This document includes the programming specifications for the following devices:

- PIC12F1840 - PIC12LF1840
- PIC16F1847 - PIC16LF1847

1.0 OVERVIEW

The PIC16F/LF1847 and PIC12F/LF1840 devices can be programmed using either the high-voltage In-Circuit Serial Programming™ (ICSP™) method or the low-voltage ICSP™ method.

1.1 Hardware Requirements

1.1.1 HIGH-VOLTAGE ICSP PROGRAMMING

In High-Voltage ICSP™ mode, these devices require two programmable power supplies: one for VDD and one for the MCLR/VPP pin.

1.1.2 LOW-VOLTAGE ICSP PROGRAMMING

In Low-Voltage ICSP™ mode, these devices can be programmed using a single VDD source in the operating range. The MCLR/VPP pin does not have to be brought to a different voltage, but can instead be left at the normal operating voltage.

1.1.2.1 Single-Supply ICSP Programming

The LVP bit in Configuration Word 2 enables single-supply (low-voltage) ICSP programming. The LVP bit defaults to a ‘1’ (enabled) from the factory. The LVP bit may only be programmed to ‘0’ by entering the High-Voltage ICSP mode, where the MCLR/VPP pin is raised to V_{IH}. Once the LVP bit is programmed to a ‘0’, only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying V_{IH} to the MCLR/VPP pin.

Note 2: While in Low-Voltage ICSP mode, MCLR is always enabled, regardless of the MCLRE bit, and the port pin can no longer be used as a general purpose input.
1.2 Pin Utilization

Five pins are needed for ICSP™ programming. The pins are listed in Table 1-1 and Table 1-2.

TABLE 1-1: PIN DESCRIPTIONS DURING PROGRAMMING – PIC16F/LF1847

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>During Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Function</td>
</tr>
<tr>
<td>RB6</td>
<td>ICSPCLK</td>
</tr>
<tr>
<td>RB7</td>
<td>ICSPDAT</td>
</tr>
<tr>
<td>RA5/MCLR/VPP</td>
<td>Program/Verify mode</td>
</tr>
<tr>
<td>VDD</td>
<td>VDD</td>
</tr>
<tr>
<td>VSS</td>
<td>VSS</td>
</tr>
</tbody>
</table>

Legend: I = Input, O = Output, P = Power

Note 1: In the PIC12F/LF1840 and PIC16F/LF1847, the programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

TABLE 1-2: PIN DESCRIPTIONS DURING PROGRAMMING – PIC12F/LF1840

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>During Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Function</td>
</tr>
<tr>
<td>RA1</td>
<td>ICSPCLK</td>
</tr>
<tr>
<td>RA0</td>
<td>ICSPDAT</td>
</tr>
<tr>
<td>RA3/MCLR/VPP</td>
<td>Program/Verify mode</td>
</tr>
<tr>
<td>VDD</td>
<td>VDD</td>
</tr>
<tr>
<td>VSS</td>
<td>VSS</td>
</tr>
</tbody>
</table>

Legend: I = Input, O = Output, P = Power

Note 1: In the PIC12F/LF1840 and PIC16F/LF1847, the programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.
2.0 DEVICE PINOUTS

The pin diagrams for the!PIC16F/LF1847 and PIC12F/LF1840!family are shown in Figure 2-1 through Figure 2-5. The pins that are required for programming are listed in Table 1-1 and shown in bold lettering in the pin diagrams.

FIGURE 2-1: 18-PIN DIAGRAM FOR PIC16F1847 AND PIC16LF1847

PDIP, SOIC

RA2 <--> 1 --> 18 --> RA1
RA3 <--> 2 --> 17 --> RA0
RA4 <--> 3 --> 16 --> RA7
RA5/MCLR/VPP <--> 4 --> 15 --> RA6
Vss <--> 5 --> 14 --> Vdd
RB0 <--> 6 --> 13 --> RB7/ICSPDAT
RB1 <--> 7 --> 12 --> RB6/ICSPCLK
RB2 <--> 8 --> 11 --> RB5
RB3 <--> 9 --> 10 --> RB4

FIGURE 2-2: 20-PIN DIAGRAM FOR PIC16F1847 AND PIC16LF1847

SSOP

RA2 <--> 1 --> 20 --> RA1
RA3 <--> 2 --> 19 --> RA0
RA4 <--> 3 --> 18 --> RA7
RA5/MCLR/VPP <--> 4 --> 17 --> RA6
Vss <--> 5 --> 16 --> VDD
Vss <--> 6 --> 15 --> VDD
RB0 <--> 7 --> 14 --> RB7/ICSPDAT
RB1 <--> 8 --> 13 --> RB6/ICSPCLK
RB2 <--> 9 --> 12 --> RB5
RB3 <--> 10 --> 11 --> RB4

