Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoQ, KEELoQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MIWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscent Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
ISBN: 9781620768044

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeloQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Table of Contents

Chapter 1. CLC Configuration Tool Overview
1.1 Introduction ... 7
1.2 Highlights .. 7
1.3 CLC Configuration Tool Purpose ... 7
1.4 Installing the Program .. 8
1.5 Design Methodology Steps .. 9
 1.5.1 Device ... 11
 1.5.2 CLC Module .. 11
 1.5.3 Data Inputs .. 11
 1.5.4 Gate Inputs .. 12
 1.5.5 Gate Outputs ... 12
 1.5.6 Digital Logic Blocks ... 13
 1.5.7 Output Control ... 14
1.6 Saving/Loading ... 14

Chapter 2. Manchester Line Code Example
2.1 Introduction ... 17
2.2 Highlights .. 17
2.3 Example Problem .. 17
2.4 Proposed Solution .. 17
2.5 Extended Solution .. 19

Appendix A. Manchester Encoding Program (ASSY)

Appendix B. The Configurable Logic Cell (CLC) Designer Tool

B.1 Introduction
B.2 Block Diagram .. 23
B.3 AND-OR ... 24
B.4 OR-XOR ... 25
B.5 AND ... 26
B.6 S-R ... 27
B.7 D Flop .. 28
B.8 OR-D .. 29
B.9 J-K .. 30
B.10 D Latch .. 31
B.11 “clc-and-or.inc” ... 32
B.12 “clc-or-xor.inc” ... 33
B.13 “clc-and.inc” ... 34
B.14 “clc-s-r.inc” ... 35
B.15 “clc-d-flop.inc” .. 36
B.16 “clc-or-d.inc” ... 37
B.17 “clc-j-k.inc” ... 38
B.18 “clc-d-ltch.inc” ... 39
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXXA”, where “XXXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the Configurable Logic Cell (CLC) Configuration Tool. Items discussed in this chapter include:

• Conventions Used in this Guide
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the Configurable Logic Cell (CLC) Configuration Tool as a development to emulate and debug firmware on a target board, as well as how to program devices. The document is organized as follows:

• Chapter 1. CLC Configuration Tool Overview
• Chapter 2. Manchester Line Code Example
• Appendix A. Manchester Encoding Program (ASSY)
• Appendix B. The Configurable Logic Cell (CLC) Designer Tool
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB IDE User’s Guide</td>
<td></td>
</tr>
<tr>
<td>Emphasized text</td>
<td>the Output window</td>
<td>...is the only compiler...</td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Settings dialog</td>
<td></td>
</tr>
<tr>
<td>A dialog</td>
<td>the Output window</td>
<td>Print window</td>
<td></td>
</tr>
<tr>
<td>A menu selection</td>
<td>select Enable Programmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
<td></td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
<td></td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
<td></td>
</tr>
<tr>
<td>A tab</td>
<td>Click the Power tab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N’Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
<td></td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
<td></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
<td></td>
</tr>
<tr>
<td>Filenames</td>
<td>autoexec.bat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File paths</td>
<td>c:\mcc18\h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit values</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constants</td>
<td>0xFF, ‘A’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
<td></td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
<td></td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>*errorlevel {0</td>
<td>1}*</td>
</tr>
</tbody>
</table>
| Ellipses... | Replaces repeated text | *var_name [,
| Represent code supplied by user | void main (void) | |
| | | {...} } | |
THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers.

Technical support is available through the web site at:

http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (August 2011)

- Initial Release of this Document.

Revision B (December 2012)

- Updated the design methodology (Section 1.5 “Design Methodology Steps”)
- Added Appendix B. The Configurable Logic Cell (CLC) Designer Tool.
Chapter 1. CLC Configuration Tool Overview

1.1 INTRODUCTION

The intention of this user’s guide is to assist the reader in becoming acquainted with the Configurable Logic Cell (CLC) Configuration Tool. It will explain how to setup the tool and configure it with an applicable example of creating a Manchester encoder. This document will help the reader become familiar with the purpose and functionality of the CLC module and be able to use the CLC Configuration Tool with ease.

In addition to the Manchester encoder, additional appendices have been added, which provide examples for each type of configurable logic. Screenshots and corresponding source code examples can be found in Appendix B. “The Configurable Logic Cell (CLC) Designer Tool”.

