefly flip to Single Read.

4.2.1.6 DEFAULT

When this button is pressed, it loads the defaults to all registers of the UCS1003-1.

4.2.1.7 STEP

When selected, Step will go through the Emulation Profiles in sequence, from Legacy 1 through 7, then BC1.2 DCP, and finally Custom. The actual DCE cycle is slightly different, see the product data sheet for more information (**DS20005346**).

4.2.1.8 DEMO

The Demo button enables an automated routine to cycle through a user-defined set of profiles and selects the highest current profile. This feature emulates an external controller and is not part of the UCS1003-1 device.
4.2.2 Pin State and Attach Status Panel

The Pin State & Attach Status section on the right side of the GUI, shown in Figure 4-4, provides a quick graphical status reference and allows physical control pin override. This section is always displayed.

![Pin State & Attach Status](image)

FIGURE 4-4: Pin State and Attach Status.

4.2.3 Pin State & Attach Status Panel

4.2.3.1 ALERT# AND A_DET# INDICATORS

When the ALERT# and A_DET# indicators are green, the signals at the device’s respective pin are low and the corresponding condition has occurred (Alert or Device attached, respectively). When the indicators are dark, the pin states are high.

4.2.3.2 PIN INDICATORS

The pin indicators (SEL, PWR_EN, M1, M2 and EM_EN) shown in Figure 4-4 are green if the signal on the corresponding pin on the UCS1003-1 device is high, and dark if the signal is low. If the “Pin Ignore” box is checked (see Section 4.2.3.3 “Pin Override”), these indicators will reflect the GUI overrides for these pins.

4.2.3.3 PIN OVERRIDE

For evaluation convenience, the GUI can override the setting of the following pins on the UCS1003-1 device: PWR_EN, M1, M2 and EM_EN. Check the “Pin Ignore” box (see Figure 4-4) to enable pin override. Then, check in the corresponding pin box to set the value high.

Note 1: Pin override does not affect the actual signal on the pin. It only affects the register values.

Note 2: The SEL pin is only read once by the UCS1003-1 at power up, so there is no pin override for it. To close the port power switch, the PWR_EN state must match the SEL state (e.g., SEL = high and PWR_EN = high).
4.2.4 Active Mode Selection

The Active Mode Selection section on the right side of the GUI, shown in Figure 4-5, provides a quick reference regarding operating state based on the values of M1, M2 and EM_EN. This section is always displayed.

![Active Mode Selection](image)

FIGURE 4-5: Charger Emulation Selection.

4.3 TAB DESCRIPTIONS

4.3.1 Main Tab

The **Main** tab (Figure 4-6) shows key parameters related to the port power switch, including the maximum current limit, the present current limit (always equal to or less than the maximum current limit), and power state (e.g. detect, active, error, etc.). When a portable device has been successfully attached, the screen shows the power state change from Detect to Active and shows the various handshakes applied. Once it is determined that the device is charging, the screen shows which emulation profile was successful, and the graph shows the charging current. Optionally, the user may monitor the charge delivered or ration the charge delivered to the attached device.

![Main Tab Window Overview](image)

FIGURE 4-6: Main Tab Window Overview.
4.3.1.1 DEDICATED CHARGER EMULATION (DCE) CYCLE

As shipped, the UCS1003-1 is ready to function as a dedicated charger, which will be applied when there is an attach detection. To view this behavior, perform the following:

1. Connect Vₗ to the evaluation board (see Section 2.4 “Jumpers on the Evaluation Board”). The VS_LOW indicator at the bottom of the Main Tab must be dark. If the color is red, the voltage is not high enough to charge a portable device.

2. Connect a portable device to the board. Use the OEM USB charging cable that comes with the portable device.

3. The UCS1003-1 should detect an attachment, switch to the Active Power state, apply an emulation profile and deliver a charge. Figure 4-7 shows the interface after charging has started.

4. Disconnect the portable device from the board.

The UCS1003-1 should detect a removal, switch to the Detect power state, and stop delivering a charge. Figure 4-8 shows the interface after a removal was detected.
4.3.1.2 CHARGING DOWNSTREAM PORT (CDP)

The CDP charging profile is based on the "USB Battery Charging Specification v1.x". When a BC1.x-compliant portable device attachment is detected, the UCS1003-1 and the portable device do handshaking based on the standard. If handshaking is successful, charging occurs up to the set current limit.

To select the CDP port power profile, M1, M2 and EM_EN must be all high. This can be done by removing the jumpers for these pins (from J9 header) or by using the pin override in the GUI (see Section 4.2.3.3 “Pin Override”).

