Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBox, KEELoo, KEELoo logo, Kleer, LANcheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscent Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SG1, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestiC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Object of Declaration: RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board

EU Declaration of Conformity

Manufacturer: Microchip Technology Inc.
2355 W. Chandler Blvd.
Chandler, Arizona, 85224-6199
USA

This declaration of conformity is issued by the manufacturer.

The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission’s Guide for the EMC Directive 2004/108/EC (8th February 2010).

This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

This development/evaluation tool, when incorporating wireless and radio-telecom functionality, is in compliance with the essential requirement and other relevant provisions of the R&TTE Directive 1999/5/EC and the FCC rules as stated in the declaration of conformity provided in the module datasheet and the module product page available at www.microchip.com.

For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip's standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.

Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson
VP Development Tools

12-Sep-14
Date
Table of Contents

Preface ... 7

Chapter 1. Overview
 1.1 Introduction ... 11
 1.2 Features ... 11
 1.3 Contents ... 13
 1.4 Board Configuration ... 13

Chapter 2. Getting Started
 2.1 Introduction ... 15
 2.2 Communication Modes ... 15
 2.3 Communication to the Module ... 16
 2.4 Hardware Description ... 16

Appendix A. Board Schematic and PCB Details
 A.1 Introduction .. 19
 A.2 Board Schematic ... 19
 A.3 PCB Layout ... 21
 A.4 Bill of Materials ... 24

Worldwide Sales and Service .. 25
INTRODUCTION

This chapter contains general information that will be useful to know before using the RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Development Systems Customer Change Notification Service
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board as a development tool to emulate and debug firmware on a target board, as well as how to program devices. The document is organized as follows:

- Chapter 1. “Overview” – This chapter describes the RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board and presents various board configurations.
- Chapter 2. “Getting Started” – This chapter describes the two main communication modes and the hardware requirements for getting started with RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board.
- Appendix A. “Board Schematic and PCB Details” – This appendix provides the RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board’s schematic, PCB layouts and Bill of Materials (BOM).
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Arial font:</td>
</tr>
<tr>
<td>Italic characters</td>
</tr>
<tr>
<td>Emphasized text</td>
</tr>
<tr>
<td>Initial caps</td>
</tr>
<tr>
<td>A dialog</td>
</tr>
<tr>
<td>A field name in a window or dialog</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
</tr>
<tr>
<td>Bold characters</td>
</tr>
<tr>
<td>A tab</td>
</tr>
<tr>
<td>N’Rnnnn</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
</tr>
<tr>
<td>Courier New font:</td>
</tr>
<tr>
<td>Plain Courier New</td>
</tr>
<tr>
<td>Filenames</td>
</tr>
<tr>
<td>File paths</td>
</tr>
<tr>
<td>Keywords</td>
</tr>
<tr>
<td>Command-line options</td>
</tr>
<tr>
<td>Bit values</td>
</tr>
<tr>
<td>Constants</td>
</tr>
<tr>
<td>Italic Courier New</td>
</tr>
<tr>
<td>Square brackets []</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {}</td>
</tr>
<tr>
<td>Ellipses...</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

 advance information © 2015 Microchip Technology Inc.
RECOMMENDED READING

This user’s guide describes how to use LoRa™ Technology PICtail™/PICtail Plus Daughter Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources:

RN2483 Low-Power Long Range LoRa™ Technology Transceiver Module Data Sheet (DS50002346A)

This data sheet provides detailed specifications for the RN2483 module.

RN2483 LoRa™ Technology Module Command Reference User’s Guide (DS40001784A)

This command reference user’s guide describes how to configure the RN2483 module.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

- **Compilers** – The latest information on Microchip C compilers and other language tools
- **Emulators** – The latest information on the Microchip MPLAB® REAL ICE™ in-circuit emulator
- **In-Circuit Debuggers** – The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3 debug express
- **MPLAB X IDE** – The latest information on Microchip MPLAB X IDE, the Windows® Integrated Development Environment for development systems tools
- **Programmers** – The latest information on Microchip programmers including the PICkit™ 3 development programmer
CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at:
http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (April 2015)

This is the initial release of this document.
Chapter 1. Overview

1.1 INTRODUCTION

The RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board is a demonstration board that showcases the Microchip RN2483 Low-Power Long Range, LoRa™ Technology Transceiver Module.