The CLC is very useful for simple switching and logic operations, but admittedly, the CLC module is more limited in its functionality and interconnect than a PAL (Programmable Array Logic). The CLC module is not intended as a replacement for a PAL, but offers value in the reduction of external glue logic, faster event response, and custom interfacing. For designers that are familiar with PAL design (and synthesis/timing tools associated with such technology), use of the CLC module entails a design methodology similar to that of introductory logic courses. The “CLC Designer” tool allows edits to one module at a time.

Because the number of CLC modules per device varies, this technique limits the designer to the number of resources available on that particular chip. Further, direct design of the logic and interconnect keeps the designer visually aware of the signal and logic limitations of the CLC peripheral.

1.2 HIGHLIGHTS

This chapter discusses:
• CLC Configuration Tool Purpose
• Installing the Program
• Design Methodology Steps
• Saving/Loading

1.3 CLC CONFIGURATION TOOL PURPOSE

The CLC consists of multiple combination and sequential circuits that can have their functionality pre-programmed or programmed dynamically. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution and supports a vast amount of output designs.

The configuration tool’s purpose is to streamline the setup process of the CLC module by simulating the functionality of the registers in a graphical user interface (GUI). The end result of using the tool will be a generated resource file, written in either C or assembly, which can be dropped into an existing project to be included in a program. The created file is custom generated, depending on the user inputs and preferences, such as programming language.
1.4 INSTALLING THE PROGRAM

The most recent version of the software can be installed from Microchip’s web site at http://www.microchip.com. Simply place the CLCDesignerTool.exe in the same folder as the CLCDesigner.ini file. To run the program, double-click on the executable and the screen in Figure 1-1 should be presented.

Figure 1-2 shows the error when the INI file is not placed in the same directory as the executable.

![FIGURE 1-2: ERROR MESSAGE]
1.5 DESIGN METHODOLOGY STEPS

1. Identify the input and output signals that will be required, and make sure they are not conflicting with other required peripherals on the chip. It should be noted that some CLC modules have alternate output pins. Also, some peripheral signals can be routed to alternate pins through an unused CLC module. For example, a PWM signal could be routed through a CLC block, and the output could be presented on an alternate pin. I/O configuration as such is handled as part of the system initialization, and therefore is not included in the “CLC Designer”.

2. To design custom logic for the CLC module, it is suggested that the designer first approach the design by creating timing diagrams, and then sketch out the gate logic for their design.

3. Once that has been completed, the designer should break the circuit into separate elements (ex: flip-flop, XOR gate, etc.), each element being implementable as a single CLC module. For an example of how this is done, reference Figure 4 of application note AN1451, “Glitch-Free Design Using the Configurable Logic Cell” (DS01451), available on the Microchip web site.

4. Once the circuit has been broken into logic elements, use the “CLCx DATA INPUT SELECTION” table in the data sheet (device specific) to check for signals that can feed between the CLC blocks and PIC® MCU internal signals, and place these labels on the logic design. Pay particular attention to the MUX selection codes in the DxS columns of the table: Most MUX selections are mutually exclusive, which limits your signal selection choices. Some inputs are duplicated, such as PWM2 on the 1509. Both CLC2 and CLC3 have access to these, making those two input MUX’s not exclusive. Doing this search beforehand avoids the unpleasant task of hunting for the CLC-Input combination that works, since the “CLC Designer” is organized so that invalid selections are not possible.

5. After it is understood how each CLC module will be configured, use the “CLC Designer” tool GUI to implement the complete design and to generate the code (either C or assembly).

6. After the CLC code has been included in the project, the inputs/outputs should be thoroughly tested to ensure that everything is working properly and that interrupts will not be falsely generated, etc. The “CLC Designer” tool does not support timing or signal simulation, so all signals should be validated in the actual hardware. Another de-bugging/validation technique is to set up each CLC module independently (monitoring inputs and outputs) to verify functionality before multiple CLC modules are tied together.
The CLC Configuration Tool presents the following options in initial start-up, as seen in Figure 1-3.

FIGURE 1-3: CLC INPUT/OUTPUT OPTIONS

The CLC Configuration Tool provides a friendly alternative to manually configuring the 8 CLC registers for each module in software. Table 1-1 correlates each block in the above figure with its matching register in the device’s data sheet.

