Wi-Fi® G Demo Board
User’s Guide
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Object of Declaration: Wi-Fi G Demo Board

EU Declaration of Conformity

This declaration of conformity is issued by the manufacturer.
The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission’s Guide for the EMC Directive 2004/108/EC (8th February 2010).
This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.
For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip’s standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.
Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson
VP Development Tools

02-May-12
Date
Table of Contents

Preface .. 7
 - Introduction .. 7
 - Document Layout ... 7
 - Conventions Used in this Guide ... 9
 - Warranty Registration ... 10
 - Recommended Reading ... 10
 - The Microchip Web Site ... 10
 - Development Systems Customer Change Notification Service ... 11
 - Customer Support ... 11
 - Document Revision History ... 11

Chapter 1. Overview
 - 1.1 Introduction ... 13
 - 1.2 Wi-Fi G Demonstration Kit Contents ... 13
 - 1.3 Functionality and Features ... 13

Chapter 2. Hardware
 - 2.1 Hardware Features ... 17
 - 2.1.1 MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module ... 17
 - 2.1.2 Processor Support ... 17
 - 2.1.3 Power Supply ... 17
 - 2.1.4 LEDs ... 17
 - 2.1.5 Switches ... 17
 - 2.1.6 Programming/Debug Port ... 17
 - 2.1.7 Expansion Port ... 17

Chapter 3. Getting Started
 - 3.1 Overview ... 19
 - 3.2 Running the Wi-Fi G Demo Application ... 19

Chapter 4. Description of Modes of Operation
 - 4.1 SoftAP Network .. 25
 - 4.2 Ad Hoc Networks .. 25
 - 4.3 Wi-Fi Direct Networks .. 25
 - 4.4 Zero Configuration/Bonjour ... 26
 - 4.4.1 Link Local ... 26
 - 4.4.2 Multicast DNS .. 26
 - 4.4.3 Service Discovery ... 26
 - 4.4.4 Zero Configuration & mDNS demonstration ... 26
 - 4.5 Configured Vs. Unconfigured State ... 28
 - 4.6 Determining New IP Address Assigned ... 29
Chapter 5. Programming
5.1 Software ... 31
5.2 Hardware .. 31
5.3 Programming Sequences – Project .. 33
5.4 Programming Sequences – Hex File .. 36

Chapter 6. Advanced Features
6.1 Change Transmit Power ... 41

Chapter 7. Customizing Web Pages
7.1 Software Requirements .. 43
7.2 Directory Location .. 43
7.3 Steps For Customizing Web Page Contents .. 44

Appendix A. Wi-Fi G Demo Board Schematic
A.1 Introduction .. 47

Worldwide Sales and Service .. 49
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the Wi-Fi G Demo Board. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Warranty Registration
• Recommended Reading
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the Wi-Fi G Demo Board to create a Wi-Fi network and control the demo board functions from the client device web browser.

The manual layout is as follows:

• Chapter 1. “Overview” – This chapter provides a brief overview of the demo board, highlighting its features and uses.
• Chapter 2. “Hardware” – This chapter provides the hardware description of the Wi-Fi G Demo Board.
• Chapter 3. “Getting Started” – This chapter describes what you need to know to start using the Wi-Fi G Demo Board.
• Chapter 4. “Description of Modes of Operation” – This chapter provides the modes of operation description of the Wi-Fi G Demo Board.
• Chapter 5. “Programming” – This chapter describes what you need and how to program the Wi-Fi G Demo Board.
• **Chapter 6. “Advanced Features”** – This chapter describes the advanced features such as changing transmit power.

• **Chapter 7. “Customizing Web Pages”** – This chapter provides the guidelines on how to customize web page contents.

