High-Performance RISC CPU:

• Only 49 Instructions to learn
• Operating Speed:
 - DC – 32 MHz clock input
 - DC – 125 ns instruction cycle
• Interrupt Capability with Automatic Context Saving
• 16-Level Deep Hardware Stack with Optional Overflow/Underflow Reset
• Direct, Indirect and Relative Addressing modes:
 - Two full 16-bit File Select Registers (FSRs)
 - FSRs can read program and data memory

Special Microcontroller Features:

• Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency range from 32 MHz to 31 kHz
• 31 kHz Low-Power Internal Oscillator
• External Oscillator Block with:
 - 4 crystal/resonator modes up to 32 MHz using 4xPLL
 - 3 external clock modes up to 32 MHz
• 4x Phase Locked Loop (PLL)
• Fail-Safe Clock Monitor
• Two-Speed Start-up
• Power-Saving Sleep mode
• Power-on Reset (POR)
• Power-up Timer (PWRT)
• Oscillator Start-Up Timer (OST)
• Brown-out Reset (BOR) with Selectable Trip Point
• Extended Watchdog Timer (WDT)
• In-Circuit Serial Programming™ (ICSP™) via two pins
• In-Circuit Debug (ICD) via Two Pins
• Enhanced Low-Voltage Programming (LVP)
• Operating Voltage Range:
 - 1.8V to 3.6V (PIC1XLF182X)
 - 1.8V to 5.5V (PIC1XF182X)
• Programmable Code Protection
• Self-Programmable under Software Control

Low-Power Features:

• Standby Current (PIC1XLF182X):
 - 30 nA @ 1.8V, typical
• Operating Current (PIC1XLF182X):
 - 75 µA @ 1 MHz, 1.8V, typical
• Low-Power Watchdog Timer Current (PIC1XLF182X):
 - 500 nA @ 1.8V, typical

Peripheral Features:

• Up to 17 I/O Pins and 1 Input-only Pin:
 - High current sink/source for LED drivers
 - Individually programmable interrupt-on-change pins
 - Individually programmable weak pull-ups
• Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler
• Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Dedicated low-power 32 kHz oscillator driver
• Up to three Timer2 modules (Timer2,4,6): 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler
• Up to two Enhanced Capture, Compare, PWM modules (ECCP):
 - Software selectable time-bases
 - Auto-shutdown and auto-restart
 - PWM steering
• Up to two Capture, Compare, PWM modules (CCP):
 - Software selectable time-bases
• Up to two Master Synchronous Serial Port (MSSP) with SPI and I2C™ with:
 - 7-bit address masking
 - SMBus/PMBus™ compatibility
• Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART):
 - RS-232, RS-485 and LIN compatible
 - Auto-Baud Detect
 - Auto-wake-up on start
• SR Latch (Integrated 555 Timer):
 - Multiple Set/Reset input options
• Analog-to-Digital Converter (ADC):
 - 10-bit resolution
 - Up to 12 channels
• Up to 2 Comparators:
 - Rail-to-rail inputs
 - Power mode control
 - Software controllable hysteresis
• Voltage Reference module:
 - Fixed voltage reference (FVR) with 1.024V, 2.048V and 4.096V output levels
 - 5-bit rail-to-rail resistive DAC with positive and negative reference selection
• Capacitive Touch oscillator module:
 - Up to 12 channels
• Data Signal Modulator:
 - Select modulator and carrier sources from various module outputs.
<table>
<thead>
<tr>
<th>Device</th>
<th>Program Memory Flash (words)</th>
<th>Data EEPROM (bytes)</th>
<th>SRAM (bytes)</th>
<th>I/Os</th>
<th>10-bit A/D (ch)</th>
<th>Timers 8/16-bit</th>
<th>EUSART</th>
<th>MSSP</th>
<th>ECCP/CCP</th>
<th>Cap Touch Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC12F1822</td>
<td>2048</td>
<td>256</td>
<td>128</td>
<td>6</td>
<td>4</td>
<td>2/1</td>
<td>1</td>
<td>1</td>
<td>1/0</td>
<td>4</td>
</tr>
<tr>
<td>PIC12LF1822</td>
<td>2048</td>
<td>256</td>
<td>128</td>
<td>6</td>
<td>4</td>
<td>2/1</td>
<td>1</td>
<td>1</td>
<td>1/0</td>
<td>4</td>
</tr>
<tr>
<td>PIC16F1823</td>
<td>2048</td>
<td>256</td>
<td>128</td>
<td>12</td>
<td>8</td>
<td>2/1</td>
<td>1</td>
<td>1</td>
<td>1/0</td>
<td>8</td>
</tr>
<tr>
<td>PIC16LF1823</td>
<td>2048</td>
<td>256</td>
<td>128</td>
<td>12</td>
<td>8</td>
<td>2/1</td>
<td>1</td>
<td>1</td>
<td>1/0</td>
<td>8</td>
</tr>
<tr>
<td>PIC16F1824</td>
<td>4096</td>
<td>256</td>
<td>256</td>
<td>12</td>
<td>8</td>
<td>4/1</td>
<td>1</td>
<td>1</td>
<td>2/2</td>
<td>8</td>
</tr>
<tr>
<td>PIC16LF1824</td>
<td>4096</td>
<td>256</td>
<td>256</td>
<td>12</td>
<td>8</td>
<td>4/1</td>
<td>1</td>
<td>1</td>
<td>2/2</td>
<td>8</td>
</tr>
<tr>
<td>PIC16F1825</td>
<td>8192</td>
<td>256</td>
<td>1024</td>
<td>12</td>
<td>8</td>
<td>4/1</td>
<td>1</td>
<td>1</td>
<td>2/2</td>
<td>8</td>
</tr>
<tr>
<td>PIC16LF1825</td>
<td>8192</td>
<td>256</td>
<td>1024</td>
<td>12</td>
<td>8</td>
<td>4/1</td>
<td>1</td>
<td>1</td>
<td>2/2</td>
<td>8</td>
</tr>
<tr>
<td>PIC16F1828</td>
<td>4096</td>
<td>256</td>
<td>256</td>
<td>18</td>
<td>12</td>
<td>4/1</td>
<td>1</td>
<td>1</td>
<td>2/2</td>
<td>12</td>
</tr>
<tr>
<td>PIC16LF1828</td>
<td>4096</td>
<td>256</td>
<td>256</td>
<td>18</td>
<td>12</td>
<td>4/1</td>
<td>1</td>
<td>1</td>
<td>2/2</td>
<td>12</td>
</tr>
<tr>
<td>PIC16F1829</td>
<td>8192</td>
<td>256</td>
<td>1024</td>
<td>18</td>
<td>12</td>
<td>4/1</td>
<td>1</td>
<td>2</td>
<td>2/2</td>
<td>12</td>
</tr>
<tr>
<td>PIC16LF1829</td>
<td>8192</td>
<td>256</td>
<td>1024</td>
<td>18</td>
<td>12</td>
<td>4/1</td>
<td>1</td>
<td>2</td>
<td>2/2</td>
<td>12</td>
</tr>
</tbody>
</table>
FIGURE 1: 8-PIN DIAGRAM FOR PIC12F1822/LF1822

Note: Pin details are subject to change.