TABLE 1-1: CORRELATION BETWEEN GUI REPRESENTATION AND THEIR EFFECTS ON DATA SHEET CLC REGISTERS

<table>
<thead>
<tr>
<th>CLC GUI Representation</th>
<th>CLC Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Device</td>
<td>All</td>
</tr>
<tr>
<td>2. CLC module</td>
<td>All</td>
</tr>
<tr>
<td>3. Data inputs</td>
<td>CLCSEL1-2</td>
</tr>
<tr>
<td>4. Gate inputs</td>
<td>CLCGLS1-4</td>
</tr>
<tr>
<td>5. Gate output polarity</td>
<td>CLCPOL</td>
</tr>
<tr>
<td>6. Digital logic blocks</td>
<td>CLCCON</td>
</tr>
<tr>
<td>7. CLC output control</td>
<td>CLCCON</td>
</tr>
</tbody>
</table>

The following sections explains each block’s functionality and purpose labeled in Figure 1-3.
1.5.1 Device

This is where the device, such as the PIC16F1508, will be selected. When a device is selected, the program will configure itself automatically to that specific device, such as data inputs and number of available CLC outputs.

1.5.2 CLC Module

This drop-down menu will display each CLC module. Some devices, such as the PIC10F320, will only have one available CLC module in the selected device. The "x" in each CLC register will be replaced by whichever CLC module is used.

1.5.3 Data Inputs

There are four input selection groups. Each group consists of eight selections. For devices with only 8 inputs, all 8 inputs are available in every group. For devices with 16 inputs, only 8 of the 16 are available in each group but are distributed in such a way to minimize precluding some input selection combinations. No input will appear twice in the same group but will appear as an input in other groups.

As seen in Table 1-2, each drop-down item correlates to a logic cell data input group (lcxdx). Each data input is selectable at least two different times in two or more different groups. For example, Fosc could be selected as an input in the first and second drop-down menus in the CLC tool for a PIC16F150, as shown in Figure 1-4.

TABLE 1-2: CLCX DATA INPUT SELECTION FOR THE PIC16F1507

<table>
<thead>
<tr>
<th>Data Input</th>
<th>lcxd1 D1S</th>
<th>lcxd2 D2S</th>
<th>lcxd3 D3S</th>
<th>lcxd4 D4S</th>
<th>CLC1</th>
<th>CLC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC1In[0]</td>
<td>000</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>000</td>
<td>CLC1IN0</td>
</tr>
<tr>
<td>CLC1In[1]</td>
<td>001</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>101</td>
<td>CLC1IN1</td>
</tr>
<tr>
<td>CLC1In[2]</td>
<td>010</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>110</td>
<td>Reserved</td>
</tr>
<tr>
<td>CLC1In[3]</td>
<td>011</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>111</td>
<td>Reserved</td>
</tr>
<tr>
<td>CLC1In[4]</td>
<td>100</td>
<td>000</td>
<td>—</td>
<td>—</td>
<td>Fosc</td>
<td>Fosc</td>
</tr>
<tr>
<td>CLC1In[5]</td>
<td>101</td>
<td>001</td>
<td>—</td>
<td>—</td>
<td>TMR0IF</td>
<td>TMR0IF</td>
</tr>
<tr>
<td>CLC1In[6]</td>
<td>110</td>
<td>010</td>
<td>—</td>
<td>—</td>
<td>TMR1IF</td>
<td>TMR1IF</td>
</tr>
<tr>
<td>CLC1In[7]</td>
<td>111</td>
<td>011</td>
<td>—</td>
<td>—</td>
<td>TMR2 = PR2</td>
<td>TMR2 = PR2</td>
</tr>
<tr>
<td>CLC1In[8]</td>
<td>—</td>
<td>100</td>
<td>000</td>
<td>—</td>
<td>CLC1OUT</td>
<td>CLC1OUT</td>
</tr>
<tr>
<td>CLC1In[9]</td>
<td>—</td>
<td>101</td>
<td>001</td>
<td>—</td>
<td>CLC2OUT</td>
<td>CLC2OUT</td>
</tr>
<tr>
<td>CLC1In[10]</td>
<td>—</td>
<td>110</td>
<td>010</td>
<td>—</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>CLC1In[11]</td>
<td>—</td>
<td>111</td>
<td>011</td>
<td>—</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>CLC1In[12]</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>000</td>
<td>NCO1OUT</td>
<td>LFINTOSC</td>
</tr>
<tr>
<td>CLC1In[13]</td>
<td>—</td>
<td>—</td>
<td>101</td>
<td>001</td>
<td>HFINTOSC</td>
<td>ADCFRC</td>
</tr>
<tr>
<td>CLC1In[14]</td>
<td>—</td>
<td>—</td>
<td>110</td>
<td>010</td>
<td>PWM3OUT</td>
<td>PWM1OUT</td>
</tr>
<tr>
<td>CLC1In[15]</td>
<td>—</td>
<td>—</td>
<td>111</td>
<td>011</td>
<td>PWM4OUT</td>
<td>PWM2OUT</td>
</tr>
</tbody>
</table>
1.5.4 Gate Inputs