4.3.1.3 PASS-THROUGH

Data Pass-Through does not apply any type of charger emulation. When selected, it closes the USB high-speed data switch and supplies current up to the current limit.

To select Data Pass-Through, M1, M2 and EM_EN can be set to any one of the two DATA PASS-THRU combinations (010 and 110), as shown in Figure 4-9. This can be done by setting the jumpers for these pins (from J9 header – see Section 2.4 “Jumpers on the Evaluation Board”) or by using the pin override in the GUI (see Section 4.2.3.3 “Pin Override”).
4.3.1.4 CURRENT MONITORING AND CHARGE RATIONING

To view current monitoring and current rationing, perform the following on the **Main** tab:

1. Set a ration limit. The ration limit is expressed in mAh (electric charge).
2. Set rationing behavior. The ration completion behavior defaults to “Report & Disconnect”. Once the ration limit is reached, portable device charging will cease, the ALERT# pin will assert, and the Ration Complete bit will be set. If you do not want the system to behave in this fashion, select one of the other three options from the “Ration Completion Behavior” drop-down list: Report, Report & Sleep or Take No Action.
3. Connect \(V_S \) to the evaluation board (see **Section 2.4 “Jumpers on the Evaluation Board”**). The VS_LOW indicator on the bottom of the Main Tab must be dark. If the VS_LOW indicator is red, the voltage is not high enough to charge a portable device.
4. Connect a portable device to the evaluation board. Use the OEM USB charging cable that comes with the portable device.
5. Enable rationing by checking the Ration Enable check box on the Main Tab.
6. Watch the GUI as the device starts charging. **Figure 4-10** shows the interface after the ration limit was reached (for “Report & Disconnect” behavior setting).

Note: As shown in **Figure 4-10**, the green trace is the instantaneous current, while the red diagonal line is the charge being delivered in mAh. Both are also presented in numeric format inside the bottom left boxes. Trace color and characteristics can be changed by clicking on the waveform boxes to the left of these numerical values.

FIGURE 4-10: **Main Tab - Ration Limit Reached.**
4.3.2 Configuration and General Status Tab

The Configuration & General Status tab (Figure 4-11), includes various status indicators and configuration controls. Items are grouped by function, detailed in the following sections.

FIGURE 4-11: Configuration & General Status Tab.

4.3.2.1 INTERRUPT STATUS

The indicators in the Interrupt Status section turn green when the corresponding bit is high, and are dark when the bit is low.

4.3.2.2 GENERAL STATUS

Indicators in the General Status section turn green when the corresponding bit is high and are dark when the bit is low.

4.3.2.3 EMULATION BEHAVIOR

Check the necessary check box to enable the corresponding emulation behavior.

4.3.2.4 COMMUNICATIONS

SMBus address is displayed. SMBus timeout can be disabled.

4.3.2.5 EMULATION PROFILE DISABLE

Check the Profiles boxes to disable them. They will not be used during emulation. By selecting "Disable ALL", all profile check boxes will toggle.

4.3.2.6 ATTACH/REMOVE ENABLE

Click the S0_SET box to remove the check mark and disable the function.
4.3.2.7 FAULT HANDLER
These are controls related to fault handling.

4.3.2.8 GENERAL CONTROL
Controls for general parameters.

4.3.2.9 THERMAL REGULATION
Controls for thermal and detection delay parameters.

4.3.2.10 PORT POWER KEEP-OUT
Displays values for the port power parameters.

4.3.2.11 GENERAL EMULATION/CHARGING SETTINGS
Controls for emulation and charging.

4.3.2.12 EMULATION TIMEOUTS
Sets the emulation timeout period for each profile. These timeout periods are not used if the EM_TIMEOUT_DIS control in the Emulation Behavior section is checked.

4.3.2.13 CHARGING THRESHOLD CURRENT
Controls charging threshold current setting.

4.3.2.14 HIGH SPEED SWITCH CONFIGURATION
Controls the high-speed switch parameters.
4.3.3 Custom Charging Tab

The Custom Charging tab (Figure 4-12), provides the means for users to create custom charger emulator configurations. These configurations include signaling on the USB data lines, as well as determining what method of current limiting to employ (constant current or trip). For more information, refer to the UCS1003-1 Data Sheet - “USB Port Power with Charger Emulation” (DS200005346) and Application Note AN 24.14 - “UCS1002 Fundamentals of Custom Charger Emulation” (DS200005234).

FIGURE 4-12: Custom Charging Tab.