• **Appendix A. “Wi-Fi G Demo Board Schematic”** – This appendix includes the Wi-Fi G Demo Board schematic.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Arial font:</td>
</tr>
<tr>
<td>Italic characters</td>
</tr>
<tr>
<td>Emphasized text</td>
</tr>
<tr>
<td>Initial caps</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quotes</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
</tr>
<tr>
<td>Bold characters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N’Rnnnn</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
</tr>
<tr>
<td>Courier New font:</td>
</tr>
<tr>
<td>Plain Courier New</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
</tr>
<tr>
<td>Square brackets []</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
</tr>
<tr>
<td>Ellipses...</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly. Sending in the Warranty Registration Card entitles users to receive new product updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user's guide describes how to use the Wi-Fi G Demo Board. The following Microchip documents are available from the Microchip web site (www.microchip.com), and are recommended as supplemental resources.

- MRF24WG0MA/MRF24WG0MB Data Sheet (DS70686)
- Microchip MRF24W Getting Started Quick Guide for MRF24WB0MA/B, MRF24WG0MA/B for MLA v5 (DS52108)
- PIC32MX5XX/6XX/7XX Family Data Sheet (DS61156)
- TCPIP Stack Help.chm (This is bundled together with the TCIP/IP source code releases.)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives
DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• **Compilers** – The latest information on Microchip C compilers, assemblers, linkers and other language tools. These include all MPLAB C compilers; all MPLAB assemblers (including MPASM™ assembler); all MPLAB linkers (including MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object librarian).

• **Emulators** – The latest information on Microchip in-circuit emulators. This includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

• **In-circuit Debuggers** – The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3 debug express.

• **MPLAB® IDE** – The latest information on Microchip MPLAB IDE, the Windows® Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and MPLAB SIM simulator, as well as general editing and debugging features.

• **Programmers** – The latest information on Microchip programmers. These include production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included are nonproduction development programmers such as PICSTART® Plus and PICkit 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at:
http://www.microchip.com/support

DOCUMENT REVISION HISTORY

Revision A (March 2013)

• Initial Release of this Document.
Chapter 1. Overview

1.1 INTRODUCTION

Thank you for purchasing the Microchip Technology’s Wi-Fi G Demonstration kit. The Wi-Fi G Demo Board provides a low-cost and portable development system for Microchip’s MRF24WG0MA IEEE 802.11b/g Wi-Fi Transceiver Module.

The Wi-Fi G Demo Board is preloaded with a demo software for the user to explore the features of the MRF24WG0MA Wi-Fi module. It is also expandable through an 8-pin expansion interface, which enables the user to extend its functionality by adding various sensor expansion boards.

The topics discussed in this chapter include:

• Wi-Fi G Demonstration Kit Contents
• Functionality and Features

1.2 Wi-Fi G DEMONSTRATION KIT CONTENTS

The Wi-Fi G Demonstration Kit contains the following:

• Wi-Fi G Demo Board
• 2 AAA Batteries
• Male 1x6 Connector Header HDR-2.54 (J14)
• Wi-Fi G Demo Board Information Sheet (DS52107A)

1.3 FUNCTIONALITY AND FEATURES

The Wi-Fi G Demo Board supports the following network types:

• Infrastructure (client)
• Ad hoc
• Wi-Fi Direct (peer-to-peer as group client)
• SoftAP

The security modes supported are:

• Open
• WEP-40, WEP-104 (Wired Equivalent Privacy)
• WPA (Wi-Fi Protected Access)
• WPA2 (Wi-Fi Protected Access)

For ease of setup and usability, the following connection methods are also supported.

• WPS-PBC (Wi-Fi Protected Setup Push Button Configuration)
• WPS-PIN (Wi-Fi Protected Setup Personal Information Number)
Note: For Demo Version 1.02, only SoftAP, infrastructure and ad hoc network support are offered. SoftAP supports only open and WEP security at this time. All security modes are supported in other network types. Future versions of the Demo software will include the additional functions noted above.

A representation of the layout for the Wi-Fi G Demo Board is shown in Figure 1-1.
The Wi-Fi G Demo Board has the following key features:

1. MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module
2. PIC32MX695F512H 32-bit microcontroller
3. MCP1642 +3.3V Boost regulator
4. Three LED status indicators (LED0 - GREEN, LED1 - YELLOW, LED2 - RED)
5. One push-button switch for user input (SW0)
6. Power ON/OFF slider switch (S1)
7. 6-pin programming/debug port (J14)
8. 8-pin expansion port (J15)
Chapter 2. Hardware

This chapter describes the hardware features of the Wi-Fi G Demo Board.