FIGURE 2-3: 28-PIN DIAGRAM FOR PIC16F1847 AND PIC16LF1847

QFN

RA5/MCLR/VPP --> NC --> 21 --> RA7
Vss --> NC --> 20 --> RA6
Vss --> NC --> 19 --> Vdd
Vss --> NC --> 18 --> RB7/ICSPDAT
RB0 --> NC --> 17 --> RB6/ICSPCLK
RB1 --> NC --> 16 --> RB5
RB2 --> NC --> 15 --> RB4
RB3 --> NC --> 14 --> RB3
RB4 --> NC --> 13 --> RB2
RB5 --> NC --> 12 --> RB1
RB6 --> NC --> 11 --> RA7
RB7 --> NC --> 10 --> RA6
RB8 --> NC --> 9 --> RA5
RA9 --> NC --> 8 --> RA4
RA10 --> NC --> 7 --> RA3
RA11 --> NC --> 6 --> RA2
RA12 --> NC --> 5 --> RA1
RA13 --> NC --> 4 --> RA0
RA14 --> NC --> 3 --> RA9
RA15 --> NC --> 2 --> RA8
RA16 --> NC --> 1 --> RA7

FIGURE 2-4: 8-PIN DIAGRAM FOR PIC12F1840/PIC12LF1840

PDIP, SOIC

VDD --> 1 --> 8 --> Vss
RA5 --> 2 --> 7 --> RA0/ICSPDAT
RA4 --> 3 --> 6 --> RA1/ICSPCLK
RA3/MCLR/VPP --> 4 --> 5 --> RA2

FIGURE 2-5: 8-PIN DIAGRAM FOR PIC12F1840/PIC12LF1840

DFN

VDD --> 1 --> 8 --> Vss
RA5 --> 2 --> 7 --> RA0/ICSPDAT
RA4 --> 3 --> 6 --> RA1/ICSPCLK
RA3/MCLR/VPP --> 4 --> 5 --> RA2
3.0 MEMORY MAP

The memory for the PIC16F/LF1847 and PIC12F/LF1840 devices is broken into two sections: program memory and configuration memory. Only the size of the program memory changes between devices, the configuration memory remains the same.

FIGURE 3-1: PIC12F/LF1840 PROGRAM MEMORY MAPPING
FIGURE 3-2: PIC16F/LF1847 PROGRAM MEMORY MAPPING

- 8000h: User ID Location
- 8001h: User ID Location
- 8002h: User ID Location
- 8003h: User ID Location
- 8004h: Reserved
- 8005h: Reserved
- 8006h: Device ID
- 8007h: Configuration Word 1
- 8008h: Configuration Word 2
- 8009h: Calibration Word 1
- 800Ah: Calibration Word 2
- 800Bh-81FFh: Reserved
3.1 User ID Location
A user may store identification information (user ID) in four designated locations. The user ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled.

Note: MPLAB® IDE only displays the 7 Least Significant bits (LSb) of each user ID location, the upper bits are not read. It is recommended that only the 7 LSbs be used if MPLAB IDE is the primary tool used to read these addresses.

3.2 Device ID
The device ID word is located at 8006h. This location is read-only and cannot be erased or modified.

REGISTER 3-1: DEVICE ID: DEVICE ID REGISTER(1)

<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEV8</td>
<td>DEV7</td>
<td>DEV6</td>
<td>DEV5</td>
<td>DEV4</td>
<td>DEV3</td>
<td>DEV2</td>
</tr>
<tr>
<td>bit 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>DEV1</td>
<td>DEV0</td>
<td>REV4</td>
<td>REV3</td>
<td>REV2</td>
<td>REV1</td>
<td>REV0</td>
</tr>
<tr>
<td>bit 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
P = Programmable bit U = Unimplemented bit, read as ‘0’
R = Readable bit W = Writable bit ‘0’ = Bit is cleared
-n = Value at POR ‘1’ = Bit is set x = Bit is unknown

bit 13-5 \(\text{DEV}<8:0>: \) Device ID bits
These bits are used to identify the part number.

bit 4-0 \(\text{REV}<4:0>: \) Revision ID bits
These bits are used to identify the revision.

Note 1: This location cannot be written.
TABLE 3-1: DEVICE ID VALUES

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>DEVICE ID VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F1847</td>
<td>01 0100 100</td>
</tr>
<tr>
<td>PIC16LF1847</td>
<td>01 0100 101</td>
</tr>
<tr>
<td>PIC12F1840</td>
<td>01 1011 100</td>
</tr>
<tr>
<td>PIC12LF1840</td>
<td>01 1011 110</td>
</tr>
</tbody>
</table>

3.3 Configuration Words

There are two Configuration Words, Configuration Word 1 (8007h) and Configuration Word 2 (8008h). The individual bits within these Configuration Words are used to enable or disable device functions such as the Brown-out Reset, code protection and Power-up Timer.

