Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PicKit, PICtail, REAL ICE, rFAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestiC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-62077-432-8
EU Declaration of Conformity

This declaration of conformity is issued by the manufacturer. The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission’s Guide for the EMC Directive 2004/108/EC (8th February 2010). This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip’s standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.

Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson
VP Development Tools

16 July 2013
NOTES:
Table of Contents

Preface .. 7
- Introduction ... 7
- Document Layout ... 7
- Conventions Used in this Guide ... 8
- The Microchip Web Site ... 9
- Development Systems Customer Change Notification Service ... 9
- Customer Support ... 9
- Document Revision History .. 10

Chapter 1. Overview
- 1.1 Introduction ... 11

Chapter 2. Getting Started
- 2.1 EVB-USB4604BCH Setup ... 15
- 2.2 Configuration Source – Internal Default .. 17
- 2.3 Configuration Source – External SPI Flash and SMBus .. 17
- 2.4 Clock Source – 24 MHz Crystal .. 17
- 2.5 Power Source and Reset – Self-Powered ... 17
- 2.6 Downstream Port Power Control (Battery Charging) ... 18

Chapter 3. Battery Charging Support
- 3.1 Battery Charging Modes ... 19
- 3.2 Charging Port Roles ... 19
 - 3.2.1 BC1.2 Charging Downstream Port (CDP) Description ... 20
 - 3.2.2 Dedicated Charger Emulation Port (DCP) Description ... 20

Appendix A. EVB-USB4604BCH Evaluation Board
- A.1 Introduction ... 23

Appendix B. EVB-USB4604BCH Evaluation Board Schematics
- B.1 Introduction ... 25

Appendix C. Bill of Materials (BOM)
- C.1 Introduction ... 29

Worldwide Sales and Service ... 35
INTRODUCTION

This chapter contains general information that will be useful to know before using the EVB-USB4604BCH Evaluation Board. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- The Microchip Web Site
- Development Systems Customer Change Notification Service
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the EVB-USB4604BCH Evaluation Board as a development tool for the USB4604 4-port USB 2.0 hub with battery charging features. The manual layout is as follows:

- Chapter 1. “Overview” – Shows a brief description of the EVB-USB4604BCH Evaluation Board.
- Chapter 2. “Getting Started” – Includes instructions on how to get started with the EVB-USB4604BCH Evaluation Board.
- Chapter 3. “Battery Charging Support” – Provides information about the EVB-USB4604BCH Evaluation Board battery charging features.
- Appendix A. “EVB-USB4604BCH Evaluation Board” – This appendix shows the EVB-USB4604BCH Evaluation Board.
- Appendix B. “EVB-USB4604BCH Evaluation Board Schematics” – This appendix shows the EVB-USB4604BCH Evaluation Board schematics.
- Appendix C. “Bill of Materials (BOM)” – This appendix includes the EVB-USB4604BCH Evaluation Board Bill of Materials (BOM).
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Represented books</td>
<td>MPLAB® IDE User’s Guide</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Emphasized text</td>
<td>A window</td>
<td>the Output window</td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A dialog</td>
<td>the Settings dialog</td>
<td></td>
</tr>
<tr>
<td>A menu selection</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A menu path</td>
<td>File>Save</td>
<td></td>
</tr>
<tr>
<td>Underlined, italic text</td>
<td>A menu path</td>
<td>File>Save</td>
<td></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
<td></td>
</tr>
<tr>
<td>Filenames</td>
<td>autoexec.bat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File paths</td>
<td>c:\mcc18\h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit values</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constants</td>
<td>0xFF, ‘A’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic Courier New:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
<td>1}</td>
<td></td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Represents repeated text</td>
<td>var_name [, var_name...]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
<td></td>
</tr>
</tbody>
</table>
THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
• **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• **Compilers** – The latest information on Microchip C compilers, assemblers, linkers and other language tools. These include all MPLAB C compilers; all MPLAB assemblers (including MPASM assembler); all MPLAB linkers (including MPLINK object linker); and all MPLAB librarians (including MPLIB object librarian).
• **Emulators** – The latest information on Microchip in-circuit emulators. This includes the MPLAB REAL ICE and MPLAB ICE 2000 in-circuit emulators.
• **In-Circuit Debuggers** – The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit 3 debug express.
• **MPLAB IDE** – The latest information on Microchip MPLAB IDE, the Windows Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and MPLAB SIM simulator, as well as general editing and debugging features.
• **Programmers** – The latest information on Microchip programmers. These include production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included are nonproduction development programmers such as PICSTART Plus and PIC-kit 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at:
http://www.microchip.com/support

DOCUMENT REVISION HISTORY

Revision A (September 2013)