2.1 HARDWARE FEATURES

The key features of the Wi-Fi G Demo Board are listed below and are introduced in Section 1.3 “Functionality and Features”. See Figure 1-1 for their locations on the board.

2.1.1 MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module

The MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module provides wireless connectivity to the demo board. Host communication is through SPI2 of the PIC processor on the board.

2.1.2 Processor Support

The Wi-Fi G Demo Board is designed with a permanently mounted (soldered) PIC32MX695F512H processor.

2.1.3 Power Supply

The board is powered by 2 AAA batteries. If required, the battery voltage is monitored and boosted by the MCP1642 Synchronous Boost Regulator.

2.1.4 LEDs

The LEDs: LED0 (GREEN), LED1 (YELLOW) and LED2 (RED) are connected to PORTE and PORTF of the PIC32MX695F512H processor. To turn the LEDs ON, the port pins are set high.

2.1.5 Switches

The Wi-Fi G Demo Board has the following switches:
- S1 – Controls the main power to the board. To turn on the board, move S1 slider to the ON position.
- SW0 – It is an active low push-button switch, connected to RD9 of the processor. When idle, the switch is pulled high (+3.3V) and when pressed, it is grounded.

2.1.6 Programming/Debug Port

Connector J14 provides easy access to the PIC32MX695F512H processor’s debug pins. This is used to program or reflash the demo board with new firmware.

2.1.7 Expansion Port

Connector J15 provides access to six of the processor’s spare I/O pins. These pins can function as general purpose I/O ports or as an SPI, I2C or UART interface to an external circuit design.
TABLE 2-1: J15 EXPANSION PORT PIN CONFIGURATIONS

<table>
<thead>
<tr>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 3</th>
<th>Pin 4</th>
<th>Pin 5</th>
<th>Pin 6</th>
<th>Pin 7</th>
<th>Pin 8</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCK</td>
<td>+3.3V</td>
<td>GND</td>
<td>SDI</td>
<td>SDO</td>
<td>/SS</td>
<td>-*</td>
<td>-*</td>
<td>SPI</td>
</tr>
<tr>
<td></td>
<td>+3.3V</td>
<td>GND</td>
<td>SDA</td>
<td>SCL</td>
<td>-</td>
<td>-*</td>
<td>-*</td>
<td>I²C™</td>
</tr>
<tr>
<td>RTS</td>
<td>+3.3V</td>
<td>GND</td>
<td>RX</td>
<td>TX</td>
<td>CTS</td>
<td>-*</td>
<td>-*</td>
<td>USART</td>
</tr>
<tr>
<td>TX2</td>
<td>+3.3V</td>
<td>GND</td>
<td>RX1</td>
<td>TX1</td>
<td>RX2</td>
<td>-*</td>
<td>-*</td>
<td>DUAL USART</td>
</tr>
</tbody>
</table>

* - Pins 7 and 8 may be used as GPIO or A2D (analog-to-digital) pins.
Chapter 3. Getting Started

3.1 OVERVIEW

The Wi-Fi G Demo application uses a network provisioning mechanism called EasyConfig to enable configuration of an embedded device on a wireless network. EasyConfig utilizes the web server of the TCP/IP stack and a wireless network to enable the user to input the desired network information from a client browser, and then reset the device to connect to the desired network.

3.2 RUNNING THE Wi-Fi G DEMO APPLICATION

This section describes how to connect to the Wi-Fi G Demo Board to control the on board LEDs and view the status of the SW0 switch from a web browser. It also describes how to connect the Wi-Fi G Demo board to an existing network.

1. After turning the power on, the Wi-Fi G Demo Board broadcasts a SoftAP network with an SSID, MCHP_G_xxxx, where, xxxx is the last four digits of the MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module’s MAC address (See Example 3-1).