3.4 Calibration Words

The internal calibration values are factory calibrated and stored in Calibration Words 1 and 2 (8009h, 800Ah). The Calibration Words do not participate in erase operations. The device can be erased without affecting the Calibration Words.
REGISTER 3-2: CONFIGURATION WORD 1

<table>
<thead>
<tr>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10-9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4-3</th>
<th>Bit 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCEN</td>
<td>IEO</td>
<td>CLKOUT</td>
<td>BOREN1</td>
<td>BOREN0</td>
<td>CPD</td>
<td>CP</td>
<td>MCLRE</td>
<td>PWRTE</td>
<td>WDTE1</td>
</tr>
<tr>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>MCLRE</td>
<td>PWRTE</td>
<td>WDTE1</td>
</tr>
<tr>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>WDTE0</td>
<td>FOSC2</td>
<td>FOSC1</td>
</tr>
<tr>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>R/P-1</td>
<td>FOSC0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **W** = Writable bit
- **R** = Readable bit
- **x** = Bit is unknown
- **U** = Unimplemented bit, read as '0'
- **P** = Programmable bit
- **'0'** = Bit is cleared
- **'1'** = Bit is set
- **POR** = Value at Power-On Reset
- **FCC** = Fail-Safe Clock Monitor
- **IESO** = Internal/External Switchover
- **CLKOUTEN** = Clock Out Enable
- **BOREN** = Brown-out Reset Enable
- **CPD** = Code Protection
- **MCLRE** = MCLR/VPP Pin Function Select
- **PWRTE** = Power-up Timer Enable
- **WDTE** = Watchdog Timer Enable
- **FOSC** = Oscillator Selection

Legend for Oscillator Selection:

- **111** = ECH: External Clock, High-Power mode: on CLkin pin
- **110** = ECM: External Clock, Medium-Power mode: on CLkin pin
- **101** = ECL: External Clock, Low-Power mode: on CLkin pin
- **100** = INTOSC oscillator: I/O function on OSC1 pin
- **111** = EXTRC oscillator: RC function on OSC1 pin
- **010** = HS oscillator: High-speed crystal/resonator on OSC2 pin and OSC1 pin
- **001** = XT oscillator: Crystal/resonator on OSC2 pin and OSC1 pin
- **000** = LP oscillator: Low-power crystal on OSC2 pin and OSC1 pin

Note:

1. Enabling Brown-out Reset does not automatically enable Power-up Timer.
2. The entire data EEPROM will be erased when the code protection is turned off during an erase.
3. The entire program memory will be erased when the code protection is turned off.
REGISTER 3-3: CONFIGURATION WORD 2

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVP</td>
<td>DEBUG</td>
<td>—</td>
<td>BORV</td>
<td>STVREN</td>
<td>PLLN</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **W** = Writable bit
- **‘0’** = Bit is cleared
- **R** = Readable bit
- **‘1’** = Bit is set
- **x** = Bit is unknown
- **U** = Unimplemented bit, read as ‘0’
- **P** = Programmable Bit

bit 13
LVP: Low-Voltage Programming Enable bit(1)
- **1** = Low-voltage programming enabled
- **0** = HV on MCLR/VPP must be used for programming

bit 12
DEBUG: In-Circuit Debugger Mode bit
- **1** = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins
- **0** = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger

bit 11
Unimplemented: Read as ‘1’

bit 10
BORV: Brown-out Reset Voltage Selection bit
- **1** = Brown-out Reset voltage set to 1.9V
- **0** = Brown-out Reset voltage set to 2.5V

bit 9
STVREN: Stack Overflow/Underflow Reset Enable bit
- **1** = Stack Overflow or Underflow will cause a Reset
- **0** = Stack Overflow or Underflow will not cause a Reset

bit 8
PLLEN: PLL Enable bit
- **1** = 4xPLL enabled
- **0** = 4xPLL disabled

bit 7-5
Unimplemented: Read as ‘1’

bit 4
Reserved: Read as ‘1’(2)

bit 3-2
Unimplemented: Read as ‘1’

bit 1-0
WRT<1:0>: Flash Memory Self-Write Protection bits

8 kW Flash memory (PIC16F1847/PIC16LF1847):
- **11** = Write protection off
- **10** = 000h to 1FFh write-protected, 200h to 1FFFh may be modified by EECON control
- **01** = 000h to FFFh write-protected, 100h to 1FFFh may be modified by EECON control
- **00** = 000h to 1FFFh write-protected, no addresses may be modified by EECON control

4 kW Flash memory (PIC12F1840/PIC12LF1840):
- **11** = Write protection off
- **10** = 000h to 1FFh write-protected, 200h to FFFh may be modified by EECON control
- **01** = 000h to 7FFh write-protected, 800h to FFFh may be modified by EECON control
- **00** = 000h to 7FFFh write-protected, no addresses may be modified by EECON control

Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.

Note 2: This bit must be programmed as a ‘1’.

© 2010 Microchip Technology Inc.

Advanced Information

DS41439A-page 9
4.0 PROGRAM/VERIFY MODE

In Program/Verify mode, the program memory and the configuration memory can be accessed and programmed in serial fashion. ICSPDAT and ICSPCLK are used for the data and the clock, respectively. All commands and data words are transmitted LSb first. Data changes on the rising edge of the ICSPCLK and latched on the falling edge. In Program/Verify mode both the ICSPDAT and ICSPCLK are Schmitt Trigger inputs. The sequence that enters the device into Program/Verify mode places all other logic into the Reset state. Upon entering Program/Verify mode, all I/Os are automatically configured as high-impedance inputs and the address is cleared.