• Initial Release of this Document.
Chapter 1. Overview

1.1 INTRODUCTION

The USB4604 hub controller is a 4-port high-speed, low-power and configurable, Multi-Transaction Translator (MTT) hub controller. It is fully compliant with the USB 2.0 Specification, USB 2.0 Link Power Management (LPM) Addendum and High-Speed Inter-Chip (HSIC) USB Electrical Specification Revision 1.0. The 4-port hub supports 480 Mbps High-Speed (HS), 12 Mbps Full-Speed (FS) and 1.5 Mbps Low-Speed (LS) USB signaling. It also supports a High-Speed Inter-Chip (HSIC) Upstream host. The USB4604 has four USB 2.0 downstream ports that all support battery charging. On these battery charging enabled ports, the device provides automatic USB data line handshaking. The handshaking supports USB BC1.2 Charging Downstream Port (CDP), Dedicated Charging Port (DCP) and legacy devices.

The EVB-USB4604BCH is a 4-layer RoHS-compliant evaluation board that utilizes the USB4604 to provide a fully functional 4-port high-speed hub with battery charging capabilities. The EVB-USB4604BCH also features the UCS1002 programmable USB port power controller. The USB4604 is configured for operation through internal default settings and supports custom configurations through the ProTouch and ProLink tools, and optionally through an external 2-Mbit SPI Flash socketable device, U13. To allow maximum operational flexibility, all LED and port control signal pins are under firmware control and are available as GPIOs for customer-specific use. The EVB-USB4604BCH demonstrates driver compatibility with Microsoft® Windows® 7, Windows XP, Mac OS® X 10.4+ and Linux® hub drivers.

The EVB-USB4604BCH provides the following features:

• USB4604 in a 48-pin QFN RoHS compliant package
• UCS1002 in a 20-pin QFN RoHS compliant package
• USB 2.0 compliant (HS, FS and LS operation); USB pins are 5V tolerant
• One HSIC upstream hub port
• Self-Powered operation
• Four USB 2.0 downstream ports
• Battery Charging support (BC1.2 CDP and DCP)
• Optional socketable SPI Flash for external downloadable firmware
• Low-Cost, 4-Layer space saving design
• Operates from one single voltage (+12.0V, regulated) external DC power supply
• Single 24 MHz crystal or external clock input
• Single on board +3.3V, 1 Amp regulator
• Single on board +1.2V, 1 Amp regulator
• Single on board +5.0V, 6 Amp switching regulator module
• +3.3V and port power LED indicators
• UCS1002 Alert LED indicator
• Reset and VBUS Detect LED indicators
• SPI Chip Enable LED indicator
• External GPIO pin headers
Figure 1-1 shows the top and bottom level silk screen and copper layers.

FIGURE 1-1: TOP AND BOTTOM LEVEL SILK SCREEN AND COPPER LAYERS
Figure 1-2 shows the block diagram of the EVB-USB4604BCH.

FIGURE 1-2: BLOCK DIAGRAM OF EVB-USB4604BCH
Chapter 2. Getting Started

2.1 EVB-USB4604BCH SETUP

The EVB-USB4604BCH must be connected to an HSIC upstream host via the Data0 (J30) and Strobe0 (J29) connectors using the provided U.FL coaxial cables. When removing these cables from the EVB for any reason, the provided HSIC Extraction tool must be used. Figure 2-1 shows the recommended usage of the HSIC extraction tool per the Hirose U.FL data sheet on proper use of the plugs.
An external HUB_CONN port control signal from the host must be wired to the VB-EXT pin on the J33 header. This signal lets the USB4604 know when an HSIC upstream host is ready to attach. The VBUS_DET Select switch (SW2) must be set to the “Manual” position and the yellow LED D8 lights up to display “Manual” mode. Once a host has been attached and detected, the blue “VB_DET” LED D12 lights up.

The EVB-USB4604BCH is designed to allow flexible configuration options. It can be configured with default internal register settings through an SMBus or through a downloadable external firmware to a socketable SPI Flash. It supports “Quad-Page” configuration OTP flash (four consecutive 200-byte configuration pages). The following sections detail the various configuration methods and features.
2.2 CONFIGURATION SOURCE – INTERNAL DEFAULT

When the USB4604 does not detect a valid SPI Flash image or SMBus configuration upon power-up, the EVB-USB4604BCH uses internal default register settings. It also sets the Vendor ID, Product ID, Language ID, Device ID and additional settings from the internal ROM code.