EXAMPLE 3-1:

MRF24WG0MA MAC (SN): 001EC001F102
SSID: MCHP_G_F102

FIGURE 3-1: AVAILABLE WIRELESS NETWORKS

Note: SoftAP is required to transmit beacons within each beacon interval. This increases the transmit power consumption and therefore shorten the battery life.
2. Connect a client device (e.g., laptop, smart devices) to the MCHP_G_xxxx SoftAP network.

3. When the client device is connected, use a standard web browser and enter the IP address of the Wi-Fi G Demo Board. The default IP address is http://192.168.1.3. Another alternative is to enter "mchpboard.local" into the web browser. See figure Figure 3-2.

FIGURE 3-2: ACCESSING WEB BROWSER

4. The following web pages from the web server that is running on the Wi-Fi G Demo Board are displayed.

a) The `index.htm` web page displays the additional information about the Wi-Fi G Demo Board application. It also displays the continually updating status of the three LEDs (LED0, LED1 and LED2) and push-button on the Wi-Fi G Demo Board, see Figure 3-3. To control the LEDs, click on the LED icon on the web page. To see the status of the push-button, press SW0 on the Wi-Fi G Demo Board.
b) The mrf24wg0ma.htm web page highlights the features of the MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module and the supporting development tools. See Figure 3-4.
c) The `configure.htm` web page enables the user to scan for nearby networks and connect to the selected network to start up as a group client in Wi-Fi Direct network, or as an ad hoc, or as a SoftAP and to select WPS-PBC or WPS-PIN. See Figure 3-5.
5. To connect the Wi-Fi G Demo board to an existing network, click Display Scan Results on the configure.htm web page. See Figure 3-6.

6. When a new network is selected, the Wi-Fi G Demo Board resets automatically using the parameters (SSID, security key) of the new network to reconnect to this new network. See Figure 3-7.
7. To continue using the demo, the client device must be reconnected to the same network where Wi-Fi G Demo Board is redirected to.

Note: This is not applicable for initial release Demo Version 1.02. The demo board always attempts to connect to the last known network. If the user wants to reset the demo board to factory default conditions (startup in SoftAP mode) again, then simply press SW0 for 4 seconds. Do NOT press SW0 immediately on power up, as this initiates a self-test and does not reset the demo board to default factory conditions.
Chapter 4. Description of Modes of Operation

4.1 SoftAP NETWORK

On starting the demo, the factory default conditions has the product start up as a SoftAP without security. This means that all the network information that is being configured on the device is going over-the-air in the open. For most applications, unless another user is specifically attempting to listen in on this network, the potential security impact is minor. However, for applications that require baseline level of security, WEP can be employed on the network.

SoftAP is the centralized coordinator for the network. With MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module firmware version 0x3107 and future releases, it supports Wired Equivalent Privacy (WEP) (40-bit/104-bit) security.

4.2 AD HOC NETWORKS

Ad Hoc networks are peer-to-peer networks with no centralized coordinator for the network. All the devices share the responsibilities of keeping the network running. According to 802.11 specifications, ad hoc network only supports 802.11b rates of 1 Mbps, 2 Mbps, 5.5 Mbps and 11 Mbps.

One downfall of ad hoc networks is that typically security is not employed on them. The MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module can secure an ad hoc network with Wired Equivalent Privacy (WEP) (40-bit/104-bit) security, like most of the laptops and ad hoc devices. Very few devices in the market can secure an ad hoc network with Wi-Fi Protected Access (WPA) level security due to tremendous overhead.

For most applications, unless another user is specifically attempting to listen in on this network, the potential security impact is minor. However, for applications that require baseline level of security, WEP can be employed on the network.

Most Android devices do not support ad hoc networks.

4.3 Wi-Fi DIRECT NETWORKS

Wi-Fi Direct network is a peer-to-peer (P2P) network. It enables the user to configure a secured wireless network between several devices, such as smart devices, laptops or computers with wireless network adapters, without using an access point (AP).

Wi-Fi Direct supports Wi-Fi Protected Setup (WPS) connection method, which is known as the WSC (Wi-Fi Simple Configuration) Config Methods in the Wi-Fi Peer-to-Peer (P2P) Technical Specifications, in particular WPS Push Button method with WPA2.