The RN2483 LoRa Technology PICtail/PICtail Plus Daughter Board provides access to the RN2483 UART and General Purpose Input and Output (GPIO) ports.

This chapter discusses the following topics:

- Features
- Contents
- Board Configuration

1.2 FEATURES

The RN2483 LoRa Technology PICtail/PICtail Plus Daughter Board has the following features as represented in Figure 1-1:

1. Microchip RN2483 Low-Power Long Range, LoRa™ Technology Transceiver Module
2. SMA connector for 433 MHz band
3. SMA connector for 868 MHz band
4. Solder pads around the module for GPIOs, power pins and communication signals
5. Supply Current measurement points
6. On-board LDO
7. UART traffic LEDs
8. ICSP header to program the on-board PIC18 MCU
9. USB connector
10. PICtail connection interface
11. PICtail Plus connection interface
12. PIC18 MCU for custom functions
The high-speed UART interface and the GPIO ports are available on the module to configure, control, and transfer data. The RN2483 LoRa Technology PICtail/PICtail Plus Daughter Board has PICtail and PICtail Plus connectors to interface with a PIC® microcontroller (MCU) on the development boards that support PICtail or PICtail Plus interface with the required pin mapping. The PICtail board also has an on-board PIC18 MCU available for custom user functions. It is preprogrammed to provide a simple USB-to-UART serial bridge enabling easy serial connection.

Demonstration of the RN2483 is performed by plugging the daughter board into a USB port of a PC. The USB port powers the daughter board and enables the user to communicate using the RN2483’s ASCII commands.

Development of the RN2483 with Microchip’s PIC MCU line is possible via the 28-pin PICtail connector to a PIC18 Explorer or 30-pin card edge PICtail Plus connector to an Explorer 16.
1.3 CONTENTS

The package kit contents contain the following tools as listed in Table 1-1.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board</td>
<td>RN-2483-PICtail</td>
</tr>
<tr>
<td>USB Cable</td>
<td>—</td>
</tr>
<tr>
<td>433 MHz antenna</td>
<td>—</td>
</tr>
<tr>
<td>868 MHz antenna</td>
<td>—</td>
</tr>
</tbody>
</table>

1.4 BOARD CONFIGURATION

Prior plugging the module into the motherboard's socket, ensure that one of the current measure jumpers, CUR1 or CUR2, are shunted.

PICtail Daughter Board can be powered from two sources, either from one of the PICtail headers or from USB. Both power sources can be active at the same time.

RF antennas must be connected to the SMA connectors prior attaching power to the board.

Ensure that the applied power supply voltage does not exceed the board limits. Figure 1-2, Figure 1-3, and Figure 1-4 show the connection to various development boards.

FIGURE 1-2: RN2483 LORA™ TECHNOLOGY PICtail™/PICtail PLUS DAUGHTER BOARD CONNECTED TO EXPLORER 16 DEVELOPMENT BOARD
FIGURE 1-3: RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board Connected to PIC18 Wireless Development Board

FIGURE 1-4: RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board Connected to PICDEM™ PIC18 Explorer Demonstration Board
Chapter 2. Getting Started

2.1 INTRODUCTION

This chapter describes the hardware requirements for RN2483 LoRa Technology PICtail/PICtail Plus Daughter Board and also provides the different types of communication modes.

The module accepts commands via UART interface. Basically, two communication modes are supported by the daughter board, USB mode and PICtail mode.

PICtail mode gives more computing power to the user program, since motherboards contain additional MCUs.

