DN2470 Based Linear Regulator
Input Voltage Range Extender Evaluation Board User’s Guide

© 2016 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE, Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-0358-6

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV
= ISO/TS 16949 =
Object of Declaration: DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board

EU Declaration of Conformity

Manufacturer: Microchip Technology Inc.
2355 W. Chandler Blvd.
Chandler, Arizona, 85224-6199
USA

This declaration of conformity is issued by the manufacturer.

The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission’s Guide for the EMC Directive 2004/108/EC (8th February 2010).

This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

This development/evaluation tool, when incorporating wireless and radio-telecom functionality, is in compliance with the essential requirement and other relevant provisions of the R&TTE Directive 1999/5/EC and the FCC rules as stated in the declaration of conformity provided in the module datasheet and the module product page available at www.microchip.com.

For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip’s standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.

Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson
VP Development Tools

12-Sep-14
Date
Table of Contents

Preface ... 6
 Introduction.. 6
 Document Layout .. 6
 Conventions Used in this Guide .. 7
 Recommended Reading .. 7
 The Microchip Web Site ... 8
 Customer Support ... 8
 Document Revision History .. 8

Chapter 1. Product Overview
 1.1 Introduction .. 9
 1.2 DN2470 Device Overview ... 9
 1.3 What is the DN2470 Based Linear Regulator Input Voltage
 Range Extender Evaluation Board? ... 9
 1.4 What the DN2470 Based Linear Regulator Input Voltage
 Range Extender Evaluation Board Kit Contains 10

Chapter 2. Installation and Operation
 2.1 Getting Started .. 11
 2.2 Setup and Operation Procedure .. 11

Appendix A. Schematic and Layouts
 A.1 Introduction .. 13
 A.2 Board – Schematic .. 14
 A.3 Board – Top Silk .. 15
 A.4 Board – Top Copper and Silk ... 16
 A.5 Board – Top Copper ... 17
 A.6 Board – Bottom Copper .. 18

Appendix B. Bill of Materials (BOM).. 19

Appendix C. DN2470 Characterization Plots
 C.1 Heat Sink .. 21
 C.2 Pad Temperature .. 21
 C.3 Overtemperature Protection Using PTC ... 22

Worldwide Sales and Service .. 24
INTRODUCTION

This chapter contains general information that will be useful to know before using the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide as a development tool.

• Chapter 1. “Product Overview” – Important information about the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide.
• Chapter 2. “Installation and Operation” – This chapter includes a detailed description of each function of the demonstration board and instructions on how to use the board.
• Appendix A. “Schematic and Layouts” – Shows the schematic and layout diagrams for the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide.
• Appendix B. “Bill of Materials (BOM)” – Lists the parts used to build the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide.
• Appendix C. “DN2470 Characterization Plots” – Describes the various plots and waveforms for the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>Documentation Conventions</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User's Guide</td>
</tr>
<tr>
<td>Emphasized text</td>
<td>the Output window</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>N’Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td>Filenames</td>
<td>autoexec.bat</td>
<td></td>
</tr>
<tr>
<td>File paths</td>
<td>c:\mcc18\h</td>
<td></td>
</tr>
<tr>
<td>Keywords</td>
<td>.asm, _endasm, static</td>
<td></td>
</tr>
<tr>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
<td></td>
</tr>
<tr>
<td>Bit values</td>
<td>0, 1</td>
<td></td>
</tr>
<tr>
<td>Constants</td>
<td>0xFF, ’A’</td>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [, var_name...]</td>
</tr>
<tr>
<td></td>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
</tr>
</tbody>
</table>
RECOMMENDED READING

This user’s guide describes how to use the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

DN2470 Data Sheet – “N-Channel, Depletion-Mode, Vertical DMOS FET” (DS20005410)

MCP1754 Data Sheet – “150 mA, 16V, High-Performance LDO” (DS20002276)
MCP1755 Data Sheet – “300 mA, 16V, High-Performance LDO” (DS25160)
MCP1790 Data Sheet – “70 mA, High Voltage Regulator” (DS20002075)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at:
http://www.microchip.com/support

DOCUMENT REVISION HISTORY

Revision A (March 2016)

• Initial release of this document.
Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board and covers the following topics:

- DN2470 Device Overview
- What is the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board?
- What the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board Kit Contains

1.2 DN2470 DEVICE OVERVIEW

The DN2470 is a low-threshold depletion-mode (normally-on) vertical FET. Vertical DMOS FETs are suited for a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance and fast switching speeds are required.

The DN2470 has a 700V voltage breakdown with a 42 ohms drain-to-source On-state resistance and 500 mA saturated drain-to-source current when operating over typical conditions. The device is packaged in a TO-252 (D-PAK) and it is designed to operate in a temperature range of -55°C to +150°C (refer to the DN2470 data sheet for more information).

1.3 WHAT IS THE DN2470 BASED LINEAR REGULATOR INPUT VOLTAGE RANGE EXTENDER EVALUATION BOARD?

The DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board presents the universal off-line linear regulation using the 700V depletion-mode FET DN2470. The board features off-line regulation using three different selectable LDOs: MCP1754, MCP1755 and MCP1790, offered in various package options. The evaluation board operates with 50 Hz 230 VAC or 60 Hz 120 VAC AC lines and sources 10 mA typical output current (LDO’s output current).
Figure 1-1 presents the evaluation board block diagram.

Figure 1-1: DN2470 Evaluation Board Block Diagram.