From the negotiation process, each device determines which devices become group owner (GO) or group client (GC). The GroupOwnerIntent field in the P2P information element (IE) indicates the level of desire to become the GO. The higher the value, the higher the desire to be the GO.

MRF24WG0MA IEEE 802.11 b/g Wi-Fi Transceiver Module only supports the role of GC.

Wi-Fi Direct does not support 802.11b.
4.4 ZERO CONFIGURATION/BONJOUR

Zero Configuration (Zeroconf) provides a mechanism to simplify the device configuration on a network. The term Zeroconf is titled from the names Bonjour (Apple) and Avahi (Linux), and is an Internet Engineering Task Force (IETF) standard. Zeroconf provides simplified naming conventions, instead of relying on the IP addresses alone. The Zeroconf is built on the following three core technologies:

4.4.1 Link Local

The first component of Zeroconf is the ability to self-assign an IP address to each member of a network. Usually, a Dynamic Host Configuration Protocol (DHCP) server handles such situations. However, when no DHCP server exists, Zeroconf-enabled devices negotiate the unique IP address amongst themselves.

4.4.2 Multicast DNS

The second component of Zeroconf is the ability to self-assign the host names. Multicast Domain Name System (mDNS) provides the local network with the ability to have the features of a DNS server. User can use the host names to access the devices on the network. When devices select to use the same host name, as in the IP address resolution, each of the devices has the ability to self-assign the Auto-negotiate New Names, usually appending a number at the end of the name.

4.4.3 Service Discovery

The last component of Zeroconf is service discovery. All Zeroconf devices can broadcast what services they provide. For instance, a printer can broadcast about available printing services. A thermostat can broadcast that it has an HVAC control service. For a specific service, the user can see the list of devices that provide the service, and connect to it. This eliminates the need to know whether something exists on a network (and what its IP or host name is). The user can query the network to see if a certain service exists or not, and easily connect to it.

4.4.4 Zero Configuration & mDNS demonstration

An iPhone and an apps supporting Zero Configuration is used in the demonstration.
Click on the local domain and determine available services. See Figure 4-2.

Click on the service offered, in this case, DemoWebServer. A web browser opens and displays the Wi-Fi G Demo Board web pages. See Figure 4-3.
4.5 CONFIGURED VS. UNCONFIGURED STATE

When the Wi-Fi G Demo is in an unconfigured state (i.e., serving the default MCHP_G_xxxx SSID in SoftAP mode), the GREEN LED (LED0) blinks twice per second to indicate that it is not configured. After the network is configured, the LED blinks once per second.

Note: When the Wi-Fi G Demo Board is moved to a different network, a new IP address is assigned to it. As the new Wi-Fi G Demo Board does not display the new IP address, the user must obtain the new IP address from the server that assigned it. Refer to your server’s documentation for the necessary steps required to obtain the new IP address.
4.6 DETERMINING NEW IP ADDRESS ASSIGNED

There are two methods to determine the new IP address assigned:

a) Zero Configuration / mDNS

From the zero configuration apps, once this apps redirects and opens up the web browser, the Wi-Fi G Demo web page shows the new assigned IP address. See Figure 4-3.

b) AP DHCP Client Table

Refer to your AP’s documentation for the necessary steps required to obtain the new IP address. As an example, for certain APs, by selecting <Status> and then <Local Network>, an option <DHCP Client Table> is offered. This DHCP Client Table lists the IP address that is assigned to the Wi-Fi G Demo Board. See Figure 4-4.

FIGURE 4-4: DHCP CLIENT TABLE
Chapter 5. Programming

5.1 SOFTWARE

The required software to program Wi-Fi G Demo Board include:

- Microchip MPLAB® X IDE
- Microchip MPLAB XC32 Compiler

Wi-Fi G Demo Board is based on the Microchip TCPIP stack software. You can download the latest software version from the Microchip web site, as this contains the latest bug fixes and the best support for current versions of the compilers.

Initial release is based on the Microchip TCPIP v5 stack software. Future plan is to add this to Microchip TCPIP V6 stack software. Software updates are available on the Microchip web site.