4.1 High-Voltage Program/Verify Mode Entry and Exit

There are two different methods of entering Program/Verify mode via high-voltage:

- VPP – First entry mode
- VDD – First entry mode

4.1.1 VPP – FIRST ENTRY MODE

To enter Program/Verify mode via the VPP-first method the following sequence must be followed:

1. Hold ICSPCLK and ICSPDAT low. All other pins should be unpowered.
2. Raise the voltage on MCLR from 0V to VIHH.
3. Raise the voltage on VDD from 0V to the desired operating voltage.

The VPP-first entry prevents the device from executing code prior to entering Program/Verify mode. For example, when Configuration Word 1 has MCLR disabled (MCLRE = 0), the power-up time is disabled (PWRT = 0), the internal oscillator is selected (FOSC = 100), and ICSPCLK and ICSPDAT pins are driven by the user application, the device will execute code. Since this may prevent entry, VPP-first entry mode is strongly recommended. See the timing diagram in Figure 8-2.

4.1.2 VDD – FIRST ENTRY MODE

To enter Program/Verify mode via the VDD-first method the following sequence must be followed:

1. Hold ICSPCLK and ICSPDAT low.
2. Raise the voltage on VDD from 0V to the desired operating voltage.
3. Raise the voltage on MCLR from VDD or below to VIHH.

The VDD-first method is useful when programming the device when VDD is already applied, for it is not necessary to disconnect VDD to enter Program/Verify mode. See the timing diagram in Figure 8-1.

4.1.3 PROGRAM/VERIFY MODE EXIT

To exit Program/Verify mode take MCLR to VDD or lower (VIL). See Figures 8-3 and 8-4.

4.2 Low-Voltage Programming (LVP) Mode

The Low-Voltage Programming mode allows the PIC16F/LF1847 and PIC12F/LF1840 devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 register is set to ‘1’, the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to ‘0’. This can only be done while in the High-Voltage Entry mode.

Entry into the Low-Voltage ICSP Program/Verify modes requires the following steps:

1. MCLR is brought to VIL.
2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

The key sequence is a specific 32-bit pattern, ‘0100 1101 0100 0011 0100 1000 0101 0000’ (more easily remembered as MCHP in ASCII). The device will enter Program/Verify mode only if the sequence is valid. The Least Significant bit of the Least Significant nibble must be shifted in first.

Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained.

For low-voltage programming timing, see Figure 8-8 and Figure 8-9.

Exiting Program/Verify mode is done by no longer driving MCLR to VIL. See Figure 8-8 and Figure 8-9.

Note: To enter LVP mode, the LSB of the Least Significant nibble must be shifted in first. This differs from entering the key sequence on other parts.
4.3 Program/Verify Commands

The PIC16F/LF1847 and PIC12F/LF1840 implement 13 programming commands; each six bits in length. The commands are summarized in Table 4-1.

Commands that have data associated with them are specified to have a minimum delay of TDLy between the command and the data. After this delay 16 clocks are required to either clock in or clock out the 14-bit data word. The first clock is for the Start bit and the last clock is for the Stop bit.

TABLE 4-1: COMMAND MAPPING

<table>
<thead>
<tr>
<th>Command</th>
<th>Mapping Data/Note</th>
<th>Hex</th>
<th>Data/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Configuration</td>
<td></td>
<td>00h</td>
<td>0, data (14), 0</td>
</tr>
<tr>
<td>Load Data For Program Memory</td>
<td></td>
<td>02h</td>
<td>0, data (14), 0</td>
</tr>
<tr>
<td>Load Data For Data Memory</td>
<td></td>
<td>03h</td>
<td>0, data (8), zero (6), 0</td>
</tr>
<tr>
<td>Read Data From Program Memory</td>
<td></td>
<td>04h</td>
<td>0, data (14), 0</td>
</tr>
<tr>
<td>Read Data From Data Memory</td>
<td></td>
<td>05h</td>
<td>0, data (8), zero (6), 0</td>
</tr>
<tr>
<td>Increment Address</td>
<td></td>
<td>06h</td>
<td>—</td>
</tr>
<tr>
<td>Reset Address</td>
<td></td>
<td>06h</td>
<td>—</td>
</tr>
<tr>
<td>Begin Internally Timed Programming</td>
<td></td>
<td>08h</td>
<td>—</td>
</tr>
<tr>
<td>Begin Externally Timed Programming</td>
<td></td>
<td>08h</td>
<td>—</td>
</tr>
<tr>
<td>End Externally Timed Programming</td>
<td></td>
<td>0Ah</td>
<td>—</td>
</tr>
<tr>
<td>Bulk Erase Program Memory</td>
<td>Internally Timed</td>
<td>09h</td>
<td>—</td>
</tr>
<tr>
<td>Bulk Erase Data Memory</td>
<td>Internally Timed</td>
<td>0Bh</td>
<td>—</td>
</tr>
<tr>
<td>Row Erase Program Memory</td>
<td>Internally Timed</td>
<td>0Bh</td>
<td>—</td>
</tr>
</tbody>
</table>

(continued)
4.3.1 LOAD CONFIGURATION

The Load Configuration command is used to access the configuration memory (User ID Locations, Configuration Words, Calibration Words). The Load Configuration command sets the address to 8000h and loads the data latches with one word of data (see Figure 4-1).