Once the data inputs are selected, they can be mapped into each of the four gates. The output of each gate will differ according to the logic function selected. To select an input into a gate, simply hover over the desired “X” and click once. The cursor arrow will have changed to the pointer and a line extending the input into the gate will appear. To invert the signal, click again where the “X” was and now a bubble should appear, indicating an inversion. If clicked once more, the bubble and line should disappear and default back to the original unconnected state.

1.5.5 Gate Outputs

Each of the gate outputs can be inverted. To do so, simply click once on the output of an individual gate for a bubble to appear. The output is now inverted. To undo this, click the bubble again for it to disappear. It is important to note that any gate with no inputs selected will have its output default to the Off state (logic zero). If a constant logic one is desired then invert the default logic zero by clicking the output for the inverting bubble. Figure 1-5 shows the setup of having Fosc and an inverted Timer0 OVF as inputs to Gate 2 with its output inverted.
1.5.6 Digital Logic Blocks

There are eight available logic functions selected by the tabs of the CLC tool. The logic blocks cannot be configured other than what is shown. Only one logic function can be used at a single time for each CLC module. Figure 1-6 displays all of the available functions.

FIGURE 1-6: GATE INPUT/OUTPUT WITH INVERSION

<table>
<thead>
<tr>
<th>AND - OR</th>
<th>OR - XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **4-Input AND**
- **S-R Latch**
- **1-Input D Flip-Flop with S and R**
- **2-Input D Flip-Flop with R**
- **J-K Flip-Flop with R**
- **1-Input Transparent Latch with S and R**
1.5.7 Output Control

The output from the logic block is fed to the last stage of the CLC, the inversion gate. To invert the output, click on the buffer output pin once for a bubble to appear. From here, the output can be routed to other peripherals, an output pin, or back to the CLC input. An interrupt can be enabled upon a rising and/or falling edge from the CLC output.

Figure 1-7 shows the configuration for enabling the module, enabling the output to the CLCx output pin, and producing an interrupt upon a rising edge being detected. The CLC output will also be inverted.

FIGURE 1-7: CLC OUTPUT OPTIONS

1.6 SAVING/LADING

The program provides convenient methods in saving or loading the design. When the design is concluded and ready to be implemented in software, click the File pull-down menu in the top-left corner of the dialog box as shown in Figure 1-8.

FIGURE 1-8: LOCATION OF LOADING AND SAVING CODE IN THE PROGRAM

Then click file>Save ASSY code or Save C code, depending on the desired output language. The code for all configured CLCs of the selected device will be included in the output file. The resultant file will have an .inc extension. Figure 1-7 shows example output code for the setup as seen in Figure 1-6, with the inclusion of the AND-OR logic block and the rest having default settings. The device used in the example is a PIC16F1507 with module CLC1.
EXAMPLE 1-1: EXAMPLE C AND ASSEMBLY GENERATED CODE

Both pieces of code produce the same affect. The assembly is longer due to the nature of the language. The code can now be easily included as a library file or pasted into an existing program. It is important that the comment section is left intact because the CLC tool uses the comments, specifically the device row, to correctly repopulate the fields.

To load previously saved code from the CLC tool, click file>load code. If imported successfully, the tool will have populated the GUI with the appropriate values corresponding to the registers in the loaded code. If the message is received as seen in Figure 1-9, the device ID in the comments was deleted and must be put back into place.