The initial release will only demo SoftAP with the capability to scan before connection, enabling scan results to be available. From the scan results, another network can be chosen to be redirected to.

Future releases will add more features such as Wi-Fi Protected Setup (WPS), etc. Refer to the release notes for more information.

5.2 HARDWARE

The following hardware is required to program the Wi-Fi G Demo Board:

- In-circuit debuggers, emulators or programmers such as the PICkit™ 3, MPLAB ICD 3 and MPLAB REAL ICE™ In-Circuit emulator.

 In Figure 5-1, the MPLAB ICD 3 is used.

 In Figure 5-3, the PICkit 3 debugger is used.

- ICD 2 to ICSP Adaptor (Part number AC164110) is needed if the MPLAB ICD 3 or MPLAB REAL ICE In-Circuit Emulator is used.

- Wi-Fi G Demo Board
- Power supply requirements:
 - If programming using PICkit 3 or MPLAB ICD 3, power supply can be supplied from the PICkit 3 or MPLAB ICD 3 itself.
 - If using batteries during programming, note that multiple programming may drain the batteries.
 - +3.3V DC power supply may be needed if MPLAB X IDE is in debugging mode.

 The required hardware interconnections include:

- ICD 2 to ICSP Adaptor (Part number AC164110)
 - Connect Wi-Fi G Demo Board J14 pin 1 to ICD 2 to ICSP Adaptor J2 pin1. See Figure 5-2.

- PICkit 3
 - Connect Wi-Fi G Demo Board J14 pin 1 to PICKit3 header pin 1. See Figure 5-3.
• If external power supply is used:
 - Supply Wi-Fi G Demo Board J14 pin 2 with +3.3V.
 - Connect Wi-Fi G Demo Board J14 pin 3 to GND.
Otherwise, make sure 2 AAA batteries are present.

FIGURE 5-1: Wi-Fi® G DEMO BOARD – MPLAB® ICD 3 HARDWARE INTERFACE

FIGURE 5-2: Wi-Fi® G DEMO BOARD – ICD 2 TO ICSP™ ADAPTOR HARDWARE INTERFACE
5.3 PROGRAMMING SEQUENCES – PROJECT

1. Open MPLAB X IDE.
2. Click on File>Open Project. Browse to Wi-Fi G Demo Board directory and open Wi-Fi G Demo Board. See Figure 5-4.
3. Check the appropriate in-circuit debugger is selected. Click on <Project Properties>. See Figure 5-5. Ensure that right in-circuit debugger is selected. See Figure 5-6.
4. Ensure that power switch S1 is set to ON. Select <Make and Program Device (Project Wi-Fi_G_Demo_Board)>. See Figure 5-7.
5. Wait for programming to complete. See Figure 5-8.

FIGURE 5-7: MAKE AND PROGRAM DEVICE

Select this option to make and program WiFi G Demo Board

FIGURE 5-8: PROGRAMMING IS COMPLETED

Has completed programming WiFi G Demo Board.
5.4 PROGRAMMING SEQUENCES – HEX FILE

1. Open MPLAB X IDE.
2. Click on **File>Import>Hex/ELF -(Prebuilt) File.**

 See **Figure 5-9.**

FIGURE 5-9: IMPORT HEX FILE

3. Browse to directory containing this HEX file. Select the correct device <PIC32MX695F512H>. See **Figure 5-10.**
4. Select the correct hardware tool (in-circuit debugger), for example PICkit 3. See Figure 5-11.

5. A Summary listing the Project Directory, Target Device, Platform Tool and Project Source are displayed. Click on <Finish>. See Figure 5-12.
6. Power supply is supplied to Wi-Fi G Demo Board from the in-circuit debugger. Under <Project Properties> and selected in-circuit debugger, click on Option categories>Power: Enable option to <Power target circuit from PICkit 3> or <Power target circuit from MPLAB ICD 3>. See Figure 5-13 and Figure 5-14.
7. Click on <Make and Program Device>. See Figure 5-15.

