Features

• Fully qualified Bluetooth® version 4.1 module
• Onboard Bluetooth Low Energy 4.1 stack
• ASCII command interface API over UART
• Compact form factor 11.5 x 19.5 x 2.5 mm
• Castellated SMT pads for easy and reliable PCB mounting
• Environmentally friendly, RoHS compliant
• Certifications: FCC, IC, CE, QDID
• Device Firmware Upgrade (DFU) over UART or Over the Air (OTA)
• Microchip Low-energy Data Profile (MLDP) for serial data applications
• Remote commands over the air

Operational

• Single operating voltage: 3.0V to 3.6V (3.3V typical)
• Temperature range: -30°C to 85°C
• Low-power consumption
• Simple, UART interface
• Integrated Crystal, Internal Voltage Regulator, Matching Circuitry, Memory Amplifier, and PCB Antenna
• Multiple IOs for control and status
• UART interface, GPIO, ADC
• 64 KB internal serial flash

RF/Analog Features

• ISM Band 2.402 to 2.480 GHz operation
• Channels 0-39
• Rx Sensitivity: -92.5 dBm at 0.1% BER
• Tx Power: +7 dBm
• RSSI monitor

MAC/Baseband/Higher Layer Features

• Secure AES128 encryption
• GAP, GATT, SM, L2CAP and integrated public profiles
• Create custom services using command API
• Keyboard I/O Authentication
• Software configurable role as peripheral or central, client or server

Description

Microchip’s RN4020 Bluetooth Low Energy Module provides a highly integrated solution for delivering low power Bluetooth 4.1 solutions. The advanced command interface offers rapid time to market.

The RN4020 module complies with Bluetooth specification version 4.1. It integrates RF, a baseband controller, command API processor, making it a complete Bluetooth Low Energy Solution.

The RN4020 can be used with either low cost microcontroller for intelligent Bluetooth Low Energy applications. For simple sensor applications, the RN4020 internal scripting capabilities enable basic functions to be implemented without the need for external host MCU or software development tools.

Applications

• Health/Medical Devices
 - Glucose Meters
 - Heart rate
 - Scale
• Sports Activity and Fitness
 - Pedometer
 - Cycling computer
 - Heart rate
• Retail
 - POS
 - Asset tagging and tracking
 - Proximity Advertising
• Beacon applications
RN4020

- Internet of Things Sensor tag
- Remote Control
 - Keyboard Mice
 - AV consoles, game controllers
- Wearable smart devices and accessories
- Industrial Control
 - Private (custom) services
 - Low bandwidth cable replacement

Smart Energy/Smart Home
Table of Contents

1.0 Device Overview... 4
2.0 General Specifications.. 6
3.0 Microcontroller to RN4020 Interface... 7
4.0 Physical Dimensions ... 8
5.0 Typical Application Schematic ... 11
6.0 ASCII Command API... 12
7.0 Supported Services ... 13
8.0 Regulatory Approval ... 15
9.0 Ordering Information.. 20
Appendix A: Revision History .. 21
The Microchip Web Site .. 23
Customer Change Notification Service .. 23
Customer Support .. 23

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
1.0 DEVICE OVERVIEW

The RN4020 Bluetooth Low Energy RF module integrates Bluetooth 4.1 radio baseband, MCU, digital analog I/O, onboard stack, and ASCII command API. Figure 1-1 shows the module’s top view. Figure 1-2 shows the module’s pinout and the description is shown in Table 1-1. In Figure 1-3, all the key components are contained in the module.