FIGURE 1-9: ERROR MESSAGE IF DEVICE ID IS MISSING IN THE COMMENTS OF LOADED CODE

Comments can also be saved and loaded within the output file. To do so, simply fill out the comments input text area as seen in Figure 1-10 and when the project is ready to be saved, the comments will also be included in the output file.
The button, **Copy and Show** is used to get a quick view of the register values for the present configuration. When pressed, the boxes below the button will be filled with the settings that correspond to the design. If multiple CLCs share similar configurations, one CLC module can be designed and then pasted into another by clicking the **Copy and Show** in the current module and then **Paste** in another CLC module. This will copy all of the content from one CLC to another. The clipboard contents cannot be pasted to any window outside of the CLC tool. The **Clear** button will reset all fields to their default state.
Chapter 2. Manchester Line Code Example

2.1 INTRODUCTION

This example will use the information in Chapter 1. “CLC Configuration Tool Overview” in solving a typical problem that can now be achieved with ease using the Configurable Logic Cell Configuration Tool. It is recommended that the reader first understand how to use the program before continuing.

2.2 HIGHLIGHTS

This chapter discusses:

- Example Problem
- Proposed Solution
- Extended Solution

2.3 EXAMPLE PROBLEM

You want to encode a bit stream of a typical non-return-to-zero (NRZ) line code from a certain device to a slimmer, more versatile Manchester line code. A Manchester line code has advantages over the typical NRZ code in that Manchester encoding combines the clock and data into one data stream. It has no DC component and is self-clocking. A diagram of a potential setup is shown in Figure 2-1.

2.4 PROPOSED SOLUTION

Using only one CLC module on a PIC® device would accomplish this task. There would be no limitation to the clock speed, since the CLC is not controlled by software. This allows the CPU to focus on the main program without dealing with the encoding process. This also saves the designer additional costs by not having to include more external hardware to perform the same task.

The encoding process simply requires an XOR gate with the data and clock inputs. For this design, a PIC16F1507 is used with its CLC2 module.
The data and clock are mapped to CLC2's input on RC3 and RC4, respectively. It is vital that their respective TRIS bits are configured as inputs. Enable the CLC output and the module itself as well as clear the TRIS bit for the CLC output pin. Figure 2-2 shows the CLC design.

FIGURE 2-2: CLC DESIGN FOR THE ENCODE HANDLING

When finished, include a short description in the comment box and save the design in either C or Assembly format. See Appendix A. "Manchester Encoding Program (ASSY)" for the source code in Assembly.

Figure 2-3 shows a screenshot of the output of the CLC, assuming an input of 0xE4 from the device.

FIGURE 2-3: MANCHESTER LINE ENCODING FROM AN NRZ SOURCE USING THE CLC

Note: Green = CLC output (1), Red = data (2), White = clock (3).
2.5 EXTENDED SOLUTION

If the user wants to generate a Manchester encoded message from the PIC device directly, this is easily achieved through the MSSP. Simply select the PIC16F1508 and replace the data/clock inputs from the external device with SPI SCK and SPI SDO.

FIGURE 2-4: CLC DESIGN FOR THE ENCODE HANDLING USING THE MSSP AS INPUTS

Note: See Appendix A. “Manchester Encoding Program (ASSY)” for assembly code solution.
Appendix A. Manchester Encoding Program (ASSY)

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company’s customer, for use solely and exclusively with products manufactured by the Company. The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

#include "p16f1507.inc"

__CONFIG _CONFIG1, _FOSC_INTOSC & _WDTE_OFF & _PWRTE_OFF & _CLKOUTEN_OFF
__CONFIG _CONFIG2, _LVP_OFF & _STVREN_ON ;Stack over/under flow will cause a reset

errorlevel -302 ;suppress bank selection not zero warning

ORG 0x00

main
 call main_init ;init CLC and configure PIC inputs/outputs
 goto main_loop ;main waiting loop
main_loop
 goto main_loop ;sit here forever

main_init

; File: clc.inc
; Generated by CLC Designer, Version: 1.0.0.0
; Date: 7/13/2011 12:44 PM
; Device:PIC16(L)F1507
BANKSEL CLC1GLS0
movlw H'00'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS1
movlw H'00'
movwf CLC1GLS2
movlw H'00'
movwf CLC1GLS3
movlw H'00'
movwf CLC1SEL0
movlw H'00'
movwf CLC1SEL1
movlw H'00'
movwf CLC1POL
movlw H'00'
movwf CLC1CON