This chapter discusses the following topics:

- Communication Modes
- Communication to the Module
- Hardware Description

2.2 COMMUNICATION MODES

2.2.1 USB mode

USB mode is initiated if the daughter board is connected to a USB port via a mini-USB cable. In this mode, the on-board PIC18 MCU provides a USB-to-UART bridge.

Supply voltage is provided via USB and the on-board LDO (IC1) which regulates 5V to the nominal 3.3V.

2.2.2 PICtail mode

PICtail mode is initiated if no USB cable is attached to the board and the board is plugged into the appropriate motherboard.

Note: User must ensure that PICtail/PICtail Plus port pins are fully compatible to the pinout of the daughter board.

When USB power is not attached, the on-board PIC18 MCU does not influence UART communication.

Note: Some motherboards may adjust the supply voltage to the attached MCU Plug-in Module. Do not exceed the supply voltage limits of the module.

2.2.3 PICtail mode with USB connected

The daughter board can be used in a third mode when it is connected to a PICtail motherboard while the USB is also connected. It is useful when the user wants to set the supply voltage from the PICtail connector while the communication must be continuously active via the USB interface. The on-board PIC18 MCU takes over the control of the UART interface. In this case, the motherboard is unable to send UART messages to the module, however, the messages sent by the module appear on the PICtail UART.
Another case is that the motherboard does not have power supply. In this case, the motherboard can be powered from the USB together with the daughter board. User must take care of the maximum output current of the on-board LDO, which is 500 mA. A short on the jumper JP_RST on the daughter board forces the board to operate in PICtail mode, although USB remains connected. The jumper JP_RST keeps the on-board PIC18 MCU in reset state to ensure that USB-to-UART protocol translation is not performed in this mode. If jumper JP_RST is not shorted, on-board PIC18 MCU has the priority over the UART communication.

Note: Only 30-pin PICtail Plus connection is detected. If the daughter board is attached to a 28-pin PICtail connector, the jumper JP_RST has no affect.

2.3 COMMUNICATION TO THE MODULE

In PICtail mode, the Microchip 8/16/32-bit PIC MCUs on the motherboards can run custom functions and connect to the module using the UART interface, which accepts ASCII commands from the host.

In USB mode, when the daughter board is connected to the host via USB, the on-board PIC18 MCU uses the CDC class to create a USB-to-UART bridge device. The host can run a simple terminal emulator application to issue commands.

2.4 HARDWARE DESCRIPTION

The RF signal path is connected to the SMA edge connectors. The 433 MHz band RF signal is transmitted through RFL SMA edge connector, whereas RFH SMA connector is used for the 868 MHz band.

The current consumption measurement of the module is supported by the on-board current measure jumpers. If jumper CUR1 is shunted, the supply current flows directly to the module.

There are two ways to measure current consumption:

- A current meter can be connected to CUR1 jumper pins to measure the actual current consumption of the module. CUR2 must be left open.
- The current consumption graph can be recorded in the time domain by removing the shunt from CUR1 jumper and shunting CUR2 at the same time. Use a two channel oscilloscope, which supports subtracting mathematical function. Connect oscilloscope probes to CUR1 jumper pins while CUR2 jumper is shunted. Set the oscilloscope to display the difference between the two channels.

All pins of the module can be accessed via through hole pads which is located on both sides of the module. User can mount two 1.27 mm pitched socket headers if required. Sockets can connect the module pins to a custom board, whereas the daughter board provides the power. The through hole pads are classified into two groups which are located on both sides of the module. Each pad group, J1 and J2, has a dedicated pad on which power is delivered to the custom board. The supply current is measured together with the module's supply current. To do this, JP2 must be shorted for J2 and JP3 for J1.

If the supply current is separated from the module, the other two jumpers must be shorted. To power the custom board separately, shunt JP1 or JP4.