FIGURE 1-1: RN4020 TOP VIEW

FIGURE 1-2: RN4020 PIN DIAGRAM

FIGURE 1-3: RN4020 BLOCK DIAGRAM
TABLE 1-1: PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground.</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>AIO2</td>
<td>Bi-directional with programmable analog I/O. 1.65V input, 1.35V out, and 30 mA max out</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AIO1</td>
<td>Bi-directional with programmable analog I/O. 1.65V input, 1.35V out, and 30 mA max out</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AIO0</td>
<td>Bi-directional with programmable analog I/O. 1.65V input, 1.35V out, and 30 mA max out</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>UART TX</td>
<td>UART Transmit (TX).</td>
<td>Output</td>
</tr>
<tr>
<td>6</td>
<td>UART RX</td>
<td>UART Receive (RX).</td>
<td>Input</td>
</tr>
<tr>
<td>7</td>
<td>WAKE_SW</td>
<td>Deep Sleep Wake; active-high to wake module from Deep Sleep.</td>
<td>Input; weak pull down</td>
</tr>
<tr>
<td>8</td>
<td>CMD/MLDP FACTORY RESET</td>
<td>Command or MLDP mode – In Command mode, UART traffic is sent to the command interpreter. In MLDP mode, UART traffic is routed to the MLDP Bluetooth LED connection, if active. At boot time, if pin8 is held high, a factory reset is performed. If WAKE_SW is low (default) a partial factory reset is performed, which is the same as if a “SF,1” command were executed. If WAKE_SW (pin7) is high and pin8 is high at boot time, a full factory reset is performed, which is similar to executing a “SF,2” command.</td>
<td>Input; active-high to enter Command</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground.</td>
<td>Ground</td>
</tr>
<tr>
<td>10</td>
<td>CONNECTION LEDPIO[1]SCK</td>
<td>Default state is output: Active-high indicates the module is connected to a remote device. Active-high indicates a disconnected state. Configurable as PIO[1] via software command. SCK for Diagnostics and Factory Calibration if pin 17 is asserted.</td>
<td>• Green LED • PIO[1] • SCK</td>
</tr>
<tr>
<td>11</td>
<td>MLDP_EVPIO[2]CS</td>
<td>Default function is output used for MLDP data event indicator (Red LED). Active-high indicates MLDP data received or UART console data pending. Low level indicates no events. Event only triggered in CMD mode, when CMD/MLDP (pin 8) is high. Configurable as PIO[2] via “</td>
<td>>” and “</td>
</tr>
<tr>
<td>12</td>
<td>WSPIO[3]MOSI</td>
<td>Default function is an output used for Activity indicator (Blue LED). High level indicates module is awake and active. Low level indicates module is in a Sleep state. Accessible as PIO[3] via “</td>
<td>>” and “</td>
</tr>
<tr>
<td>14</td>
<td>CTSPIO[5]</td>
<td>Reserved for CTS if hardware flow control is on the UART.</td>
<td>• CTS (input) • PIO[5]</td>
</tr>
<tr>
<td>15</td>
<td>WAKE_HW</td>
<td>Hardware wake from Dormant state.</td>
<td>Active-high; internal pull down</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground.</td>
<td>Ground</td>
</tr>
</tbody>
</table>
2.0 GENERAL SPECIFICATIONS

Table 2-1 provides the general specifications for the module. Table 2-2, Table 2-3, and Table 2-4 provide the module’s weight, dimensions, electrical characteristics, and current consumption.

TABLE 2-1: GENERAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Bluetooth 4.1</td>
</tr>
<tr>
<td>Frequency Band</td>
<td>2.4 ~ 2.48 GHz</td>
</tr>
<tr>
<td>Modulation Method</td>
<td>GMSK</td>
</tr>
<tr>
<td>Maximum Data Rate</td>
<td>1 Mbps</td>
</tr>
<tr>
<td>Antenna</td>
<td>PCB</td>
</tr>
<tr>
<td>Interface</td>
<td>UART, PIO, AIO, SPI</td>
</tr>
<tr>
<td>Operation Range</td>
<td>100 meters</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>-92.5 dBm at 0.1% BER</td>
</tr>
<tr>
<td>RF TX Power</td>
<td>+7 dBm (avg), +8.5 dBm (peak)</td>
</tr>
<tr>
<td>Temperature (operating)</td>
<td>-30°C to +85°C</td>
</tr>
<tr>
<td>Temperature (storage)</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>10% ~ 90% non-condensing</td>
</tr>
</tbody>
</table>