4.3.3.1 CUSTOM EMULATION CONFIGURATION

Creating a custom emulation profile is a two-part process of entering the appropriate stimulus-response pairs in the provided fields, as well as the desired current limiting behavior (after emulation is applied, and the portable device starts to draw current).

4.3.3.1.1 Example

Settings shown in Figure 4-12 will apply the Legacy 2 stimulus pair. This includes a voltage divider on DP and on DM with the values shown under STEP 5 column.

If the portable device draws bus current greater than the charging threshold being used, it will always operate in Current Limiting Trip mode (with trip point based on the current limit setting).
4.3.3.2 CUSTOM CURRENT LIMITING BEHAVIOR

The second part of creating custom profiles is to specify the behavior of current limiting and minimum voltage output. This is accomplished using the “Ibus_r2min” and “VBus_Min” drop-down lists, as shown in Figure 4-13.

![Current-Voltage Behavior Selection](image)

FIGURE 4-13: Current-Voltage Behavior Selection.

4.3.3.3 CUSTOM EMULATION QUICK LOAD

The Custom Emulation Quick Load drop-down menu allows single-click loading of the Custom Emulation Configuration registers. Simply select the profile to load from the menu and registers 41h – 4Ch will be loaded with that profile.

The Legacy 1 to 7 profiles listed in the Custom Emulation Quick Load drop-down menu correspond to the UCS81003 settings. The profile order is different in UCS1003-1, as shown in Table 4-2.

<table>
<thead>
<tr>
<th>UCS81003</th>
<th>UCS1003-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy 1</td>
<td>Legacy 5</td>
</tr>
<tr>
<td>Legacy 2</td>
<td>Legacy 1</td>
</tr>
<tr>
<td>Legacy 3</td>
<td>Legacy 2</td>
</tr>
<tr>
<td>Legacy 4</td>
<td>Legacy 3</td>
</tr>
<tr>
<td>Legacy 5</td>
<td>Legacy 4</td>
</tr>
<tr>
<td>Legacy 6</td>
<td>Legacy 7</td>
</tr>
<tr>
<td>Legacy 7</td>
<td>Legacy 6</td>
</tr>
</tbody>
</table>

Table 4-2: DCE Legacy Profiles Correspondence Between UCS81003 and UCS1003-1

4.3.3.4 SAVE CUSTOM EMULATION CONFIGURATION

Customs Emulation Configuration allows for a quick way to save the necessary registers to configure the UCS1003-1 for a custom profile to a file. Enter the path and press the SAVE button. Files will be overwritten if duplicate file names are used.

Registers 40h – 4Ch (Custom Emulation Configuration - Custom Charging tab), 16h (Emulation Behavior - Configuration tab), 19h (ILIM - Main tab), 25h (High Speed Switch Configuration – Configuration tab) and 51h (Custom Current Limiting Behavior – Custom Charging tab) will be saved in a two-column format. Comments can be added at the end of the file for documentation.
4.3.4 Register Set Tab

The Register Set tab (Figure 4-14), allows viewing and updating of the UCS1003-1 registers, identifies the device on the evaluation board and manages configuration files.

FIGURE 4-14: Register Set Tab.

4.3.4.1 REGISTER CONTENT

Register Content shown in Figure 4-14 is a scrollable list of the UCS1003-1 registers and the current value. It is important to note that not all addresses are physical memory locations on the device; these registers will read ‘0’. Likewise, some registers shown, that are undocumented in the data sheet, may contain data. Editing these registers can cause unexpected results.

To update a register value, locate the register address in the left column, type the new value in the corresponding cell in the right column, and press Enter on the keyboard or click outside the editable field to complete the action.

4.3.4.2 PRODUCT INFORMATION

Product Information panel shows the values of three registers (FDh, FEh and FFh) which identify the device on the evaluation board.
4.3.4.3 CONFIGURATION SAVE AND LOAD

The Register Set tab contains controls (Figure 4-15) which save the settings currently configured in the UCS1003-1 to allow quick reconfiguration at any time.

To save configuration settings, configure the UCS1003-1 as desired, then display the Register Set tab. Type a path in the “File Stored Path” field or press the Browse button to select the folder where the configuration file will be saved. The file should be named with the .txt extension or with a similar text file format. Once a file name and location has been chosen, click the Save All Register Values switch, and the file is saved.

The data is saved on two columns separated by tabs. The first column is the register address and the second column is the register data.

Once a file is saved, it can be recalled at any time by selecting the file in the “File Load Path” field and clicking the Load All Register Values switch.