2.3 CONFIGURATION SOURCE – EXTERNAL SPI FLASH AND SMBus

Upon power-up, the USB4604 searches for an external SPI Flash device that contains a valid signature of “2DFU” beginning at address 0xFFFA. If one is present, the external ROM is enabled and code execution is then initiated from the external SPI device. If an SPI Flash device is not present, the firmware checks to see whether SMBus is enabled. If the SMBus is disabled, the USB4604 attempts to load the configuration from an external \(I^{2}C\) EEPROM. If no external options are detected, the USB4604 will operate using the internal default and configuration strap settings.

The SMBus interface is disabled by default as SM_CLK is pulled low through a 10 kOhm resistor. To enable SMBus, SM_CLK must be pulled high to +3.3V with a 1 kOhm resistor. This is often embedded within the external SMBus tool (not included). All device configuration must be performed via the Pro-Touch Programming Tool. For information on this tool, contact your local sales representative. When SMBus is enabled, the firmware configures the GPIOs to act as an SMBus slave. As an SMBus slave, the firmware waits indefinitely for the SMBus configuration.

If the USB4604 does not detect an SMBus interface, it will check for an \(I^{2}C\) EEPROM. For \(I^{2}C\) communication, the system management port header J19 can be used to access the SCL and SDA signals on the USB4604. To assure proper operation, the external 10 kOhm pull up resistor R58 on SM_DAT must be populated and SM_CLK must have a 1 kOhm pull up resistor applied via the \(I^{2}C\) interface.

2.4 CLOCK SOURCE – 24 MHZ CRYSTAL

By default, a 2 mm x 1.6 mm Murata 24 MHz crystal, Y1, is populated on the evaluation board as the clock source for the USB4604.

2.5 POWER SOURCE AND RESET – SELF-POWERED

The EVB-USB4604BCH only supports self-powered operation, and is powered through one +12.0V regulated external DC power supply. A +12.0V input is needed to provide enough current to all of the downstream ports in Battery Charging modes. The +12.0V external DC power supply plugs into the on-board 2.5 mm connector J1. Alternatively, an external voltage can be injected onto the J2 Ext.12V header, which is not populated by default. The +12.0V feeds a 6A switching regulator module which outputs +5.0V across the board. Using this switching regulator allows up to 30 W to be delivered across the board. This +5.0V output controls the on board +3.3V and +1.2V step down (buck) converters.

Power to the USB4604 is controlled by the J4, J16, J28 and J31 power headers. These headers are configured by default for an external +3.3V and +1.2V supply, bypassing the USB4604’s internal regulators. For alternative power options, please refer to the USB4604 data sheet.

A voltage supervisor circuit is used to provide a system RESET# to the USB4604. The STM6718 device (U12) asserts RESET# to the DUT on power up and release it after 3V3 and 1V2 are stable on the USB4604. If 3V3 falls below +3.08V and/or 1V2 falls below +1.11V, the device asserts RESET# to the DUT for its minimum period after 3V3
and 1V2 have both reached above their voltage trip points. A reset can also be generated to the DUT by pressing the reset switch SW1 or by supplying an external reset via the External Reset header J8.

2.6 DOWNSTREAM PORT POWER CONTROL (BATTERY CHARGING)

All four USB downstream ports support battery charging. Power to each port is controlled through a UCS1002 port power controller. The UCS1002 device is a 20-pin QFN package that provides a USB port power switch for precise control of up to 2.5A of continuous current with over-current limit (OCL), dynamic thermal management, latch or auto-recovery fault handling, selectable active high or low enable, under and over-voltage lockout, back-drive protection and back-voltage protection. It also provides current monitoring and reports back to the USB4604 over SMBus. This allows intelligent management of system power which is especially important for battery operated applications. The PIO17 (UCS_SMCLK) and PIO41 (UCS_SMDATA) pins of the USB4604 are defined by firmware and are completely separate from the SM_DAT and SM_CLK pins on the SMBus interface of the USB4604.

The 33 kOhm pull down resistor on the COMM_SEL/ILIM pin of all of the UCS1002 devices is used to set the current limit to 2.5 Amps as well as to set the UCS1002 devices into SMBus mode (as opposed to Stand-alone mode). The pull down resistors selected for each SEL pin of the UCS1002 devices sets the SMBus address for each UCS port power controller and sets the PWR_EN pins such that they are active high.

The UCS1002 on downstream port 1 must have the SMBus address 0x30h. The UCS1002 devices are controlled by the USB4604 through SMBus commands. As a precautionary best practice, the M1, M2 and EM_EN pins are pulled high. The DP/DM input and output pins are tied to ground which allow all UCS1002 devices to act strictly as current sensing battery charging port power devices. For all other possible UCS1002 configurations, consult the UCS100x data sheet. The USB4604 monitors ALERTn of the UCS1002 devices via PIO0. If ALERTn is asserted for any reason, the affected UCS1002 device(s) is turned off and the red “Alert” LED D4 asserts. The UCS1002 devices stay in this state until the error condition has been removed or until power has been recycled on the evaluation board.