TABLE 2-2: WEIGHT AND DIMENSIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>19.5 x 11.5 x 2.5 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>1.2 g</td>
</tr>
</tbody>
</table>

TABLE 2-3: ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>1.8 - 3.6V DC</td>
</tr>
<tr>
<td>Working current</td>
<td>Depends on profiles, 12 mA typical</td>
</tr>
<tr>
<td>Standby current (disconnected)</td>
<td><0.5 mA</td>
</tr>
</tbody>
</table>

TABLE 2-4: CURRENT CONSUMPTION

<table>
<thead>
<tr>
<th>Mode</th>
<th>Typical Current at 3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dormant</td>
<td><700 nA</td>
</tr>
<tr>
<td>Deep Sleep</td>
<td><5.0 uA</td>
</tr>
<tr>
<td>Idle</td>
<td><1.5 mA</td>
</tr>
<tr>
<td>Tx/Rx active</td>
<td>16 mA at 0 dBm</td>
</tr>
</tbody>
</table>
3.0 MICROCONTROLLER TO RN4020 INTERFACE

FIGURE 3-1: INTERFACE DESCRIPTION

Figure 3-1 illustrates the interface between PIC microcontroller and RN4020 module. The minimum interface consists of UART and WAKE_HW line. This enables the microcontroller to communicate with RN4020 module using ASCII command API. The command API is described in Section 6.0 “ASCII Command API”.

3.1 CTS/RTS Hardware Flow Control

For customer applications using the Microchip Low-energy Data Profile, Pin 8 (CMD/MLDP) is required. CTS/RTS hardware control is also required for this service to avoid buffer overruns.

3.2 Microchip Low-energy Data Profile (MLDP)

The Microchip Low-energy Data Profile is a private BTLE service that provides a 20 kbps serial data transport over Bluetooth Low Energy on the RN4020. Pin 8 (CMD/MLDP) is required. CTS/RTS hardware control is also highly recommended for this service to avoid data loss.

For more information on how to use the MLDP data service, refer to "RN4020 Bluetooth Low Energy Module User’s Guide" (DS70005191).
4.0 PHYSICAL DIMENSIONS

Figure 4-3 shows the physical dimensions for RN4020 module. Figure 4-4 shows the recommended PCB layout. When laying out the carrier board for the RN4020 module, the areas under the antenna, RF text point (semi-circular pad) and shielding connections should not have surface traces, ground planes, or exposed vias.

Figure 4-3 shows the recommended mounting details. For optimal radio performance, the RN4020 module’s antenna end should protrude at least 31 mm beyond any metal enclosure. Figure 4-4 shows example of good, bad, and acceptable positioning of the RN41 on the host PCB.

FIGURE 4-1: RN4020 MODULE DIMENSIONS

(Top View) (Side View) (Bottom View)
FIGURE 4-2: RN4020 RECOMMENDED PCB FOOTPRINT

(Top View)

Dimensions are in millimeters

FIGURE 4-3: RN4020 MODULE MOUNTING DETAILS

(Top View)

Keep area around antenna (approximately 31 mm) clear of metallic structures for best performance

Dimensions are in millimeters
FIGURE 4-4: RN4020 HOST PCB EXAMPLE LAYOUT
5.0 TYPICAL APPLICATION SCHEMATIC

Figure 5-1 shows schematic for the RN4020 PICtail™/PICtail Plus Daughter Board development tool, RN4020 PICtail.

FIGURE 5-1: RN4020 TYPICAL APPLICATION SCHEMATIC
6.0 ASCII COMMAND API

The RN4020 command API is documented in RN4020 Bluetooth Low Energy Module User’s Guide (DS70005191).