After issuing the Load Configuration command, use the Increment Address command until the proper address to be programmed is reached. The address is then programmed by issuing either the Begin Internally Timed Programming or Begin Externally Timed Programming command.

The only way to get back to the program memory (address 0) is to exit Program/Verify mode or issue the Reset Address command after the configuration memory has been accessed by the Load Configuration command.

FIGURE 4-1: LOAD CONFIGURATION

4.3.2 LOAD DATA FOR PROGRAM MEMORY

The Load Data for Program Memory command is used to load one 14-bit word into the data latches. The word programs into program memory after the Begin Internally Timed Programming or Begin Externally Timed Programming command is issued (see Figure 4-2).

FIGURE 4-2: LOAD DATA FOR PROGRAM MEMORY
4.3.3 LOAD DATA FOR DATA MEMORY

The Load Data for Data Memory command will load a 14-bit “data word” when 16 cycles are applied. However, the data memory is only 8 bits wide and thus, only the first 8 bits of data after the Start bit will be programmed into the data memory. It is still necessary to cycle the clock the full 16 cycles in order to allow the internal circuitry to reset properly (see Figure 4-3).

FIGURE 4-3: LOAD DATA FOR DATA MEMORY COMMAND

4.3.4 READ DATA FROM PROGRAM MEMORY

The Read Data from Program Memory command will transmit data bits out of the program memory map currently accessed, starting with the second rising edge of the clock input. The ICSPDAT pin will go into Output mode on the first falling clock edge, and it will revert to Input mode (high-impedance) after the 16th falling edge of the clock. If the program memory is code-protected (CP), the data will be read as zeros (see Figure 4-4).

FIGURE 4-4: READ DATA FROM PROGRAM MEMORY
4.3.5 READ DATA FROM DATA MEMORY

The Read Data from Data Memory command will transmit data bits out of the data memory starting with the second rising edge of the clock input. The ICSPDAT pin will go into Output mode on the second rising edge, and it will revert to Input mode (high-impedance) after the 16th rising edge. The data memory is 8 bits wide, and therefore, only the first 8 bits that are output are actual data. If the data memory is code-protected, the data is read as all zeros. A timing diagram of this command is shown in Figure 4-5.

FIGURE 4-5: READ DATA FROM DATA MEMORY COMMAND

4.3.6 INCREMENT ADDRESS

The address is incremented when this command is received. It is not possible to decrement the address. To reset this counter, the user must use the Reset Address command or exit Program/Verify mode and re-enter it.

If the address is incremented from address 7FFFh, it will wrap-around to location 0000h. If the address is incremented from FFFFh, it will wrap-around to location 8000h.

FIGURE 4-6: INCREMENT ADDRESS
4.3.7 RESET ADDRESS

The Reset Address command will reset the address to 0000h, regardless of the current value. The address is used in program memory or the configuration memory.

FIGURE 4-7: RESET ADDRESS

4.3.8 BEGIN INTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. An internal timing mechanism executes the write. The user must allow for the program cycle time, TPINT, for the programming to complete.

The End Externally Timed Programming command is not needed when the Begin Internally Timed Programming is used to start the programming.

The program memory address that is being programmed is not erased prior to being programmed. However, the EEPROM memory address that is being programmed is erased prior to being programmed with internally timed programming.

FIGURE 4-8: BEGIN INTERNALLY TIMED PROGRAMMING
4.3.9 BEGIN EXTERNALLY TIMED PROGRAMMING

A Load Configuration, Load Data for Program Memory or Load Data for Data Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. To complete the programming the End Externally Timed Programming command must be sent in the specified time window defined by TPEXT. No internal erase is performed for the data EEPROM, therefore, the device should be erased prior to executing this command.

The Begin Externally Timed Programming command cannot be used for programming the Configuration Words (see Figure 4-9).

FIGURE 4-9: BEGIN EXTERNALLY TIMED PROGRAMMING

4.3.10 END EXTERNALLY TIMED PROGRAMMING

This command is required after a Begin Externally Timed Programming command is given. This command must be sent within the time window specified by TPEXT after the Begin Externally Timed Programming command is sent.

After sending the End Externally Timed Programming command, an additional delay (TDIS) is required before sending the next command. This delay is longer than the delay ordinarily required between other commands (see Figure 4-10).

FIGURE 4-10: END EXTERNALLY TIMED PROGRAMMING
4.3.11 BULK ERASE PROGRAM MEMORY

The Bulk Erase Program Memory command performs two different functions dependent on the current state of the address.