PDIP, SOIC, DFN

VDD 1 7 AN0 DACOUT CPS0 C1IN+ — — P1B(1) TX(1) CK(1) SDO(1) SS(1) IOC MDOUT Y ICSPDAT/ICDDAT
RA1 6 AN1 VREF CPS1 C1INO- SRI — — RX(1) DT(1) SCL SCK IOC MDMIN Y ICSPCLK/ICDCLK
RA2 5 AN2 — CPS2 C1OUT SRQ T0CKI CCP1(1) P1A(1) FLT0 — SDA SDI INT/I OC MDCIN1 Y —
RA3 4 — — — — — T1G(1) — — SS(1) IOC — Y MCLR VPP ICDCLR
RA4 3 AN3 — CPS3 C1IN1- — T1G(1) T1OSO P1B(1) TX(1) CK(1) SDO(1) IOC MDCIN2 Y OSC2 CLKOUT CLKR
RA5 2 — — — — SRNO T1CKI T1OSI CCP1(1) P1A(1) RX(1) DT(1) — IOC — Y OSC1 CLKIN
VDD 1 — — — — — — — — — — — — — — — VDD
Vss 8 — — — — — — — — — — — — — — — Vss

Note 1: Pin functions can be assigned to one of two pin locations via software.
FIGURE 2: 14-PIN DIAGRAM FOR PIC16F/LF1823/1824/1825

PDIP, SOIC, TSSOP

VDD ——— 1 ——— 14 ——— VSS
RA5 ——— 2 ——— 13 ——— RA0
RA4 ——— 3 ——— 12 ——— RA1
RA3 ——— 4 ——— 11 ——— RA2
RC5 ——— 5 ——— 10 ——— RC0
RC4 ——— 6 ——— 9 ——— RC1
RC3 ——— 7 ——— 8 ——— RC2

Note: See Table 3 for location of all peripheral functions.

FIGURE 3: 16-PIN DIAGRAM FOR PIC16F/LF1823/1824/1825

QFN

VDD ——— 1 ——— 14 ——— VSS
RA5 ——— 2 ——— 13 ——— RA0
RA4 ——— 3 ——— 12 ——— RA1
RA3 ——— 4 ——— 11 ——— RA2
RC5 ——— 5 ——— 10 ——— RC0
RC4 ——— 6 ——— 9 ——— RC1
RC3 ——— 7 ——— 8 ——— RC2

Note: See Table 3 for location of all peripheral functions.
TABLE 3: 14-PIN AND 16-PIN ALLOCATION TABLE (PIC16F/LF1823/1824/1825)

<table>
<thead>
<tr>
<th>IO</th>
<th>14-Pin PDIP/SOIC/TSSOP</th>
<th>16-Pin QFN</th>
<th>AUD</th>
<th>Reference</th>
<th>Cap Sense</th>
<th>Comparator</th>
<th>SR Latch</th>
<th>Timers</th>
<th>CCP</th>
<th>EUSART</th>
<th>MSSP</th>
<th>Interrupt</th>
<th>Modulator</th>
<th>Pull-up</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA0</td>
<td>13 7 AN0 DACOUT CPS0 C1IN+ — — — — TX(1) CK(1)</td>
<td>— IOC — Y ICSPDAT/ ICDDAT</td>
<td></td>
</tr>
<tr>
<td>RA1</td>
<td>12 11 AN1 VREF CPS1 C12IN0- SRI — — — — RX(1) DT(1)</td>
<td>— IOC — Y ICSPCLK ICDClk</td>
<td></td>
</tr>
<tr>
<td>RA2</td>
<td>11 10 AN2 — CPS2 C1OUT SRQ T0CKI CCP3(2)</td>
<td>FLT0 — — INT/ IOC — Y —</td>
<td></td>
</tr>
<tr>
<td>RA3</td>
<td>4 3 — — — — — T1G(1)</td>
<td>— SSI(1) IOC — Y MCLR Vpp</td>
<td></td>
</tr>
<tr>
<td>RA4</td>
<td>3 2 AN3 — CPS3 — — — T1G(1)</td>
<td>T1OS0 P2B(1,2) — SDO(1) IOC — Y OSC2 CLKOUT CLK</td>
<td></td>
</tr>
<tr>
<td>RA5</td>
<td>2 1 — — — — — T1CKI</td>
<td>T1OSI CCP2(1,2)</td>
<td>P2A(1,2) — IOC — Y OSC1 CLKR</td>
<td></td>
</tr>
<tr>
<td>RC0</td>
<td>10 9 AN4 — CPS4 C2IN+ — — — — P1D(1,2)</td>
<td>— SCL SCK — Y —</td>
<td></td>
</tr>
<tr>
<td>RC1</td>
<td>9 8 AN5 — CPS5 C12IN1- — — — — P1C(1,2) CCP4(2)</td>
<td>— SDA SDI — Y —</td>
<td></td>
</tr>
<tr>
<td>RC2</td>
<td>8 7 AN6 — CPS6 C12IN2- — — — — P1D(1) P2B(1,2)</td>
<td>— SDO(1) — — MDCIN1 Y —</td>
<td></td>
</tr>
<tr>
<td>RC3</td>
<td>7 6 AN7 — CPS7 C12IN3- — — — — P1C(1) CCP2(1,2)</td>
<td>P2A(1,2) — SSI(1) — — MDCIN Y —</td>
<td></td>
</tr>
<tr>
<td>RC4</td>
<td>6 5 — — — — — C2OUT</td>
<td>SRNQ — P1B TX(1) CK(1)</td>
<td>— MDOU Y —</td>
<td></td>
</tr>
<tr>
<td>RC5</td>
<td>5 4 — — — — — — — CCP1</td>
<td>P1A RX(1) DT(1)</td>
<td>— — — — MDCIN2 Y —</td>
<td></td>
</tr>
<tr>
<td>Vcc</td>
<td>1 16 — — — — — — — — — Vcc — — — — Vcc</td>
<td></td>
</tr>
<tr>
<td>Vss</td>
<td>14 13 — — — — — — — — — — — — — — Vss</td>
<td></td>
</tr>
</tbody>
</table>