Commands are categorized into the following functions:

• Built-in public services
 - Enable/Disable service as Server or Client
 - Read/Write Characteristic Values
 - Set notification for characteristic

• Max Tx Power
 - Set Power in dB

• Role
 - Peripheral or Central

• Advertising
 - Start/Stop

• Bonding
 - Bond/Unbond to Master

• Private Service
 - Set Private Service UUID
 - Set Characteristic UUID for Private Service

• Microchip Low-energy Data Profile (MLDP)
 - Enable/Disable
 - Peripheral side configuration
 - Central side configuration

• Device Information Profile settings

• Connection
 - Status
 - Disconnect
 - Kill active connection
 - Establish connection (Central role only)
 - Start/Stop inquiry scan for other devices (Central role only)

• IO
 - Configure GPIO mask
 - Set/Get GPIO states
 - Ready raw ADC values

• System
 - Reboot
 - Enter deep sleep
 - Factory default
 - Display configuration

• Scripting
 - Enter script mode
 - Declare event handler
 - Execute current script
 - List current script
 - Clear script
7.0 SUPPORTED SERVICES

The RN4020 firmware support the following built-in profiles listed in Table 7-1 below. The services are enabled via Command API and serviced in the same manner. Each service manages “Characteristics” which as data values are declared and defined by Bluetooth. The values for each characteristic are cached in modules memory and can be read by another Bluetooth device, such as Smartphone acting in Central role. The values of every Characteristic are updated via Command API over UART.

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Bluetooth SIG UUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Information</td>
<td>0x180A</td>
</tr>
<tr>
<td>Battery</td>
<td>0x180F</td>
</tr>
<tr>
<td>Heart Rate</td>
<td>0x180D</td>
</tr>
<tr>
<td>Health Thermometer</td>
<td>0x1809</td>
</tr>
<tr>
<td>Glucose</td>
<td>0x1808</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>0x1810</td>
</tr>
<tr>
<td>Running Speed Cadence</td>
<td>0x1814</td>
</tr>
<tr>
<td>Cycling Speed Cadence</td>
<td>0x1816</td>
</tr>
<tr>
<td>Current Time</td>
<td>0x1805</td>
</tr>
<tr>
<td>Next DST Change</td>
<td>0x1807</td>
</tr>
<tr>
<td>Reference Time Update</td>
<td>0x1806</td>
</tr>
<tr>
<td>Link Loss</td>
<td>0x1803</td>
</tr>
<tr>
<td>Immediate Alert</td>
<td>0x1802</td>
</tr>
<tr>
<td>TX Power</td>
<td>0x1804</td>
</tr>
<tr>
<td>Alert Notification</td>
<td>0x1811</td>
</tr>
<tr>
<td>Phone Alert Status</td>
<td>0x180E</td>
</tr>
<tr>
<td>Scan Parameters</td>
<td>0x1813</td>
</tr>
</tbody>
</table>

7.1 Public and Private Services

The RN4020 provided the ability to create customer services. If the services are supported on both end points of a Bluetooth Low Energy connection, such as Central and Peripheral devices, data can be exchanged. For example, two RN4020 modules can define a custom (private) service with its own unique characteristics. Data can be exchanged easily via Command API.

Private services are not registered with the Bluetooth SIG, and therefore not interoperable with other Bluetooth Low Energy devices, unless the device implements the private service. An example of a built-in private service is Microchip Streaming Data service.

For an example on how to create a custom service using the RN4020, refer to “RN4020 Bluetooth Low Energy Module User’s Guide” (DS70005191).

7.2 PCB Antenna

The PCB antenna is fabricated on the top copper layer and covered in solder mask. The layers below the antenna do not have copper trace. It is recommended that the module is mounted on the edge of the host PCB. It is permitted for PCB material to be below the antenna structure of the module as long as no copper traces or planes are on the host PCB in that area.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>PCB</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>2.402 to 2.485 MHz</td>
</tr>
<tr>
<td>Peak Gain</td>
<td>-0.23 dBi</td>
</tr>
</tbody>
</table>
7.3 Soldering Recommendations

The RN4020 wireless module was assembled using standard lead-free reflow profile IPC/JEDEC J-STD-020.