Note: If a file with the same name already exists, it will be overwritten and the old data will be lost.
4.3.5 Demo Tab

The Demo tab (Figure 4-16) demonstrates external controller logic to apply custom emulation profiles and optimize charging current. This feature uses the LabView engine to step through the selected files and store the current drawn by the device. Several options are available to customize the operation of the demo and explore the potential of the UCS1003-1.

![FIGURE 4-16: Demo Tab.]

4.3.5.1 STEP 1: CONFIGURE DEVICE FOR DEMO ROUTINE

The first step in preparing to run the Demo feature is to configure the device to the desired starting configuration. A file has been preloaded at installation and is ready to be used, or a new configuration can be created. Each time the Demo button is toggled (in the Panel Control section), the Setup.txt file will be loaded.

4.3.5.2 STEP 2: DEFINE CUSTOM EMULATION CONFIGURATIONS

At installation, a set of files are preloaded on the users system (profile1.txt – profile7.txt) with the default profiles of the UCS1003-1. These files can be changed easily by using the Custom Charging tab.

4.3.5.2.1 Active Files

Check the corresponding check box to activate the desired profile in the demo routine.

4.3.5.2.2 Custom Emulation Files

This column contains the full path to the profile file to be loaded. This file should contain registers 40h – 4Ch, 16h and 25h. This file can be created with the GUI on the Custom Charging tab.
4.3.5.2.3 Current Reading
This column displays the current being drawn from the attached device. If “End Value” is selected (in the Demo Options section, Current Reading features), this will update continuously. If “MAX Value” is selected, this will store the highest value of current during the dwell time.

4.3.5.2.4 Dwell Time
“Dwell Time” column defines the amount of time a profile is applied (from PWR_EN set to PWR_EN unset). Each profile can have a different dwell time value.

4.3.5.3 DEMO OPTIONS

<table>
<thead>
<tr>
<th>TABLE 4-3: DEMO OPTIONS DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Repeat if 0 mA</td>
</tr>
<tr>
<td>Repeat Forever</td>
</tr>
<tr>
<td>Dead Batt. Repeat</td>
</tr>
<tr>
<td>Dead Batt. Delay</td>
</tr>
<tr>
<td>Current Reading</td>
</tr>
</tbody>
</table>

4.3.5.4 CUSTOM FILE PATH QUICK LOAD
When starting the UCS1003-1 interface, the file paths are reset to a default path. If desired, the user may save the files to an alternate location. This quick-load feature saves the paths of the Setup.txt and all seven profile locations to quickly return or change files with one click.

4.3.5.5 RUNNING THE DEMO
Once the files and settings are configured as desired, enable the Demo routine by pressing the Demo switch within the Panel Controls area. The routine begins and the results are displayed in Profile MAX and Current MAX fields. By default, the Demo routine will enable the profile that is indicated by Profile MAX.

- Profile MAX: Stores the profile of the highest value of current draw.
- Current MAX: Stores the highest current associated with the Profile MAX #.

Note: The Demo tab does not need to be visible to activate the Demo routine.
4.4 TROUBLESHOOTING

Table 4-4 identifies possible problems and their solutions to troubleshoot the UCS1003-1 software.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI Controls unresponsive after installation</td>
<td>Restart the computer. In some cases, a restart is required after installation.</td>
</tr>
<tr>
<td>GUI freezes</td>
<td>If the GUI freezes for unknown reasons, communications cannot be stopped, and the program cannot be closed, disconnect the USB cable from the evaluation board, then close the program. Reconnect the board, then restart the GUI.</td>
</tr>
<tr>
<td>Random panel display</td>
<td>When a board is not connected to the PC running the GUI, the panel will be in an all-zero register-displayed state. This also occurs when SMBus communications are disconnected. The panel display is not meaningful. Connect the board and establish SMBus communications. If this still does not work, there is a problem with the connection. The cable or the USB port may be defective.</td>
</tr>
<tr>
<td>Device is not charging or not charging optimally</td>
<td>Check if the current limit jumper is set appropriately. The current source may not have high enough capacity from V_S. Run the Demo routine to determine highest current profile.</td>
</tr>
</tbody>
</table>
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the UCS1003-1 Evaluation Board:

- Board – Schematic
- Board – Top Silk
- Board – Top Copper and Silk
- Board – Top Copper
- Board – Bottom Copper
- Board – Bottom Copper and Silk
- Board – Bottom Silk
Schematic and Layouts