Note: Due to configuration restrictions, if any UCS1002 devices are used with the USB4604, one must be attached to physical Port1.
3.1 BATTERY CHARGING MODES

The EVB-USB4604BCH supports several different Battery Charging modes, providing an array of flexible configuration solutions. Each downstream port can be separately configured for battery charging via OTP, downloadable external firmware to an on board SPI Flash or through SMBus commands. Each port's configuration is independent of the other ports.

The battery charging mechanism automatically switches ports between states that perform the BC1.2 CDP handshake (which allows full USB communication with a USB host while charging) and states that emulate the dedicated chargers from Charging Device vendors. This allows support for the BC1.2 CDP mode and emulation of dedicated chargers in DCP mode, without interfering with normal USB operation of any USB 2.0 device attached to the port. Battery charging is supported through the use of a UCS1002 port power controller.

Section 3.2 “Charging Port Roles” describes the modes of operation. For more information on battery charging, please refer to the UCS1002 data sheet, Application Note 34.5 and the USB Battery Charging 1.2 specifications.

3.2 CHARGING PORT ROLES

The EVB-USB4604BCH’s battery charging enabled downstream ports automatically switch between various roles depending on the USB state of the EVB-USB4604BCH. These roles are:

1. BC1.2 Charging Downstream Port (CDP – 1.5A with data)
2. Dedicated Charging Port (DCP – Power brick without data)

When switching between roles, the EVB-USB4604BCH toggles power to the attached device if appropriate. The power toggle occurs if charger or USB renegotiation is necessary based on the following conditions:

1. If the port is in a CDP role while the hub is disconnected from the host, the port toggles power when switching to a DCP role to allow the downstream device to negotiate with the DCP mechanism.
2. If the port is in a DCP role and the port needs to switch to a CDP role, the port toggles power to allow the device to renegotiate with a CDP handshake and/or USB attach.

When battery charging is disabled for a EVB-USB4604BCH port, the port acts as a normal USB hub port.

When a USB port is in a state in which device-host USB communication is not possible, a battery charging enabled port is not required to act as a USB hub port and is therefore free to enter states that emulate dedicated chargers. For the EVB-USB4604BCH, there are two cases where this applies:

1. The EVB-USB4604BCH upstream port is not connected to a USB host (which on this evaluation board, it is tied to an HSIC host).
2. The EVB-USB4604BCH is in USB suspend with remote wake on the USB 2.0 portion of the evaluation board disabled and no USB 2.0 device connected as a
USB device on the downstream port. If USB 2.0 remote wake is disabled, the hub cannot generate resume signaling and does not need to detect a USB 2.0 attach.

In case 2, the EVB-USB4604BCH’s charging ports do not enter dedicated charging states when there is a USB 2.0 device attached as a USB device. There are two reasons for this behavior:

1. Entering dedicated charging states may involve changing the state of an attached device due to power toggling and/or USB linestate changing. Because the host system is unaware of the battery charging mechanism of the EVB-USB4604BCH, the host could find the device in an unexpected state when exiting suspend.

2. The attached device will not be able to signal resume signaling to the host when the port is in a dedicated charging state. Hubs must propagate resume signaling from downstream devices even when remote wake generation is disabled for the hub.

If the EVB-USB4604BCH is in USB 2.0 suspend with USB 2.0 remote wake disabled and a USB-attached device is removed from a port, the port switches to the DCP role because possible resume propagation is no longer required.

3.2.1 BC1.2 Charging Downstream Port (CDP) Description

Devices that do not follow the BC1.2 CDP specification behave as they normally would when inserted into a standard USB port. The EVB-USB4604BCH ports in CDP mode allow normal USB operation or communication between normal devices and USB hosts after downstream device detection and absence of a BC1.2 CDP handshake from the device.

Devices that follow the BC1.2 CDP specification are also allowed to communicate normally with the USB host when inserted into the EVB-USB4604BCH ports in CDP mode. Additionally, prior to allowing the normal USB connection between the host and the BC1.2 device, the EVB-USB4604BCH port performs the BC1.2 CDP handshake to inform the BC1.2-compliant device that it may draw current exceeding the USB specified limits. When the handshake is complete, the port is ready for device enumeration.

3.2.2 Dedicated Charger Emulation Port (DCP) Description

The advantage of the EVB-USB4604BCH dedicated charger emulation port over the BC1.2-specified DCP is that it supports BC1.2 compliant charging devices and many non-BC1.2 compliant charging devices. The following paragraphs describe the EVB-USB4604BCH modes of operation when its downstream ports are in dedicated charging states (when normal USB connection is not required as described in previous sections).