The module can be soldered to the host PCB using standard leaded and lead-free solder reflow profiles.

To avoid damaging the module, the following recommendations are given:

- Microchip Technology Application Note, “AN233 Solder Reflow Recommendation” (DS00233) provides solder reflow recommendations
- Do not exceed peak temperature (T_p) of 250°C
- Refer to the solder paste data sheet for specific reflow profile recommendations
- Use no-clean flux solder paste
- Do not wash as moisture can be trapped under the shield
- Use only one flow. If the PCB requires multiple flows, apply the module on the final flow
8.0 REGULATORY APPROVAL

This section outlines the regulatory information for the RN4020 module for the following countries:

- United States
- Canada
- Europe
- Australia
- New Zealand

8.1 United States

The RN4020 module has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Subpart C “Intentional Radiators” modular approval in accordance with Part 15.212 Modular Transmitter approval. Modular approval allows the end user to integrate the RN4020 module into a finished product without obtaining subsequent and separate FCC approvals for intentional radiation, provided no changes or modifications are made to the module circuitry. Changes or modifications could void the user’s authority to operate the equipment. The end user must comply with all of the instructions provided by the Grantee, which indicate installation and/or operating conditions necessary for compliance.

The finished product is required to comply with all applicable FCC equipment authorizations regulations, requirements and equipment functions not associated with the transmitter module portion. For example, compliance must be demonstrated to regulations for other transmitter components within the host product; to requirements for unintentional radiators (Part 15 Subpart B “Unintentional Radiators”), such as digital devices, computer peripherals, radio receivers, etc.; and to additional authorization requirements for the non-transmitter functions on the transmitter module (i.e., Verification, or Declaration of Conformity) (e.g., transmitter modules may also contain digital logic functions) as appropriate.

8.1.1 LABELING AND USER INFORMATION REQUIREMENTS

The RN4020 module has been labeled with its own FCC ID number, and if the FCC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording as follows:

RN4020:
Contains Transmitter Module FCC ID: T9JRN4020
or
Contains FCC ID: T9JRN4020

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

A user’s manual for the product should include the following statement:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Additional information on labeling and user information requirements for Part 15 devices can be found in KDB Publication 784748 available at the FCC Office of Engineering and Technology (OET) Laboratory Division Knowledge Database (KDB) http://apps.fcc.gov/oetcf/kdb/index.cfm.
8.1.2 RF EXPOSURE
All transmitters regulated by FCC must comply with RF exposure requirements. KDB 447498 General RF Exposure Guidance provides guidance in determining whether proposed or existing transmitting facilities, operations or devices comply with limits for human exposure to Radio Frequency (RF) fields adopted by the Federal Communications Commission (FCC).

This module is approved for installation into mobile and/or portable host platforms and must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multitransmitter guidelines. End users must be provided with transmitter operating conditions for satisfying RF Exposure compliance.

8.1.3 HELPFUL WEB SITES
FCC Office of Engineering and Technology (OET) Laboratory Division Knowledge Database (KDB): http://apps.fcc.gov/oetcf/kdb/index.cfm

8.2 Canada
The RN4020 module has been certified for use in Canada under Industry Canada (IC) Radio Standards Specification (RSS) RSS-210 and RSSGen. Modular approval permits the installation of a module in a host device without the need to recertify the device.

8.2.1 LABELING AND USER INFORMATION REQUIREMENTS
Labeling Requirements for the Host Device (from Section 3.2.1, RSS-Gen, Issue 3, December 2010): The host device shall be properly labeled to identify the module within the host device.