A.3 BOARD – TOP SILK

A.4 BOARD – TOP COPPER AND SILK
A.5 BOARD – TOP COPPER

A.6 BOARD – BOTTOM COPPER
Appendix B. Bill of Materials (BOM)

TABLE B-1: BILL OF MATERIALS (BOM) (Note 1)

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADAPTER1</td>
<td>Mech. HW. Adapter Interchangeable Blades Kit For Phihong R-Series Wall Adapters</td>
<td>Phihong USA Corporation</td>
<td>RPBAG</td>
</tr>
<tr>
<td>4</td>
<td>C1, C4, C6, C7</td>
<td>Capacitor ceramic 0.1 μF 25V 10% X7R SMD. 0603</td>
<td>Murata Electronics®</td>
<td>GRM188R71E104-5A01D</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>Capacitor ceramic 10 μF 10V 10% X7R SMD. 0805</td>
<td>Murata Electronics</td>
<td>GRM21BR71A106KE51L</td>
</tr>
<tr>
<td>1</td>
<td>C3</td>
<td>Capacitor ceramic 0.01 μF 16V 10% X7R SMD. 0603</td>
<td>Samsung Group</td>
<td>CL10B103KO8NNNC</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
<td>Capacitor ceramic 1 μF 16V 10% X7R SMD. 0603</td>
<td>Taiyo Yuden Co., Ltd.</td>
<td>EMK107B7105KA-T</td>
</tr>
<tr>
<td>1</td>
<td>C8</td>
<td>Capacitor tantalum 150 μF 10V 10% 100m ohm SMD. D</td>
<td>AVX Corporation</td>
<td>TPSD157K010R0100</td>
</tr>
<tr>
<td>1</td>
<td>C9</td>
<td>Capacitor ceramic 0.47 μF 6.3V 10% X5R SMD. 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J474-5A01D</td>
</tr>
<tr>
<td>1</td>
<td>C10</td>
<td>Capacitor ceramic 470 pF 50V 10% X7R 0603</td>
<td>TDK Corporation</td>
<td>C1608X7R1H471K</td>
</tr>
<tr>
<td>1</td>
<td>C11</td>
<td>Capacitor ceramic 4.7 μF 16V 10% X5R SMD. 0603</td>
<td>TDK Corporation</td>
<td>C1608X5R1C475K080AC</td>
</tr>
<tr>
<td>1</td>
<td>CBL1</td>
<td>Mech. HW. Cable USB-A male to Mini USB-B male 3ft. black</td>
<td>Katerno</td>
<td>10UM-02103BK</td>
</tr>
<tr>
<td>2</td>
<td>D1, D2</td>
<td>Diode Zener T5V0S5-7 5V 150mW SMD SOD-523</td>
<td>Diodes® Incorporated</td>
<td>T5V0S5-7</td>
</tr>
<tr>
<td>2</td>
<td>D3, D4</td>
<td>Diode Zener PESD5V0X1BL 5V SMD SOD-882</td>
<td>NXP Semiconductors</td>
<td>PESD5V0X1BL,315</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>Connector jack power 2.1 mm 16V 2.5A male TH. R/A</td>
<td>CUI Inc.</td>
<td>PJ-002A</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>Connector USB Mini-B female SMD. R/A</td>
<td>Hirose Electric Co., Ltd.</td>
<td>UX60SC-MB-5ST(80)</td>
</tr>
<tr>
<td>1</td>
<td>J3</td>
<td>Connector USB 3.0 Standard-A plug SMD. R/A</td>
<td>Wurth Elektronik</td>
<td>692112030100</td>
</tr>
<tr>
<td>2</td>
<td>J4, J5</td>
<td>Connector header-2.54 male 1x3 gold 5.84 MH TH. vertical</td>
<td>FCI</td>
<td>68000-103HLF</td>
</tr>
<tr>
<td>1</td>
<td>J6</td>
<td>Connector header-2.54 male 2x2 gold 5.84 MH TH. vertical</td>
<td>Samtec, Inc.</td>
<td>TSW-102-07-G-D</td>
</tr>
<tr>
<td>1</td>
<td>J7</td>
<td>Connector header-2.54 male 2x2 gold 5.84 MH TH. vertical</td>
<td>Samtec, Inc.</td>
<td>HTSW-102-07-G-D</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
TABLE B-1: BILL OF MATERIALS (BOM) (CONTINUED) (Note 1)