The on-board PIC18 MCU is programmable via programming port ICSP_IC2. In USB mode, LD1 and LD2 LEDs indicate communication on the UART.
Table 2-1 shows the PICtail/PICtail Plus connections to various boards.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Description</th>
<th>Pin number on PICtail connector</th>
<th>Pin number on PICtail Plus connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3V3</td>
<td>Positive Supply Rail</td>
<td>26</td>
<td>21, 22</td>
</tr>
<tr>
<td>GND</td>
<td>Ground Supply Rail</td>
<td>28</td>
<td>9, 10, 16</td>
</tr>
<tr>
<td>Module_TX</td>
<td>UART transmit output of the module</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Module_RX</td>
<td>UART receive input of the module</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Module_RTS</td>
<td>UART Hardware handshake output of the module(^1)</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>Module_CTS</td>
<td>UART Hardware handshake input of the module(^1)</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>PT_Module_RESET</td>
<td>Master Clear input of the module</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>PT+_SENSE</td>
<td>Sensing signal for PICtail Plus connector (the platform connects this line to GND when plugged)</td>
<td>—</td>
<td>15</td>
</tr>
</tbody>
</table>

Note 1: Optional handshake lines are supported in future firmware releases.
Appendix A. Board Schematic and PCB Details

A.1 INTRODUCTION

This appendix provides the RN2483 LoRa Technology PICtail/PICtail Plus Daughter Board schematic, PCB layout and Bill of Materials (BOM).

- Board Schematic
- PCB Layout
- Bill of Materials

A.2 BOARD SCHEMATIC

Figure A-1 shows the board schematic.
Note: Shaded components are not populated by default.
A.3 PCB LAYOUT

LoRa Technology PICtail/PICtail Plus Daughter Board is a 2-layer, FR4, 1.55 mm, plated through hole PCB construction.

Figure A-2 through Figure A-4 illustrate the PCB layers. Figure A-5 shows the assembly drawing of LoRa Technology PICtail/PICtail Plus Daughter Board.