FIGURE 5-15: MAKE AND PROGRAM DEVICE

8. Once programming is completed, the output panel displays programming completed status. See Figure 5-16.
FIGURE 5-16: PROGRAMMING COMPLETED
6.1 CHANGE TRANSMIT POWER

Wi-Fi APIs are available in source file WFTxPower.c to read and write MRF24WG0MA transmit power. MRF24WG0MA has a transmit power range of 0 dBm to 18 dBm.

Invoke function prototype WF_TxPowerGetMax to read back MRF24WG0MA transmit power. Invoke function prototype WF_TxPowerSetMax to set MRF24WG0MA transmit power. No conversion of units is needed as input parameter to WF_TxPowerSetMax is in dBm.
NOTES:
Chapter 7. Customizing Web Pages

7.1 SOFTWARE REQUIREMENTS

• Microchip MPLAB X IDE

7.2 DIRECTORY LOCATION

Wi-FiGDemo web pages are contained within MPLAB WiFi_G_Demo_Board project.

FIGURE 7-1: WI-FI® G DEMO BOARD MPLAB® PROJECT DIRECTORY

• Execute or run batch file, based on MPFS utility MPFS2.jar, to compile HTM files into a WiFiGDemoMPFSSimg.c image

\TCPIP\WiFiGDemo\Convert WebPages to MPFS.bat
This batch file will output five files upon successful completion.
- WiFiGDemoMPSFSImg.bin
- WiFiGDemoMPFSImg.c (used by Wi-Fi_G_Demo_Board project)
- WiFiGDemoMPFSImg.s
- HTTPPrint.c
- HTTPPrint.idx

• Wi-Fi G Demo HTM files
 \TCPIP\WiFiGDemo\WiFiGDemoWebPages

 Web Pages
 • index.htm
 • mrf24wg0ma.htm
 • configure.htm
 • error.htm
 • reconnect.htm

• Javascript file
 \TCPIP\WiFiGDemo\WebPages\javascript\mchp.js

• Source code files (where HTM files and stack source codes interacts)
 \TCPIP\WiFiGDemo\customHTTPApp.c

7.3 STEPS FOR CUSTOMIZING WEB PAGE CONTENTS

This section illustrates customizing web page contents by adding a new field entry <RF module FW version> to index.htm.

1. Click on the selected HTM file to view the original un-modified web page. For example, index.htm. See Figure 7-2.

FIGURE 7-2: ORIGINAL UN-MODIFIED INDEX.HTM

2. Open index.htm. Create a new entry by adding the following line:
RF module FW version: `` fwver``

Save the file. See Figure 7-3.

FIGURE 7-3: INSERT NEW ENTRY INTO INDEX.HTM

3. Click on the modified `index.htm` to view the changes. See Figure 7-4.

FIGURE 7-4: MODIFIED INDEX.HTM

4. For new added functions, such as `<RF module FW version>`, the corresponding files may need to be changed.
• CustomHTTPApp.c

 // ===
 // = Sends the FW version =
 // ==
 void HTTPPrint_fwver(void)
 {
 static BOOL firstTime = TRUE;
 static tWFDeviceInfo deviceInfo;
 BYTE fwVerString[8];

 if (firstTime)
 {
 firstTime = FALSE;
 WF_GetDeviceInfo(&deviceInfo); // only call this once, not continually
 }
 uitoa((deviceInfo.romVersion << 8) | deviceInfo.patchVersion, fwVerString);
 TCPPutString(sktHTTP, fwVerString);
 }

5. Run the batch file <Convert WebPages to MPFS.bat> to generate a new WiFiGDemoMPFSImg.c image
6. Rebuild the project. In the build process, the project uses WiFiGDemoMPFSImg.c.
7. Connect to the WiFiG-Demo network. The changes are reflected on the WiFi-GDemo web page.

FIGURE 7-5: NEW WI-FI® G DEMO WEB PAGE
Appendix A. Wi-Fi G Demo Board Schematic

A.1 INTRODUCTION

This appendix shows the Wi-Fi G Demo Board Schematic.
FIGURE A-1: Wi-Fi® G DEMO BOARD SCHEMATICS
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-8850

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

10/26/12