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J8</td>
<td>Connector header-2.54 male 1x2 gold 5.84 MH TH. vertical</td>
<td>FCI</td>
<td>68001-202HLF</td>
</tr>
<tr>
<td>1</td>
<td>J9</td>
<td>Connector header-2.54 male 2x4 gold 5.84 MH TH. vertical</td>
<td>Samtec, Inc.</td>
<td>TSW-104-08-L-D</td>
</tr>
<tr>
<td>1</td>
<td>J10</td>
<td>Connector USB 3.0 Standard-A rctp. TH. R/A</td>
<td>Wurth Elektronik</td>
<td>692121030100</td>
</tr>
<tr>
<td>5</td>
<td>J11, J12, J13, J14, J15</td>
<td>Connector TP loop tin SMD.</td>
<td>FCI</td>
<td>68602-116HLF</td>
</tr>
<tr>
<td>4</td>
<td>J16, J17, J18, J19</td>
<td>Connector header-2.54 male 2x8 gold 5.84 MH TH. vertical</td>
<td>FCI</td>
<td>68602-116HLF</td>
</tr>
<tr>
<td>11</td>
<td>JP1</td>
<td>Mech. hardware jumper 2.54 mm 1x2 handle gold</td>
<td>TE Connectivity, Ltd.</td>
<td>881545-2</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>Inductor choke Common Mode 90 ohm 0805</td>
<td>Murata Electronics</td>
<td>DLW21HN900SQ2L</td>
</tr>
<tr>
<td>2</td>
<td>LD1, LD4</td>
<td>Diode LED green 2.2V 25mA 15 mcd clear SMD. 0603</td>
<td>Kingbright Electronic Co., Ltd.</td>
<td>APT1608SGC</td>
</tr>
<tr>
<td>2</td>
<td>LD2, LD3</td>
<td>Diode LED red 1.95V 30 mA 700 mcd clear SMD. 0603</td>
<td>Kingbright Corp.</td>
<td>APTD1608SURCK</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>UCS1003-1 Evaluation Board – Printed Circuit Board</td>
<td>—</td>
<td>04-10420</td>
</tr>
<tr>
<td>1</td>
<td>PS1</td>
<td>Mech. HW. Power Supply 5V 3A DC 2.1 mm</td>
<td>Phihong USA</td>
<td>PSA15R-050PV</td>
</tr>
<tr>
<td>4</td>
<td>R1, R3, R14, R18</td>
<td>Resistor TKF. 1k 5% 1/10W SMD. 0603</td>
<td>Panasonic® - ECG</td>
<td>ERJ-3GEYJ102V</td>
</tr>
<tr>
<td>7</td>
<td>R2, R22, R24, R25, R26, R41, R49</td>
<td>Resistor TKF. 0R 1/10W SMD. 0603</td>
<td>NIC Components Corp.</td>
<td>NRC06Z0TRF</td>
</tr>
<tr>
<td>4</td>
<td>R4, R5, R16, R19</td>
<td>Resistor TKF. 1M 1% 1/10W SMD. 0402</td>
<td>Panasonic - ECG</td>
<td>ERJ-2RKF1004X</td>
</tr>
<tr>
<td>9</td>
<td>R6, R7, R8, R17, R20, R21, R23, R42, R50</td>
<td>Resistor TKF. 10k 1% 1/10W SMD. 0603</td>
<td>NIC Components Corp.</td>
<td>NRC06F1002TRF</td>
</tr>
<tr>
<td>2</td>
<td>R9, R10</td>
<td>Resistor TKF. 2.2k 1% 1/10W SMD. 0603</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF2201V</td>
</tr>
<tr>
<td>2</td>
<td>R27, R34</td>
<td>Resistor TKF. 47k 1% 1/10W SMD. 0603</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF4702V</td>
</tr>
<tr>
<td>2</td>
<td>R28, R35</td>
<td>Resistor TKF. 56k 1% 1/10W SMD. 0603</td>
<td>Stackpole Electronics, Inc.</td>
<td>RMCF0603FT56K0</td>
</tr>
<tr>
<td>2</td>
<td>R29, R36</td>
<td>Resistor TKF. 68k 1% 1/10W SMD. 0603</td>
<td>Stackpole Electronics, Inc.</td>
<td>RMCF0603FT68K0</td>
</tr>
<tr>
<td>2</td>
<td>R30, R37</td>
<td>Resistor 82K ohm 1/10W 1% 0603 SMD.</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF8202V</td>
</tr>
<tr>
<td>2</td>
<td>R31, R38</td>
<td>Resistor TKF. 100k 1% 1/10W SMD. 0603</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF1003V</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>R32, R39</td>
<td>Resistor TKF. 120K 1% 1/10W SMD. 0603</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF1203V</td>
</tr>
<tr>
<td>2</td>
<td>R33, R40</td>
<td>Resistor TKF. 150k 1% 1/10W SMD. 0603</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF1503V</td>
</tr>
<tr>
<td>2</td>
<td>R43, R51</td>
<td>Resistor TKF. 12k 1% 1/10W SMD. 0603</td>
<td>Yageo Corporation</td>
<td>RC0603FR-0712KL</td>
</tr>
<tr>
<td>2</td>
<td>R44, R52</td>
<td>Resistor TKF. 15k 1% 1/10W SMD. 0603</td>
<td>Panasonic - ECG</td>
<td>ERJ-3EKF1502V</td>
</tr>
<tr>
<td>2</td>
<td>R45, R53</td>
<td>Resistor TKF. 18k 1% 1/10W SMD. 0603</td>
<td>ROHM Semiconductor</td>
<td>MCR03EZPFX1802</td>
</tr>
<tr>
<td>2</td>
<td>R46, R54</td>
<td>Resistor TKF. 22k 1% 1/10W SMD. 0603</td>
<td>Stackpole Electronics, Inc.</td>
<td>RMCF0603JT22K0</td>
</tr>
<tr>
<td>2</td>
<td>R47, R55</td>
<td>Resistor TKF. 27k 1% 1/10W SMD. 0603</td>
<td>Yageo Corporation</td>
<td>RC0603FR-0727KL</td>
</tr>
<tr>
<td>2</td>
<td>R48, R56</td>
<td>Resistor TKF. 33k 1% 1/10W SMD. 0603</td>
<td>Stackpole Electronics, Inc.</td>
<td>RMCF0603FT33K0</td>
</tr>
<tr>
<td>2</td>
<td>TP1, TP4</td>
<td>Connector TP. loop white TH.</td>
<td>Keystone Electronics Corp.</td>
<td>5012</td>
</tr>
<tr>
<td>2</td>
<td>TP2, TP3</td>
<td>Conn. TP. loop yellow TH.</td>
<td>Keystone Electronics Corp.</td>
<td>5014</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Interface USB power switch with charger emulation UCS1003-1 QFN-20</td>
<td>Microchip Technology Inc.</td>
<td>UCS1003-1-BP</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>Interface GPIO-port Expand. I²C 16-port MCP23018-E/SS SSOP-24</td>
<td>Microchip Technology Inc.</td>
<td>MCP23018-E/SS</td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>MCP2221 TSSOP-14</td>
<td>Microchip Technology Inc.</td>
<td>MCP2221-I/ST</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
Worldwide Sales and Service