Address 0000h-7FFFh:
- Program Memory is erased
- Configuration Words are erased
- If $\text{CPD} = 0$, Data Memory is erased

Address 8000h-8008h:
- Program Memory is erased
- Configuration Words are erased
- User ID Locations are erased
- If $\text{CPD} = 0$, Data Memory is erased

A Bulk Erase Program Memory command should not be issued when the address is greater than 8008h.

FIGURE 4-11: BULK ERASE PROGRAM MEMORY

4.3.12 BULK ERASE DATA MEMORY

To perform an erase of the data memory, after a Bulk Erase Data Memory command, wait a minimum of TERAB to complete Bulk Erase.

To erase data memory when data code-protect is active ($\text{CPD} = 0$), the Bulk Erase Program Memory command should be used.

FIGURE 4-12: BULK ERASE DATA MEMORY COMMAND

After receiving the Bulk Erase Program Memory command, the erase will not complete until the time interval, TERAB, has expired.

Note: The code protection Configuration bit (CP) has no effect on the Bulk Erase Program Memory command.

Note: Data memory will not erase if code-protected ($\text{CPD} = 0$).
4.3.13 ROW ERASE PROGRAM MEMORY

The Row Erase Program Memory command will erase an individual row. Refer to Table 4-2 for row sizes of specific devices and the PC bits used to address them. If the program memory is code-protected the Row Erase Program Memory command will be ignored. When the address is 8000h-8008h the Row Erase Program Memory command will only erase the user ID locations regardless of the setting of the CP Configuration bit.

After receiving the Row Erase Program Memory command the erase will not complete until the time interval, TERAR, has expired.

TABLE 4-2: PROGRAMMING ROW SIZE AND LATCHES

<table>
<thead>
<tr>
<th>Devices</th>
<th>PC</th>
<th>Row Size</th>
<th>Number of Latches</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC12F/LF1840</td>
<td><15:5></td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>PIC16F/LF1847</td>
<td><15:5></td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

FIGURE 4-13: ROW ERASE PROGRAM MEMORY
5.0 PROGRAMMING ALGORITHMS

The PIC16F/LF1847/PIC12F/LF1840 devices use internal latches to temporarily store the 14-bit words used for programming. Refer to Table 4-2 for specific latch information. The data latches allow the user to write the program words with a single Begin Externally Timed Programming or Begin Internally Timed Programming command. The Load Program Data or the Load Configuration command is used to load a single data latch. The data latch will hold the data until the Begin Externally Timed Programming or Begin Internally Timed Programming command is given.

The data latches are aligned with the LSbs of the address. The PC’s address at the time the Begin Externally Timed Programming or Begin Internally Timed Programming command is given will determine which location(s) in memory are written. Writes cannot cross the physical boundary. For example, with the PIC16F1847, attempting to write from address 0002h-0021h will result in data being written to 0020h-003Fh.

If more than the maximum number of data latches are written without a Begin Externally Timed Programming or Begin Internally Timed Programming command, the data in the data latches will be overwritten. The following figures show the recommended flowcharts for programming.
FIGURE 5-1: DEVICE PROGRAM/VERIFY FLOWCHART

Start

Enter Programming Mode

Bulk Erase Device

Write Program Memory\(^{1}\)

Write User IDs

Write Data Memory\(^{2}\)

Verify Program Memory

Verify User IDs

Verify Data Memory

Write Configuration Words\(^{3}\)

Verify Configuration Words

Exit Programming Mode

Done

Note 1: See Figure 5-2.
2: See Figure 5-5.
3: See Figure 5-6.
FIGURE 5-2: PROGRAM MEMORY FLOWCHART

Start

Bulk Erase Program Memory\(^{(1,2)}\)

Program Cycle\(^{(3)}\)

Read Data from Program Memory

Data Correct?\(\rightarrow\)

Report Programming Failure

Yes

Increment Address Command

No

All Locations Done?\(\rightarrow\)

Yes

Done

Note 1: This step is optional if device has already been erased or has not been previously programmed.

2: If the device is code-protected or must be completely erased, then Bulk Erase device per Figure 5-8.

3: See Figure 5-3 or Figure 5-4.
FIGURE 5-3: ONE-WORD PROGRAM CYCLE

Program Cycle

Load Data for Program Memory

Begin Programming Command (Internally timed)

Wait TPINT

Begin Programming Command (Externally timed)

Wait TPEXT

End Programming Command

Wait TDIS

Begin Programming Command (Externally timed)
FIGURE 5-4: MULTIPLE-WORD PROGRAM CYCLE

Program Cycle

Load Data for Program Memory

Latch 1

Increment Address Command

Load Data for Program Memory

Latch 2

...