1.3.1 Evaluation Board Features
- 120 and 230 VAC Off-line Regulation
- Typical Output Current of 10 mA
- Maximum Output Current Thermally Limited
- Transient Survivability of 2.5 kV
- Overtemperature Protection; Typically +105°C
- Output Voltage Range of 3-5V
- Three Different Selectable LDOs:
 - MCP1754 (3.3V)
 - MCP1755 (5.0V)
 - MCP1790 (3.0V)

1.4 WHAT THE DN2470 BASED LINEAR REGULATOR INPUT VOLTAGE RANGE EXTENDER EVALUATION BOARD KIT CONTAINS

The DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board kit includes:
- DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide (ADM00682)
- Important Information Sheet
NOTES:
Chapter 2. Installation and Operation

2.1 GETTING STARTED

The DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board is fully assembled and tested.

2.1.1 Tools Required for Operation

The tools required for operation include:
- AC Line connection or DC power supply
- An oscilloscope and/or a multimeter to observe the waveforms and measure electrical parameters

2.2 SETUP AND OPERATION PROCEDURE

To prepare the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board for operation, the steps below must be followed carefully.

WARNING

Before beginning board setup, fully read this document, the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board User’s Guide.

CAUTION

Hazardous voltages are present when connected to AC Lines.

1. Select an LDO by placing a jumper on J3 connector. If VIN1 or VIN2 are selected, SHDN must be shorted to VIN (J5 or J7).
2. Connect a Load if needed at VOUT.
3. Connect the AC Line (120 or 230 VAC) or DC power supply to J1.

Note: Do not touch exposed areas when operating the board. Avoid touching the heat sink, the drain-exposed pad or the input resistor.

Selecting Different LDO

To select a different LDO, the AC Line or DC power supply has to be removed first.
FIGURE 2-1: DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board:

• Board – Schematic
• Board – Top Silk
• Board – Top Copper and Silk
• Board – Top Copper
• Board – Bottom Copper
A.3 BOARD – TOP SILK

DN2470 Based Linear Regulator
Input Voltage Range Extender

CAUTION: Hazardous Voltages are present when connected to AC Line
A.4 BOARD – TOP COPPER AND SILK

CAUTION: Hazardous Voltages are present when connected to AC Line.

Microchip Technology Inc.
Appendix B. Bill of Materials (BOM)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>Capacitor 1 µF 450V</td>
<td>Rubycon Corporation</td>
<td>450PX1MEFC6.3X11</td>
</tr>
<tr>
<td>6</td>
<td>C2, C3, C4, C5, C6, C7</td>
<td>Capacitor, 1 µF 16V</td>
<td>Kemet</td>
<td>C0805C105K4RACTU</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Zener Diode 7.5V</td>
<td>Diodes Incorporated®</td>
<td>BZT52C7V5S-7-F</td>
</tr>
<tr>
<td>1</td>
<td>H1</td>
<td>HS1 Heat Sink</td>
<td>Aavid Thermalloy</td>
<td>573100D00000G</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>Connector Terminal 1X2</td>
<td>PHOENIX CONTACT</td>
<td>1933189</td>
</tr>
<tr>
<td>3</td>
<td>J2, J10, J11</td>
<td>2 Pos. Header Connector</td>
<td>Molex®</td>
<td>0022284020</td>
</tr>
<tr>
<td>1</td>
<td>J3</td>
<td>6 Pos. Dual Connector</td>
<td>Samtec Inc</td>
<td>TSW-103-08-L-D</td>
</tr>
<tr>
<td>2</td>
<td>J4, J6</td>
<td>1 Pos. Header Connector - NOT INSTALLED</td>
<td>TE Connectivity Ltd.</td>
<td>5-146280-1</td>
</tr>
<tr>
<td>2</td>
<td>J5, J7</td>
<td>3 Pos. Header Connector</td>
<td>Samtec, Inc.</td>
<td>TSW-103-07-T-S</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>Hex Standoff 4-40 Nylon 1/2</td>
<td>Keystone Electronics Corp.</td>
<td>4802</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>Hex Nut 1/4” Nylon</td>
<td>Keystone Electronics Corp.</td>
<td>9605</td>
</tr>
<tr>
<td>1</td>
<td>N/A (Mounts on J1)</td>
<td>Terminal Block Plug 2 Pos.</td>
<td>PHOENIX CONTACT</td>
<td>1934861</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>DN2470 Based Linear Regulator Input Voltage Range Extender Evaluation Board – Printed Circuit Board</td>
<td>—</td>
<td>04-10446</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>DN2470</td>
<td>Microchip Technology Inc.</td>
<td>DN2470K4-G</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>68 Ohms 2W</td>
<td>TT Electronics Plc.</td>
<td>ULW2-68RJA25</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>Resistor 100k</td>
<td>Yageo Corporation</td>
<td>RC0805JR-07100KL</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>Thermistor-100 PTC</td>
<td>Murata Electronics North America, Inc.</td>
<td>PRG18BB101MB1RB</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Rectifier 0.5A 400V</td>
<td>Micro Commercial Components</td>
<td>MB4S-TP</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>MCP1755</td>
<td>Microchip Technology Inc.</td>
<td>MCP1755T-3302E/OT</td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>MCP1754</td>
<td>Microchip Technology Inc.</td>
<td>MCP1754-5002E/CM</td>
</tr>
<tr>
<td>1</td>
<td>U4</td>
<td>MCP1790</td>
<td>Microchip Technology Inc.</td>
<td>MCP1790-3002E/DB</td>
</tr>
<tr>
<td>1</td>
<td>U5</td>
<td>Varistor 387V 4.5kA -14 mm Disc</td>
<td>Bourns, Inc.</td>
<td>MOV-14D431K</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
Appendix C. DN2470 Characterization Plots

C.1 HEAT SINK

C.2 PAD TEMPERATURE
C.3 OVERTEMPERATURE PROTECTION USING PTC

![Plot showing LDO VOUT (V) vs PTC Temperature (°C)]