AMERICAS
- **Corporate Office**
 - 2355 West Chandler Blvd.
 - Chandler, AZ 85224-6199
 - Tel: 480-792-7200
 - Fax: 480-792-7277
- Technical Support: http://www.microchip.com/support
- Web Address: www.microchip.com

Americas Offices
- **Atlanta**
 - Duluth, GA
 - Tel: 678-957-9614
 - Fax: 678-957-1455
- **Austin, TX**
 - Tel: 512-257-3370
- **Boston**
 - Westborough, MA
 - Tel: 774-760-0087
 - Fax: 774-760-0088
- **Chicago**
 - Itasca, IL
 - Tel: 630-285-0071
 - Fax: 630-285-0075
- **Cleveland**
 - Independence, OH
 - Tel: 216-447-0464
 - Fax: 216-447-0643
- **Dallas**
 - Addison, TX
 - Tel: 972-818-7423
 - Fax: 972-818-2924
- **Detroit**
 - Novi, MI
 - Tel: 734-998-9100
- **Houston, TX**
 - Tel: 281-894-5983
- **Indianapolis**
 - Noblesville, IN
 - Tel: 317-773-8323
 - Fax: 317-773-5453
- **Los Angeles**
 - Mission Viejo, CA
 - Tel: 949-462-9523
 - Fax: 949-462-9608
- **New York, NY**
 - Tel: 631-435-6000
- **San Jose, CA**
 - Tel: 408-735-9110
- **Canada - Toronto**
 - Tel: 905-673-0699
 - Fax: 905-673-6509