BANKSEL CLC2GLS0
movlw H'02'
movwf CLC2GLS0
movlw H'00'
movwf CLC2GLS0
movlw H'00'
movwf CLC2GLS1
movlw H'00'
movwf CLC2GLS2
movlw H'80'
movwf CLC2GLS3
movlw H'00'
movwf CLC2SEL0
movlw H'50'
movwf CLC2SEL1
movlw H'00'
movwf CLC2POL
movlw H'C1'
movwf CLC2CON

;Uses CLC2out
banksel OSCCON
movlw b'01110010'; 8MHz clock - Does not matter for this demo
movwf OSCCON
banksel TRISC
movlw b'10011000'; RC3 & RC4 as input to CLC2IN :: RC0 as output form CLC2
movwf TRISC
banksel ANSELC ;All digital outputs
movlw 0x00
movwf ANSELC

return ;return to main program
Appendix B. The Configurable Logic Cell (CLC) Designer Tool

B.1 INTRODUCTION

Appendix B provides a reference example for each of the tabs (AND-OR, OR-XOR, AND, ...) in the CLC designer tool. Screenshots, input/output waveforms, and source code provide a starting point for developing custom logic implementations. Examples in Appendix B were developed using the CLC2 block of a PIC16F1509 microcontroller.

B.2 BLOCK DIAGRAM

In order to provide the input signals that will exercise the CLC block, we are using the PIC MCU to drive the IN0 and IN1 signals with RC3 and RC4, respectively.

FIGURE B-1: BLOCK DIAGRAM SHOWING PORT SIGNALS FEEDING CLC BLOCK

- RC3 drives CLC2 IN0
- RC4 drives CLC2 IN1
- CLC2 OUT is the output of the CLC module
B.3 AND-OR

This creates an 'OR' of the two input signals. Signals are connected by clicking to the left of the gate (note the red circle in Figure B-2). Connections alternate between connected, inverted, and not connected. Also, note that gates 2 and 3 have inverted outputs. This causes a '1' to be present at the output of the gate, and will allow the input signal to pass through the AND gates.

FIGURE B-2: AND-OR CONFIGURATION OF CLC2

FIGURE B-3: LOGICAL ‘OR’ INPUT AND OUTPUT WAVEFORM EXAMPLE
B.4 OR-XOR

Creates exclusive-OR of the input signals.

The Exclusive-OR output:
- is high when one input is high and the other is low.
- is low when inputs are both high or both low.

FIGURE B-4: OR-XOR CONFIGURATION OF CLC2

FIGURE B-5: LOGICAL ‘XOR’ INPUT AND OUTPUT WAVEFORM EXAMPLE
B.5 AND

Creates AND of the input signals.

The AND output:
- is high when all inputs are high.
- is low when any input is low.

FIGURE B-6: AND CONFIGURATION OF CLC2

FIGURE B-7: LOGICAL ‘AND’ INPUT AND OUTPUT WAVEFORM EXAMPLE
B.6 S-R

The S-R Latch output:
- is high when the S input is high and stays high when the S input goes low.
- is low when the R input is high and stays low when the R input goes low.
- is low when both S and R inputs are high.

FIGURE B-8: S-R CONFIGURATION OF CLC2

FIGURE B-9: S-R LATCH INPUT AND OUTPUT WAVEFORM EXAMPLE
B.7 D FLOP

In this example, CLC2 IN0 is being used as the clock, and CLC2 IN1 is the data signal to the D flip-flop.

The D Flip-Flop output:
- goes to the level at D on the rising edge of the clock input.

FIGURE B-10: D FLOP CONFIGURATION OF CLC2

‘Q’ output changes on the rising edge of the clock (Figure B-11).

FIGURE B-11: D FLOP INPUT AND OUTPUT WAVEFORM EXAMPLE
B.8 OR-D

The OR-D Flip-Flop output:
- goes high on the rising edge of the clock input when either input to the OR gate is high.
- goes low on the rising edge of the clock when both inputs to the OR gate are low.

FIGURE B-12: OR-D CONFIGURATION OF CLC2

FIGURE B-13: OR-D INPUT AND OUTPUT WAVEFORM EXAMPLE
B.9 J-K

The J-K output:
- remains unchanged when J and K are both low.
- toggles on the rising clock when J and K are both high.
- goes high on the rising clock when the J is high and K is low.
- goes low on the rising clock when J is low and K is high.