Dynamic Mode:

The EVB-USB4604BCH can be configured to dynamically react to devices inserted into the downstream ports and emulate the appropriate type of charger for the inserted device. In this configuration, the port begins in Apple® charger emulation mode and switches to China Charging, Blackberry® or BC1.2 device charger emulation when such devices are detected by the port. When a device is detached, the port starts again in Apple charger emulation mode.

Configurable 1A and 2A Apple modes are available depending on the capabilities of each port’s port power controller.

An EVB-USB4604BCH port with a UCS1002 port power controller also supports Samsung® Galaxy Tab™ charger emulation in addition to the above modes.
Static Mode:

The EVB-USB4604BCH can be configured to keep the downstream ports in a fixed charger emulation state. Currently, Apple and Samsung Galaxy Tab or China Charging fixed charger emulation modes are available.
Appendix A. EVB-USB4604BCH Evaluation Board

A.1 INTRODUCTION

This appendix shows the EVB-USB4604BCH Evaluation Board.

FIGURE A-1: EVB-USB4604BCH EVALUATION BOARD
Appendix B. EVB-USB4604BCH Evaluation Board Schematics

B.1 INTRODUCTION

This appendix shows the EVB-USB4604BCH Evaluation Board schematics.
Appendix C. Bill of Materials (BOM)