The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labeled to display the Industry Canada certification number of the module, preceded by the words “Contains transmitter module”, or the word “Contains”, or similar wording expressing the same meaning, as follows:

Contains transmitter module IC: 6514A-RN4020

User Manual Notice for License-Exempt Radio Apparatus (from Section 7.1.3 RSS-Gen, Issue 3, December 2010): User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Transmitter Antenna (from Section 7.1.2 RSS-Gen, Issue 3, December 2010): User manuals for transmitters shall display the following notice in a conspicuous location:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

The above notice may be affixed to the device instead of displayed in the user manual.

8.2.2 RF EXPOSURE
All transmitters regulated by IC must comply with RF exposure requirements listed in RSS-102 - Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands).

This module is approved for installation into mobile and/or portable host platforms and must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with
Industry Canada’s multi-transmitter guidelines. End users must be provided with transmitter operating conditions for satisfying RF Exposure compliance.

8.2.3 APPROVED EXTERNAL ANTENNA TYPES

Transmitter Antenna (from Section 7.1.2 RSS-Gen, Issue 3, December 2010):

The RN4020 module can only be sold or operated with antennas with which it was approved. Transmitter may be approved with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest gain antenna of each combination of transmitter and antenna type for which approval is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type having equal or lesser gain as an antenna that had been successfully tested with the transmitter, will also be considered approved with the transmitter, and may be used and marketed with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device’s antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power limits.

8.2.4 HELPFUL WEB SITES

Industry Canada: http://www.ic.gc.ca/

The RN4020 module is an R&TTE Directive assessed radio module that is CE marked and has been manufactured and tested with the intention of being integrated into a final product.

The RN4020 module has been tested to R&TTE Directive 1999/5/EC Essential Requirements for Health and Safety (Article (3.1(a)), Electromagnetic Compatibility (EMC) (Article 3.1(b)), and Radio (Article 3.2) and are summarized in Table 3-1: European Compliance Testing. A Notified Body Opinion has also been issued. All test reports are available on the RN4020 product web page at http://www.microchip.com.

Note: To maintain conformance to the testing listed in Table 8-1, the module shall be installed in accordance with the installation instructions in this data sheet and shall not be modified.

When integrating a radio module into a completed product the integrator becomes the manufacturer of the final product and is therefore responsible for demonstrating compliance of the final product with the essential requirements of the R&TTE Directive.

8.3.1 LABELING AND USER INFORMATION REQUIREMENTS

The label on the final product which contains the RN4020 module must follow CE marking requirements. The “R&TTE Compliance Association Technical Guidance Note 01” provides guidance on final product CE marking.

8.3 Europe

The RN4020 module is an R&TTE Directive assessed radio module that is CE marked and has been manufactured and tested with the intention of being integrated into a final product.

The RN4020 module has been tested to R&TTE Directive 1999/5/EC Essential Requirements for Health and Safety (Article (3.1(a)), Electromagnetic Compatibility (EMC) (Article 3.1(b)), and Radio (Article 3.2) and are summarized in Table 3-1: European Compliance Testing. A Notified Body Opinion has also been issued. All test reports are available on the RN4020 product web page at http://www.microchip.com.
8.3.2 ANTELLA REQUIREMENTS

From R&TTE Compliance Association document Technical Guidance Note 01:

Provided the integrator installing an assessed radio module with an integral or specific antenna and installed in conformance with the radio module manufacturer’s installation instructions requires no further evaluation under Article 3.2 of the R&TTE Directive and does not require further involvement of an R&TTE Directive Notified Body for the final product. [Section 2.2.4]

8.3.3 HELPFUL WEB SITES

A document that can be used as a starting point in understanding the use of Short Range Devices (SRD) in Europe is the European Radio Communications Committee (ERC) Recommendation 70-03 E, which can be downloaded from the European Radio Communications Office (ERO) at: http://www.ero.dk/.