FIGURE B-14: J-K CONFIGURATION OF CLC2

FIGURE B-15: J-K INPUT AND OUTPUT WAVEFORM EXAMPLE
B.10 D LTCH

The D Latch output:
- follows the D input when the LE input is high.
- holds the output to the level D when LE goes low.

FIGURE B-16: D LTCH CONFIGURATION OF CLC2

FIGURE B-17: D LTCH INPUT AND OUTPUT WAVEFORM EXAMPLE
Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company's customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-and-or.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 6/7/2012 8:09 AM
; Device: PIC16(L)/F1508/9

BANKSEL CLC1GLS0
movlw H'02'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS1
movlw H'00'
movwf CLC1GLS2
movlw H'80'
movwf CLC1GLS3
movlw H'00'
movwf CLC1SEL0
movlw H'50'
movwf CLC1SEL1
movlw H'00'
movwf CLC1POL
movlw H'C1'
movwf CLC1CON

BANKSEL CLC2GLS0
movlw H'02'
movwf CLC2GLS0
movlw H'00'
movwf CLC2GLS1
movlw H'00'
movwf CLC2GLS2
movlw H'80'
movwf CLC2GLS3
movlw H'00'
movwf CLC2SEL0
movlw H'50'
movwf CLC2SEL1
movlw H'06'
movwf CLC2POL
movlw H'C0'
movwf CLC2CON
B.12 “CLC-OR-XOR.INC”

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company’s customer, for use solely and exclusively with products manufactured by the Company. The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-or-xor.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 6/6/2012 8:46 AM
; Device:PIC16(L)F1508/9

BANKSEL CLC1GLS0
movlw H'02'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS1
movlw H'00'
movwf CLC1GLS2
movlw H'80'
movwf CLC1GLS3
movlw H'00'
movwf CLC1SEL0
movlw H'50'
movwf CLC1SEL1
movlw H'00'
movwf CLC1POL
movlw H'C1'
movwf CLC1CON

BANKSEL CLC2GLS0
movlw H'02'
movwf CLC2GLS0
movlw H'00'
movwf CLC2GLS1
movlw H'00'
movwf CLC2GLS2
movlw H'80'
movwf CLC2GLS3
movlw H'00'
movwf CLC2SEL0
movlw H'50'
movwf CLC2SEL1
movlw H'00'
movwf CLC2POL
movlw H'C1'
movwf CLC2CON
Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company's customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-and.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 6/6/2012 8:49 AM
; Device: PIC16(L)F1508/9

BANKSEL CLC1GLS0
movlw H'02'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS1
movlw H'00'
movwf CLC1GLS2
movlw H'80'
movwf CLC1GLS3
movlw H'00'
movwf CLC1SEL0
movlw H'50'
movwf CLC1SEL1
movlw H'00'
movwf CLC1POL
movlw H'C1'
movwf CLC1CON

BANKSEL CLC2GLS0
movlw H'02'
movwf CLC2GLS0
movlw H'00'
movwf CLC2GLS1
movlw H'00'
movwf CLC2GLS2
movlw H'80'
movwf CLC2GLS3
movlw H'00'
movwf CLC2SEL0
movlw H'50'
movwf CLC2SEL1
movlw H'06'
movwf CLC2POL
movlw H'C2'
movwf CLC2CON
Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company") is intended and supplied to you, the Company's customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-s-r.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 6/6/2012 8:51 AM
; Device:PIC16(L)F1508/9

 BANKSEL CLC1GLS0
 movlw H'02'
 movwf CLC1GLS0
 movlw H'00'
 movwf CLC1GLS1
 movlw H'00'
 movwf CLC1GLS2
 movlw H'80'
 movwf CLC1GLS3
 movlw H'00'
 movwf CLC1SEL0
 movlw H'50'
 movwf CLC1SEL1
 movlw H'00'
 movwf CLC1POL
 movlw H'C1'
 movwf CLC1CON

 BANKSEL CLC2GLS0
 movlw H'02'
 movwf CLC2GLS0
 movlw H'00'
 movwf CLC2GLS1
 movlw H'00'
 movwf CLC2GLS2
 movlw H'80'
 movwf CLC2GLS3
 movlw H'00'
 movwf CLC2SEL0
 movlw H'50'
 movwf CLC2SEL1
 movlw H'00'
 movwf CLC2POL
 movlw H'C3'
 movwf CLC2CON
Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company") is intended and supplied to you, the Company's customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-d-flop.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 6/6/2012 10:01 AM
; Device: PIC16(L)F1508/9