C.1 INTRODUCTION

This appendix includes the EVB-USB4604BCH Evaluation Board Bill of Materials (BOM).
<table>
<thead>
<tr>
<th>Item</th>
<th>Qty Populated</th>
<th>Qty</th>
<th>Reference Designator(s)</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C1</td>
<td>Capacitor, Low ESR, 180 uF, 16 VDC, 20% Aluminum, Radial, 6.3 mm x 15 mm</td>
<td>Nichicon</td>
<td>UPW1C181MED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>C13</td>
<td>Capacitor, Low ESR, 100 uF, 6.3 VDC, 20%, Aluminum, Radial-SMT, 5 mm x 6.8 mm</td>
<td>United Chemi-Con</td>
<td>EMZ6R3ADA101ME61G</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>C26, C42, C49, C64</td>
<td>Capacitor, Low ESR, 150 uF, 6.3 VDC, 20%, Aluminum, Radial-SMT, 5 mm x 6.7 mm</td>
<td>Lelon</td>
<td>VZS151M0JTR-0506</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>C62, C63</td>
<td>Capacitor, 6 pF, 50V, ±0.5 pF, NPO, 0402</td>
<td>Murata Electronics®</td>
<td>GRM1555C1H6R0DZ01D</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>C26, C27</td>
<td>Capacitor, 18 pF, 50V, 5%, NPO, 0402</td>
<td>Murata Electronics</td>
<td>GRM1555C1H180JZ01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>C21</td>
<td>Capacitor, 1000 pF, 50V, 10%, X7R, 0402</td>
<td>Murata Electronics</td>
<td>GRM155R71H102KA01D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>C67</td>
<td>Capacitor, 1000 pF, 50V, 10%, X7R, 0402</td>
<td>Murata Electronics</td>
<td>GRM155R71H102KA01D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>C3</td>
<td>Capacitor, 0.1 uF, 10V, 10%, X5R, 0402</td>
<td>Murata Electronics</td>
<td>GRM155R71A104KA01D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>21</td>
<td>C4, C8, C11, C23, C34, C36, C38, C40, C41, C43, C46, C47, C48, C50, C52, C53, C54, C57, C59, C60, C65</td>
<td>Capacitor, 0.1 uF, 10V, 10%, X5R, 0402</td>
<td>Murata Electronics</td>
<td>GRM155R71A104KA01D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>C22, C24, C29, C30, C31, C32, C44, C51, C55, C68</td>
<td>Capacitor, 0.1 uF, 10V, 10%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R61C105KA93D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>C6</td>
<td>Capacitor, 0.1 uF, 16 VDC, 10%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R61C105KA93D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>C66</td>
<td>Capacitor, 2.2 uF, 6.3 VDC, 10%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J225KE26D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>C69</td>
<td>Capacitor, 0.1 uF, 16 VDC, 10%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R61C105KA93D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0</td>
<td>C10, C15</td>
<td>Capacitor, 0.1 uF, 16 VDC, 10%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R61C105KA93D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>C2</td>
<td>Capacitor, 4.7 uF, 6.3 VDC, 20%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J475KE19D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>11</td>
<td>C9, C12, C14, C16, C17, C18, C19, C20, C45, C56, C58</td>
<td>Capacitor, 4.7 uF, 6.3 VDC, 20%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J475KE19D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>C25</td>
<td>Capacitor, 4.7 uF, 6.3 VDC, 20%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J475KE19D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>C61</td>
<td>Capacitor, 4.7 uF, 6.3 VDC, 20%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J475KE19D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>C70</td>
<td>Capacitor, 10 uF, 6.3 VDC, 20%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J106ME47D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>5</td>
<td>C5, C33, C35, C37, C39</td>
<td>Capacitor, 10 uF, 6.3 VDC, 20%, X5R, 0603</td>
<td>Murata Electronics</td>
<td>GRM188R60J106ME47D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
<td>C7</td>
<td>Capacitor, 10 uF, 25 VDC, 10%, 0805</td>
<td>Murata Electronics</td>
<td>GRM21BR61E106KA73L</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>4</td>
<td>D1, D2, D6, D7</td>
<td>LED, Green, 3 mm, Diffused, Right Angle</td>
<td>Lumex</td>
<td>SSF-LXH103GD</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>2</td>
<td>D3, D12</td>
<td>LED, Blue, 0603</td>
<td>Stanley Electric</td>
<td>DB1111C-TR</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>2</td>
<td>D4, D5</td>
<td>LED, Red, 0603</td>
<td>Stanley Electric</td>
<td>BR1111C-TR</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>D8</td>
<td>LED, Yellow, 0603</td>
<td>Stanley Electric</td>
<td>AY1111C-TR</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Qty</td>
<td>Qty Populated</td>
<td>Reference Designator(s)</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Manufacturer Part Number</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
<td>D9</td>
<td>LED, Orange, 5 mm, TH, Right Angle</td>
<td>Dialight</td>
<td>550-2505</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
<td>D10</td>
<td>LED, Bright Green, 0603</td>
<td>Rohm</td>
<td>SML-412MWT86</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>D11</td>
<td>Diode, MMBD914LT, Fast Switching, 100 VDC, 200 mA, SOT-23</td>
<td>ON Semiconductors®</td>
<td>MMBD914LT1</td>
<td>Do not populate</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>FB1</td>
<td>Ferrite Bead, 200 Ohm, 2A, 0.05 DCR, 0603</td>
<td>Murata Electronics</td>