Increment Address Command

Load Data for Program Memory

Latch n

Begin Programming Command (Internally timed)

Wait TPINT

Begin Programming Command (Externally timed)

Wait TPEXT

End Programming Command

Wait TDIS
FIGURE 5-5: CONFIGURATION MEMORY PROGRAM FLOWCHART

Note 1: This step is optional if device is erased or not previously programmed.
Note 2: See Figure 5-3.
FIGURE 5-6: DATA MEMORY PROGRAM FLOWCHART

Note 1: See Figure 5-7.
FIGURE 5-7: DATA MEMORY PROGRAM CYCLE

Program Cycle

Load Data for Data Memory

Begin Programming Command (Internally timed)

Wait TPINT

Begin Programming Command (Externally timed)

Wait TPEXT

End Programming Command

Wait TDIS

FIGURE 5-8: ERASE FLOWCHART

Start

Load Configuration

Bulk Erase Program Memory

Bulk Erase Data Memory

Done

Note: This sequence does not erase the Calibration Words.
6.0 CODE PROTECTION

Code protection is controlled using the CP bit in Configuration Word 1. When code protection is enabled, all program memory locations (0000h-7FFFh) read as all ‘0’. Further programming is disabled for the program memory (0000h-7FFFh).

Data memory is protected with its own code-protect bit (CPD). When data code protection is enabled (CPD = 0), all data memory locations read as ‘0’. Further programming is disabled for the data memory. Data memory can still be programmed and read during program execution.

The user ID locations and Configuration Words can be programmed and read out regardless of the code protection settings.

6.1 Program Memory

Code protection is enabled by programming the CP bit in Configuration Word 1 register to ‘0’.

The only way to disable code protection is to use the Bulk Erase Program Memory command.

6.2 Data Memory

Data memory protection is enabled by programming the CPD bit in Configuration Word 1 register to ‘0’.

The only way to disable code protection is to use the Bulk Erase Program Memory command.

Note: To ensure system security, if CPD bit = 0, the Bulk Erase Program Memory command will also erase data memory.

7.0 HEX FILE USAGE

In the hex file there are two bytes per program word stored in the Intel® INHX32 hex format. Data is stored LSB first, MSB second. Because there are two bytes per word, the addresses in the hex file are 2x the address in program memory. (Example: Configuration Word 1 is stored at 8007h on the PIC16F/LF1847 and PIC12F/LF1840. In the hex file this will be referenced as 1000Eh-1000Fh).

7.1 Configuration Word

To allow portability of code, it is strongly recommended that the programmer is able to read the Configuration Words and user ID locations from the hex file. If the Configuration Words information was not present in the hex file, a simple warning message may be issued. Similarly, while saving a hex file, Configuration Words and user ID information should be included.

7.2 Device ID and Revision

If a device ID is present in the hex file at 1000Ch-1000Dh (8006h on the part), the programmer should verify the device ID (excluding the revision) against the value read from the part. On a mismatch condition the programmer should generate a warning message.

7.3 Data EEPROM

The programmer should be able to read data memory information from a hex file and write data memory contents to a hex file.

The physical address range of the 256 byte data memory is 0000h-00FFh. However, these addresses are logically mapped to address 1E000h-1E1FFh in the hex file. This provides a way of differentiating between the data and program memory locations in this range. The format for data memory storage is one data byte per address location, LSb aligned.
7.4 Checksum Computation

The checksum is calculated by two different methods dependent on the setting of the CP Configuration bit.

TABLE 7-1: CONFIGURATION WORD MASK VALUES

<table>
<thead>
<tr>
<th>Device</th>
<th>Config. Word 1 Mask</th>
<th>Config. Word 2 Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC12F1840</td>
<td>3FFFh</td>
<td>3713h</td>
</tr>
<tr>
<td>PIC12LF1840</td>
<td>3FFFh</td>
<td>3713h</td>
</tr>
<tr>
<td>PIC16F1847</td>
<td>3FFFh</td>
<td>3713h</td>
</tr>
<tr>
<td>PIC16LF1847</td>
<td>3FFFh</td>
<td>3713h</td>
</tr>
</tbody>
</table>

Note: Data memory does not affect the checksum.

EXAMPLE 7-1: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED
PIC12F1840, BLANK DEVICE

- Sum of Memory addresses 0000h-0FFFh: F000h
- Configuration Word 1 mask: 3FFFh
- Configuration Word 2 mask: 3713h
- Checksum: F000h + (3FFFh and 3FFFh) + (3FFFh and 3713h)
 - = F000h + 3FFFh + 3713h
 - = 6712h

Note: The sum includes the Configuration Words.

EXAMPLE 7-2: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED
PIC12LF1840, 00AAh AT FIRST AND LAST ADDRESS

- Sum of Memory addresses 0000h-0FFFh: 7156h
- Configuration Word 1 mask: 3FFFh
- Configuration Word 2 mask: 3713h
- Checksum: 7156h + (3FFFh and 3FFFh) + (3FFFh and 3713h)
 - = 7156h + 3FFFh + 3713h
 - = E868h

7.4.1 PROGRAM CODE PROTECTION DISABLED

With the program code protection disabled, the checksum is computed by reading the contents of the PIC16F/LF1847 and PIC12F/LF1840 program memory locations and adding up the program memory data starting at address 0000h, up to the maximum user addressable location. Any Carry bit exceeding 16 bits are ignored. Additionally, the relevant bits of the Configuration Words are added to the checksum. All unimplemented Configuration bits are masked to ‘0’.
7.4.2 PROGRAM CODE PROTECTION ENABLED

With the program code protection enabled, the checksum is computed in the following manner: The Least Significant nibble of each user ID is used to create a 16-bit value. The masked value of user ID location 8000h is the Most Significant nibble. This sum of user ID’s is summed with the Configuration Words (all unimplemented Configuration bits are masked to ‘0’).