BANKSEL CLC1GLS0
movlw H'02'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS1
movlw H'00'
movwf CLC1GLS2
movlw H'80'
movwf CLC1GLS3
movlw H'00'
movwf CLC1SEL0
movlw H'50'
movwf CLC1SEL1
movlw H'00'
movwf CLC1POL
movlw H'C1'
movwf CLC1CON

BANKSEL CLC2GLS0
movlw H'80'
movwf CLC2GLS0
movlw H'02'
movwf CLC2GLS1
movlw H'00'
movwf CLC2GLS2
movlw H'00'
movwf CLC2GLS3
movlw H'00'
movwf CLC2SEL0
movlw H'50'
movwf CLC2SEL1
movlw H'00'
movwf CLC2POL
movlw H'C4'
movwf CLC2CON
B.16 “CLC-OR-D.INC”

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-or-d.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 6/6/2012 10:15 AM
; Device: PIC16(L)F1508/9

BANKSEL CLC1GLS0
movlw H'02'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS1
movlw H'00'
movwf CLC1GLS2
movlw H'80'
movwf CLC1GLS3
movlw H'00'
movwf CLC1SEL0
movlw H'50'
movwf CLC1SEL1
movlw H'00'
movwf CLC1POL
movlw H'C1'
movwf CLC1CON

BANKSEL CLC2GLS0
movlw H'80'
movwf CLC2GLS0
movlw H'02'
movwf CLC2GLS1
movlw H'00'
movwf CLC2GLS2
movlw H'00'
movwf CLC2GLS3
movlw H'00'
movwf CLC2SEL0
movlw H'50'
movwf CLC2SEL1
movlw H'00'
movwf CLC2POL
movlw H'C5'
movwf CLC2CON
B.17 “CLC-J-K.INC”

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-j-k.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 6/6/2012 11:16 AM
; Device: PIC16(L)F1508/9

BANKSEL CLC1GLS0
movlw H'02'
movwf CLC1GLS0
movlw H'00'
movwf CLC1GLS1
movlw H'00'
movwf CLC1GLS2
movlw H'80'
movwf CLC1GLS3
movlw H'00'
movwf CLC1SELF0
movlw H'50'
movwf CLC1SELF1
movlw H'00'
movwf CLC1POL
movlw H'C1'
movwf CLC1CON

BANKSEL CLC2GLS0
movlw H'08'
movwf CLC2GLS0
movlw H'02'
movwf CLC2GLS1
movlw H'00'
movwf CLC2GLS2
movlw H'80'
movwf CLC2GLS3
movlw H'00'
movwf CLC2SELF0
movlw H'50'
movwf CLC2SELF1
movlw H'00'
movwf CLC2POL
movlw H'C6'
movwf CLC2CON
B.18 “CLC-D-LTCH.INC”

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company's customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

; File: clc-d-ltch.inc
; Generated by CLC Designer, Version: 1.0.0.3
; Date: 8/1/2012 8:54 AM
; Device:PIC16(L)F1508/9

 BANKSEL CLC1GLS0
 movlw H'02'
 movwf CLC1GLS0
 movlw H'00'
 movwf CLC1GLS1
 movlw H'00'
 movwf CLC1GLS2
 movlw H'80'
 movwf CLC1GLS3
 movlw H'00'
 movwf CLC1SEL0
 movlw H'50'
 movwf CLC1SEL1
 movlw H'00'
 movwf CLC1POL
 movlw H'C1'
 movwf CLC1CON

 BANKSEL CLC2GLS0
 movlw H'02'
 movwf CLC2GLS0
 movlw H'80'
 movwf CLC2GLS1
 movlw H'00'
 movwf CLC2GLS2
 movlw H'00'
 movwf CLC2GLS3
 movlw H'00'
 movwf CLC2SEL0
 movlw H'S0'
 movwf CLC2SEL1
 movlw H'00'
 movwf CLC2POL
 movlw H'C7'
 movwf CLC2CON
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8890-9588
Fax: 86-23-8890-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2260
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-2250
Fax: 86-21-5407-2260

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-88-8664-2200
Fax: 86-88-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-766-3210040
Fax: 86-766-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6860-3770
Fax: 81-3-6860-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-556-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

11/29/12