ASIA/PACIFIC
- **Asia Pacific Office**
 - Suites 3707-14, 37th Floor
 - Tower 6, The Gateway
 - Harbour City, Kowloon
 - Hong Kong
 - Tel: 852-2943-5100
 - Fax: 852-2401-3431
- **Australia - Sydney**
 - Tel: 61-2-9868-6733
 - Fax: 61-2-9868-6755
- **China - Beijing**
 - Tel: 86-10-8569-7000
 - Fax: 86-10-8528-2104
- **China - Chengdu**
 - Tel: 86-28-8665-5511
 - Fax: 86-28-8665-7889
- **China - Dongguan**
 - Tel: 86-769-8702-9880
- **China - Hangzhou**
 - Tel: 86-571-8792-8115
 - Fax: 86-571-8792-8116
- **China - Hong Kong SAR**
 - Tel: 852-2943-5100
 - Fax: 852-2401-3431
- **China - Nanjing**
 - Tel: 86-25-8470-2460
 - Fax: 86-25-8470-2470
- **China - Qingdao**
 - Tel: 86-532-8502-7205
 - Fax: 86-532-8502-7205
- **China - Shanghai**
 - Tel: 86-21-5407-5533
 - Fax: 86-21-5407-5066
- **China - Shenyang**
 - Tel: 86-24-2334-2829
 - Fax: 86-24-2334-2933
- **China - Shenzhen**
 - Tel: 86-755-8864-2200
 - Fax: 86-755-8203-1760
- **China - Wuhan**
 - Tel: 86-27-5980-5300
 - Fax: 86-27-5980-5118
- **China - Xian**
 - Tel: 86-29-8833-7252
 - Fax: 86-29-8833-7256

ASIA/PACIFIC
- **China - Xiamen**
 - Tel: 86-592-2388138
 - Fax: 86-592-2388130
- **China - Zhuhai**
 - Tel: 86-756-3210040
 - Fax: 86-756-3210049
- **India - Bangalore**
 - Tel: 91-80-3090-4444
 - Fax: 91-80-3090-4432
- **India - New Delhi**
 - Tel: 91-11-4160-8631
 - Fax: 91-11-4160-8632
- **India - Pune**
 - Tel: 91-20-3019-1500
- **Japan - Osaka**
 - Tel: 81-6-6152-7160
 - Fax: 81-6-6152-9310
- **Japan - Tokyo**
 - Tel: 81-3-6880-3770
 - Fax: 81-3-6880-3771
- **Korea - Daegu**
 - Tel: 82-53-744-4301
 - Fax: 82-53-744-4302
- **Korea - Seoul**
 - Tel: 82-2-558-5932 or 82-2-558-5934
- **Malaysia - Kuala Lumpur**
 - Tel: 60-3-6201-9857
 - Fax: 60-3-6201-9859
- **Malaysia - Penang**
 - Tel: 60-4-227-8870
 - Fax: 60-4-227-4068
- **Philippines - Manila**
 - Tel: 63-2-634-9065
 - Fax: 63-2-634-9069
- **Singapore**
 - Tel: 65-6334-8870
 - Fax: 65-6334-8850
- **Taiwan - Hsin Chu**
 - Tel: 886-3-5778-366
 - Fax: 886-3-5770-955
- **Taiwan - Kaohsiung**
 - Tel: 886-7-213-7828
- **Taiwan - Taipei**
 - Tel: 886-2-2508-8600
 - Fax: 886-2-2508-0102
- **Thailand - Bangkok**
 - Tel: 66-2-694-1351
 - Fax: 66-2-694-1350

EUROPE
- **Austria - Wels**
 - Tel: 43-7242-2244-39
 - Fax: 43-7242-2244-393
- **Denmark - Copenhagen**
 - Tel: 45-4450-2828
 - Fax: 45-4485-2829
- **France - Paris**
 - Tel: 33-1-6953-63-20
 - Fax: 33-1-6953-60-79
- **Germany - Dusseldorf**
 - Tel: 49-2129-3766400
- **Germany - Karlsruhe**
 - Tel: 49-721-625370
- **Germany - Munich**
 - Tel: 49-89-627-144-0
 - Fax: 49-89-627-144-44
- **Italy - Milan**
 - Tel: 39-0331-742611
 - Fax: 39-0331-466781
- **Italy - Venice**
 - Tel: 39-049-7625286
- **Netherlands - Drunen**
 - Tel: 31-416-690399
 - Fax: 31-416-690340
- **Poland - Warsaw**
 - Tel: 48-22-3325377
- **Spain - Madrid**
 - Tel: 34-91-708-08-90
 - Fax: 34-91-708-08-91
- **Sweden - Stockholm**
 - Tel: 46-8-5090-4654
- **UK - Wokingham**
 - Tel: 44-118-921-5800
 - Fax: 44-118-921-5820

07/14/15