FIGURE A-2: RN2483 LORA™ TECHNOLOGY PICtail™/PICtail PLUS DAUGHTER BOARD TOP SILKSCREEN

FIGURE A-3: RN2483 LORA™ TECHNOLOGY PICtail™/PICtail PLUS DAUGHTER BOARD TOP COPPER
FIGURE A-4: RN2483 LoRa™ Technology PICtail™/PICtail Plus Daughter Board Bottom Copper (Bottom View)
FIGURE A-5: RN2483 LORA™ TECHNOLOGY PICtail™/PICtail PLUS DAUGHTER BOARD TOP ASSEMBLY
A.4 BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
<th>Description</th>
<th>Vendor</th>
<th>Vendor P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C3</td>
<td>1uF</td>
<td>CAP, 0603, 25V, 10%, X7R</td>
<td>Murata Electronics North America</td>
<td>GRM188R71E105KA12D</td>
</tr>
<tr>
<td>C2</td>
<td>470nF</td>
<td>CAP, 0603, 25V, 10%, X7R</td>
<td>Murata Electronics North America</td>
<td>GRM188R71E474KA12D</td>
</tr>
<tr>
<td>C4</td>
<td>100nF</td>
<td>CAP, 0603, 25V, Y5V</td>
<td>Yageo</td>
<td>CC0603ZRY5V8BB104</td>
</tr>
<tr>
<td>C5</td>
<td>10uF</td>
<td>CAP, 0603, 6.3V, 20%, X5R</td>
<td>Murata Electronics North America</td>
<td>GRM188R60J106ME47D</td>
</tr>
<tr>
<td>C6</td>
<td>10nF</td>
<td>CAP, 0603, 50V, 10%, X7R</td>
<td>Murata Electronics North America</td>
<td>GRM188R71H103KA01D</td>
</tr>
<tr>
<td>C8</td>
<td>4.7uF</td>
<td>CAP, 0603, 6.3V, 10%, X5R</td>
<td>Murata Electronics North America</td>
<td>GRM188R60J475KE19D</td>
</tr>
<tr>
<td>CUR1, CUR2</td>
<td>—</td>
<td>CONN Pin2 2.54 mm jumper</td>
<td>Harwin Inc</td>
<td>M20-9990245</td>
</tr>
<tr>
<td>D1</td>
<td>—</td>
<td>DIODE SCHOTTKY 20V 0.5A SOD123</td>
<td>Diodes Inc</td>
<td>B0520LW-7-F</td>
</tr>
<tr>
<td>GND</td>
<td>—</td>
<td>CONN Pin1</td>
<td>Keystone</td>
<td>5012</td>
</tr>
<tr>
<td>IC1</td>
<td>—</td>
<td>IC MCP1825-3302E/DC</td>
<td>Microchip</td>
<td>MCP1825-3302E/DC</td>
</tr>
<tr>
<td>IC2</td>
<td>—</td>
<td>IC PIC18LF25K50-I/ML</td>
<td>Microchip</td>
<td>PIC18LF25K50-I/ML</td>
</tr>
<tr>
<td>JP2, JP4</td>
<td>—</td>
<td>RES 0 OHM 0603 JUMPER 2P</td>
<td>Vishay Dale</td>
<td>CRCW06030000Z0EA</td>
</tr>
<tr>
<td>JP-S1</td>
<td>—</td>
<td>JUMPER SHUNT 2POS 2.54 mm LOPRO GOLD</td>
<td>TE Connectivity</td>
<td>382811-8</td>
</tr>
<tr>
<td>LD1, LD2</td>
<td>—</td>
<td>LED 565NM GRN DIFF 0603</td>
<td>Lumex Opto/Components Inc</td>
<td>SML-LX0603GW-TR</td>
</tr>
<tr>
<td>PICTail</td>
<td>—</td>
<td>CONN Pin14x2 2.54 mm right angle (PBC14DBDN)</td>
<td>Sullins Connector Solutions</td>
<td>PBC14DBDN</td>
</tr>
<tr>
<td>R1</td>
<td>1.00 Ohm</td>
<td>RES 0603 1/10W 1%</td>
<td>Yageo</td>
<td>RC0603FRT-071RL</td>
</tr>
<tr>
<td>R2</td>
<td>1.50 kOhm</td>
<td>RES 0603 1/10W 1%</td>
<td>Vishay Dale</td>
<td>CRCW06031K50FKEA</td>
</tr>
<tr>
<td>R3</td>
<td>2.70 kOhm</td>
<td>RES 0603 1/10W 1%</td>
<td>Vishay Dale</td>
<td>CRCW06032K70FKEA</td>
</tr>
<tr>
<td>R4, R5, R6, R9, R10</td>
<td>220 Ohm</td>
<td>RES 0603 1/10W 1%</td>
<td>Vishay Dale</td>
<td>CRCW0603220RFKEA</td>
</tr>
<tr>
<td>R7</td>
<td>100 Ohm</td>
<td>RES 0603 1/10W 1%</td>
<td>Vishay Dale</td>
<td>CRCW0603100RFKEA</td>
</tr>
<tr>
<td>R8</td>
<td>4.70 kOhm</td>
<td>RES 0603 1/10W 1%</td>
<td>Vishay Dale</td>
<td>CRCW06034K70FKEA</td>
</tr>
<tr>
<td>RFH, RFL</td>
<td>—</td>
<td>CONN JACK SMA 50 OHM EDGE MOUNT</td>
<td>Cinch Connectivity Solutions Johnson</td>
<td>142-0711-821</td>
</tr>
<tr>
<td>U1</td>
<td>—</td>
<td>RF module RN2483 LoRa EU 433/868MHz</td>
<td>Microchip</td>
<td>RN2483</td>
</tr>
<tr>
<td>USB</td>
<td>—</td>
<td>CONN MINI B USB R/A SMD</td>
<td>Hirose</td>
<td>UX60-MB-5ST</td>
</tr>
</tbody>
</table>
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983
Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8960-9500

China - Dongguan
Tel: 86-769-8782-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5778-367

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3566400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-6725286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

01/27/15