Note: Data memory does not affect the checksum.

EXAMPLE 7-3: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED
PIC12F1840, BLANK DEVICE

PIC12F1840	Configuration Word 1	3F7Fh
	Configuration Word 1 mask	3FFFh
	Configuration Word 2	3FFFh
	Configuration Word 2 mask	3713h
User ID (8000h)		0006h
User ID (8001h)		0007h
User ID (8002h)		0001h
User ID (8003h)		0002h
Sum of User IDs	= (0006h and 000Fh) << 12 + (0007h and 000Fh) << 8 + (0001h and 000Fh) << 4 + (0002h and 000Fh) << 2	6000h + 0700h + 0010h + 0002h = 6712h
Checksum	= (3F7Fh and 3FFFh) + (3FFFh and 3713h) + Sum of User IDs	3F7Fh + 3713h + 6712h = DDA4h

EXAMPLE 7-4: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED
PIC12LF1840, 00AAh AT FIRST AND LAST ADDRESS

PIC12LF1840	Configuration Word 1	3F7Fh
	Configuration Word 1 mask	3FFFh
	Configuration Word 2	3FFFh
	Configuration Word 2 mask	3713h
User ID (8000h)		000Eh
User ID (8001h)		0008h
User ID (8002h)		0006h
User ID (8003h)		0008h
Sum of User IDs	= (000Eh and 000Fh) << 12 + (0008h and 000Fh) << 8 + (0006h and 000Fh) << 4 + (0008h and 000Fh) << 2	E000h + 0800h + 0060h + 0008h = E868h
Checksum	= (3F7Fh and 3FFFh) + (3FFFh and 3713h) + Sum of User IDs	3F7Fh + 3713h + E868h = 5EFAh
8.0 ELECTRICAL SPECIFICATIONS

Refer to device specific data sheet for absolute maximum ratings.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

<table>
<thead>
<tr>
<th>AC/DC CHARACTERISTICS</th>
<th>Supply Voltages and Currents</th>
<th>Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +85°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sym. Characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC12F1840</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC16F1847</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC12LF1840</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC16LF1847</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDDI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TVHHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O pins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2010 Microchip Technology Inc.
TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Characteristics</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPINT</td>
<td>Internally timed programming operation time</td>
<td>—</td>
<td>—</td>
<td>2.5</td>
<td>ms</td>
<td>Program memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>Configuration Words</td>
</tr>
<tr>
<td>TPEXT</td>
<td>Externally timed programming pulse</td>
<td>1.0</td>
<td>—</td>
<td>2.1</td>
<td>ms</td>
<td>EEPROM</td>
</tr>
<tr>
<td>TDIS</td>
<td>Time delay from program to compare</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td>(HV discharge time)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXIT</td>
<td>Time delay when exiting Program/VERIFY mode</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

8.1 AC Timing Diagrams

FIGURE 8-1: PROGRAMMING MODE ENTRY – Vdd FIRST

FIGURE 8-2: PROGRAMMING MODE ENTRY – Vpp FIRST

FIGURE 8-3: PROGRAMMING MODE EXIT – Vpp LAST

FIGURE 8-4: PROGRAMMING MODE EXIT – Vdd LAST

Table 8-1 provides the AC/DC characteristics timing requirements for the PIC16F/LF1847/PIC12F/LF1840 family. The table includes standard operating conditions and various timing parameters such as TPINT, TPEXT, TDIS, and TEXIT. The diagrams illustrate the programming mode entry and exit for both Vdd and Vpp first scenarios.
FIGURE 8-5: CLOCK AND DATA TIMING

- ICSPCLK
- ICSPDAT as input
- ICSPDAT as output
- ICSPDAT from input to output
- ICSPDAT from output to input

FIGURE 8-6: WRITE COMMAND-PAYLOAD TIMING

- ICSPCLK
- ICSPDAT

Command
Payload
Next Command

1 2 3 4 5 6
1 2 15 16

LSb
MSb

TCKH TCKL
TDS TDIH
TCO
TLZD
THZD

TDLY
FIGURE 8-7: READ COMMAND-PAYLOAD TIMING

FIGURE 8-8: LVP ENTRY (POWERING UP)
FIGURE 8-9: LVP ENTRY (POWERED)

Note 1: Sequence matching can start with no edge on MCLR first.
APPENDIX A: REVISION HISTORY

Revision A (08/2010)

Original release of this document.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://support.microchip.com
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0086
Fax: 216-447-0043

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suits 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-0102
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/04/10