Additional helpful web sites are:

• Radio and Telecommunications Terminal Equipment (R&TTE): http://ec.europa.eu/enterprise/rtte/index_en.htm
• European Conference of Postal and Telecommunications Administrations (CEPT): http://www.cept.org/
• European Telecommunications Standards Institute (ETSI): http://www.etsi.org
• European Radio Communications Office (ERO): http://www.ero.dk/
• The Radio and Telecommunications Terminal Equipment Compliance Association (R&TTE CA): http://www.rtteca.com/
TABLE 8-1: RN4020 EUROPEAN COMPLIANCE TESTING

<table>
<thead>
<tr>
<th>Certification</th>
<th>Standards</th>
<th>Article</th>
<th>Laboratory</th>
<th>Report Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>EN 62479:2010</td>
<td></td>
<td></td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>EMC</td>
<td>EN 301 489-1 V1.9.2 (2011-09)</td>
<td>[3.1(b)]</td>
<td></td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 301 489-17 V2.2.1 (2012-09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>EN 300 328 V1.8.1 (2006-06)</td>
<td>(3.2)</td>
<td></td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>Notified Body Opinion</td>
<td>Pending</td>
<td></td>
<td></td>
<td>Pending</td>
<td></td>
</tr>
</tbody>
</table>

8.4 Australia

The Australia radio regulations do not provide a modular approval policy similar to the United States (FCC) and Canada (IC). However, RN4020 module RF transmitter test reports can be used in part to demonstrate compliance in accordance with ACMA Radio communications “Short Range Devices” Standard 2004 (The Short Range Devices standard calls up the AS/NZS 4268:2008 industry standard). The RN4020 module test reports can be used as part of the product certification and compliance folder. For more information on the RF transmitter test reports, contact Microchip Technology Australia sales office.

To meet overall Australian final product compliance, the developer must construct a compliance folder containing all relevant compliance test reports e.g. RF, EMC, electrical safety and DoC (Declaration of Conformity) etc. It is the responsibility of the integrator to know what is required in the compliance folder for ACMA compliance. All test reports are available on the RN4020 product web page at http://www.microchip.com. For more information on Australia compliance, refer to the Australian Communications and Media Authority web site http://www.acma.gov.au/.

8.4.1 HELPFUL WEB SITES

The Australian Communications and Media Authority: www.acma.gov.au/.

8.5 New Zealand

The New Zealand radio regulations do not provide a modular approval policy similar to the United States (FCC) and Canada (IC). However, RN4020 module RF transmitter test reports can be used in part to demonstrate compliance against the New Zealand “General User Radio License for Short Range Devices”. New Zealand Radio communications (Radio Standards) Notice 2010 calls up the AS / NZS 4268:2008 industry standard. The RN4020 module test reports can be used as part of the product certification and compliance folder. All test reports are available on the RN4020 product web page at http://www.microchip.com. For more information on the RF transmitter test reports, contact Microchip Technology sales office.

Information on the New Zealand short range devices license can be found in the following web links:
and

To meet overall New Zealand final product compliance, the developer must construct a compliance folder containing all relevant compliance test reports e.g. RF, EMC, electrical safety and DoC (Declaration of Conformity) etc. It is the responsibility of the developer to know what is required in the compliance folder for New Zealand Radio communications. For more information on New Zealand compliance, refer to the web site http://www.rsm.govt.nz/.
9.0 ORDERING INFORMATION

Table 9-1 provides ordering information for the RN4020 module.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN4020-V/RM</td>
<td>Standard firmware (GATT, GAP, L2CAP) peripheral and Central mode</td>
</tr>
</tbody>
</table>

Note: For custom applications, contact Microchip representative.

Go to http://www.microchip.com for current pricing and a list of distributors carrying Microchip products.
APPENDIX A: REVISION HISTORY

Revision A (June 2014)

This is the initial released version of the document in the Microchip format.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continually improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, Keeloo, Keeloo logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Incorporated in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, Hi-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscent Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
ISBN: 978-1-63276-301-3

© 2014 Microchip Technology Inc. Advance Information DS50002279A-page 25

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.