<td>BLM18EG221SN1D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>FB2</td>
<td>Ferrite Bead, 200 Ohm, 2A, 0.05 DCR, 0603</td>
<td>Murata Electronics</td>
<td>BLM18EG221SN1D</td>
<td>Do not populate</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>2</td>
<td>L1, L2</td>
<td>Inductor, 2.2 uH, Power, Shielded, 1.2A, 1008</td>
<td>Murata Electronics</td>
<td>LQM2HPN2R2MG0L</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>0</td>
<td>L3, L4</td>
<td>Inductor, 2.2 uH, Power, Shielded, 1.2A, 1008</td>
<td>Murata Electronics</td>
<td>LQM2HPN2R2MG0L</td>
<td>Do not populate</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>9</td>
<td>R1, R2, R13, R41, R45, R57, R61, R68, R74</td>
<td>Resistor, 330, 5%, 1/16W, 0603</td>
<td>Panasonic®</td>
<td>ERJ-3GEYJ331V</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>R73</td>
<td>Resistor, 330, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ331V</td>
<td>Do not populate</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>1</td>
<td>R3</td>
<td>Resistor, 267, 1%, 1/10W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EKF2670V</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>R7</td>
<td>Resistor, 267, 1%, 1/10W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EKF2670V</td>
<td>Do not populate</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>R4</td>
<td>Resistor, 30.1K, 1%, 1/10W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EKF3012V</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>R60</td>
<td>Resistor, 1K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ102V</td>
<td>Do not populate</td>
</tr>
<tr>
<td>39</td>
<td>7</td>
<td>7</td>
<td>R5, R6, R38, R39, R40, R69, R76</td>
<td>Resistor, 1K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ102V</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>2</td>
<td>R8, R10</td>
<td>Resistor, 100K, 1%, 1/10W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EKF1003V</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>R9</td>
<td>Resistor, 102K, 1%, 1/10W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EKF1023V</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>1</td>
<td>R11</td>
<td>Resistor, 453K, 1%, 1/10W, 0603</td>
<td>Rohm</td>
<td>MCR03EJFX4533</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>R12</td>
<td>Resistor, 160K, 1%, 1/10W, 0603</td>
<td>Stackpole</td>
<td>RMCF0603FT160R</td>
<td>Do not populate</td>
</tr>
<tr>
<td>44</td>
<td>19</td>
<td>19</td>
<td>R17, R18, R19, R23, R24, R25, R29, R30, R31, R35, R36, R37, R43, R44, R48, R49, R51, R52, R58, R62, R63</td>
<td>Resistor, 10K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ103V</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>0</td>
<td>R14, R20, R26, R32, R46</td>
<td>Resistor, 10K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ103V</td>
<td>Do not populate</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>1</td>
<td>R15</td>
<td>Resistor, 47K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ473V</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>R75</td>
<td>Resistor, 47K, 5%, 1/16W, 0603</td>
<td>Yageo America</td>
<td>9C0603LA4702JLHT</td>
<td>Do not populate</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>4</td>
<td>R16, R22, R28, R34</td>
<td>Resistor, 33K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ333V</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>R21</td>
<td>Resistor, 56.2K, 1%, 1/16W, 0603</td>
<td>KOA Speer</td>
<td>RK73H1JLT5622F</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1</td>
<td>R27</td>
<td>Resistor, 68K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ683V</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>1</td>
<td>R33</td>
<td>Resistor, 82K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ823V</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3</td>
<td>3</td>
<td>R42, R67, R72</td>
<td>Resistor, 100K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ104V</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>R71</td>
<td>Resistor, 100K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEYJ104V</td>
<td>Do not populate</td>
</tr>
<tr>
<td>Item</td>
<td>Qty</td>
<td>Qty Populated</td>
<td>Reference Designator(s)</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Manufacturer Part Number</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>54</td>
<td>4</td>
<td>4</td>
<td>R44, R47, R50, R65</td>
<td>Resistor, ZERO, 0.1W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEY0R00V</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>3</td>
<td>0</td>
<td>R53, R54, R55</td>
<td>Resistor, ZERO, 0.1W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEY0R00V</td>
<td>Do not populate</td>
</tr>
<tr>
<td>56</td>
<td>4</td>
<td>4</td>
<td>R56, R59, R63, R64</td>
<td>Resistor, ZERO, 0.1W, 0402</td>
<td>Panasonic</td>
<td>ERJ-2GE0R00X</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>R66</td>
<td>Resistor, 12.0K, 1%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EKF1202V</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>1</td>
<td>R70</td>
<td>Resistor, 2.2K, 5%, 1/16W, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GEY222V</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>J1</td>
<td>Connector, Power Jack, 2.5 mm x 5.5 mm, 12V, 4A, Right Angle, TH</td>
<td>Cui Stack</td>
<td>PJ-002BH</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>2</td>
<td>J29, J30</td>
<td>Receptacle, Coax, U.FL, SMT, Vertical</td>
<td>Hirose</td>
<td>U.FL-R-SMT-1</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>4</td>
<td>0</td>
<td>J18, J20, J21, J22</td>
<td>Receptacle, Coax, U.FL, SMT, Vertical</td>
<td>Hirose</td>
<td>U.FL-R-SMT-1</td>
<td>Do not populate</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>0</td>
<td>J32</td>
<td>Receptacle, USB, Style B, Right Angle, Through-hole</td>
<td>FCI</td>
<td>61729-x0xxBLF</td>
<td>Do not populate</td>
</tr>
<tr>
<td>63</td>
<td>4</td>
<td>4</td>
<td>J3, J7, J17, J27</td>
<td>Receptacle, USB, Style A, Right Angle, Through-hole</td>
<td>AMP</td>
<td>292303-1</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
<td>J2</td>
<td>Header, 1x2, 0.1 Inch, Vertical</td>
<td>Samtec</td>
<td>TSW-102-14-L-S</td>
<td>Do not populate</td>
</tr>
<tr>
<td>65</td>
<td>16</td>
<td>16</td>
<td>J4, J5, J6, J8, J9, J10, J11, J12, J13, J14, J15, J23, J24, J25, J26, J33</td>
<td>Header, 1x2, 0.1 Inch, Vertical</td>
<td>Samtec</td>
<td>TSW-102-14-L-S</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>2</td>
<td>2</td>
<td>J28, J31</td>
<td>Header, 1x3, 0.1 Inch, Vertical</td>
<td>Samtec</td>
<td>TSW-103-14-L-S</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>0</td>
<td>J19</td>
<td>Header, 1x5, 0.1 Inch, Vertical</td>
<td>Samtec</td>
<td>TSW-105-14-L-S</td>
<td>Do not populate</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>1</td>
<td>J16</td>
<td>Header, 2x2, 0.1 Inch, Vertical</td>
<td>AMP</td>
<td>146256-2</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>1</td>
<td>1</td>
<td>SKT1 (U13)</td>
<td>Socket, IC, 8-Pin DIP, Leaf Contacts, Through-hole</td>
<td>Assmann</td>
<td>A08-LC-TT-R</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>1</td>
<td>SW1</td>
<td>Switch, Momentary, SPST, 100 mA, J-lead, NO</td>
<td>E-Switch</td>
<td>TL3301xF160QJor-RJ</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>1</td>
<td>SW2</td>
<td>Switch, DPDT, Slide, Sub-Mini, Top Actuator, TH</td>
<td>C&K</td>
<td>JS202011CQN</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1</td>
<td>1</td>
<td>U1</td>
<td>IC, DC-DC Converter Module, 0.591-6 Vout, ~12 Vin, 0.591-6 VDC out, 6A, 5-Pin SIP, 0.41 Wide</td>
<td>Murata Electronics</td>
<td>OKR-T/6-W12-C</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>1</td>
<td>0</td>
<td>U2</td>
<td>IC, TPS79601DCQ, Voltage Regulator, Low Dropout, Var., 1.0A, SOT223-6</td>
<td>Texas Instruments</td>
<td>TPS79601DCQ</td>
<td>Do not populate</td>
</tr>
<tr>
<td>74</td>
<td>2</td>
<td>2</td>
<td>U3, U4</td>
<td>IC, Buck Switching Converter, ~1.6 MHz, 1A, SOT23-5</td>
<td>Exar</td>
<td>XRP6658ISTR-F</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>4</td>
<td>4</td>
<td>U5, U6, U7, U8</td>
<td>IC, UCS1002, USB PrtPwr Controller, QFN20</td>
<td>SMSC</td>
<td>UCS1002-1-BP-TR</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4</td>
<td>4</td>
<td>U9, U10, U11, U16</td>
<td>IC, 74LVC1G14, Inverter, Shottky, DCK</td>
<td>TI</td>
<td>SN74LVC1G14DCKR</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>1</td>
<td>U12</td>
<td>IC, STM6718TG, 3.08V and 1.11V Trips, MPU Supervisor, SOT23-5</td>
<td>STMicroelectronics</td>
<td>STM6718TG</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-1: EVB-USB4604BCH EVALUATION BOARD BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Qty Populated</th>
<th>Reference Designator(s)</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>1</td>
<td>0</td>
<td>U13</td>
<td>IC, 25x40, 4 Mb (512K x 8) SPI Serial FLASH, 2.5V-3.3V, 75 MHz, DIP8 MUST BE PROGRAMMED and INSTALLED in SKT AFTER ASSY</td>
<td>Winbond</td>
<td>W25X40BVDAIG</td>
<td>Do not populate</td>
</tr>
<tr>
<td>79</td>
<td>1</td>
<td>1</td>
<td>U14</td>
<td>IC, USB4604, USB 2.0 and HSIC, 4-port, QFN48</td>
<td>SMSC</td>
<td>USB4604-1080HN</td>
<td>Supplied by SMSC</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>0</td>
<td>U15</td>
<td>IC, MIC37102YM, LDO Regulator, Adj., 1A, SOIC8</td>
<td>Micrel</td>
<td>MIC37102YM</td>
<td>Do not populate</td>
</tr>
<tr>
<td>81</td>
<td>1</td>
<td>1</td>
<td>Y1</td>
<td>Crystal, 24.000 MHz, 30 ppm, 6 pF, SMT 2.0 mm x 1.6 mm</td>
<td>Murata Electronics</td>
<td>XRCGB24M000F3M00R0</td>
<td>Do not populate</td>
</tr>
<tr>
<td>82</td>
<td>4</td>
<td>0</td>
<td>SHUNT1, SHUNT2, SHUNT3, SHUNT4</td>
<td>Shunt, Insulated, 0.1 Inch</td>
<td>AMP</td>
<td>881545-2</td>
<td>Do not populate</td>
</tr>
<tr>
<td>83</td>
<td>4</td>
<td>4</td>
<td></td>
<td>Foot, Silicone Rubber, Adhesive, Clear, Cylindrical, .375” x .190”</td>
<td>Richco®</td>
<td>RBS-35</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Serial Number Labels, 6 mm x 27 mm</td>
<td>Assembler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Assy Labels: “EVB-USB4604BCH_A4”, 6 mm x 27 mm</td>
<td>Assembler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>1</td>
<td>1</td>
<td>PCB Fab</td>
<td>PCB, Kirkward48 (EVB-USB4604BCH), Rev. A1</td>
<td>ViaSystems/DDi</td>
<td>EVB-USB4604BCH</td>
<td>Supplied by SMSC</td>
</tr>
<tr>
<td>87</td>
<td>1</td>
<td>1</td>
<td>Assembly</td>
<td>Assembly, Kirkward48 (EVB-USB4604BCH), Rev. A4</td>
<td>EVB-USB4604BCH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-733-9035
Fax: 886-7-330-9035

Taiwan - Taipei
Tel: 886-2-2508-3270
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/20/13