Note
1. Pin functions can be assigned to one of two pin locations via software.
2. Pin function only available on PIC16F1824 and PIC16F1825.
FIGURE 4: 20-PIN DIAGRAM FOR PIC16F/LF1828/1829

PDIP, SOIC, SSOP

Vdd → 1 → 20 → Vss
RA5 → 2 → 19 → RA0
RA4 → 3 → 18 → RA1
RA3 → 4 → 17 → RA2
RC5 → 5 → 16 → RC0
RC4 → 6 → 15 → RC1
RC3 → 7 → 14 → RC2
RC6 → 8 → 13 → RB4
RC7 → 9 → 12 → RB5
RB7 → 10 → 11 → RB6

Note: See Table 4 for location of all peripheral functions.

FIGURE 5: 20-PIN DIAGRAM FOR PIC16F/LF1828/1829

QFN 4x4

Note: See Table 4 for location of all peripheral functions.
<table>
<thead>
<tr>
<th>IO</th>
<th>20-Pin PDIP/SSOP</th>
<th>A/D</th>
<th>Reference</th>
<th>Cap Sense</th>
<th>Comparator</th>
<th>SR Latch</th>
<th>Timers</th>
<th>CCP</th>
<th>EUSART</th>
<th>MSP</th>
<th>Interrupt</th>
<th>Modulator</th>
<th>Pull-up</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA0</td>
<td>19/16</td>
<td>AN0</td>
<td>VREF-DACOUT</td>
<td>CPS0</td>
<td>C1N+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RA1</td>
<td>18/15</td>
<td>AN1</td>
<td>VREF</td>
<td>CPS1</td>
<td>C12IN0</td>
<td>SRI</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RA2</td>
<td>17/14</td>
<td>AN2</td>
<td>—</td>
<td>CPS2</td>
<td>C1OUT</td>
<td>SRQ</td>
<td>T0CKI</td>
<td>CCP3</td>
<td>FLT0</td>
<td>—</td>
<td>—</td>
<td>INT/IOC</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RA3</td>
<td>4/1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>TRG(1)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RA4</td>
<td>3/20</td>
<td>AN3</td>
<td>CPS3</td>
<td>—</td>
<td>—</td>
<td>T1(1)</td>
<td>T1OSO</td>
<td>P2B(1)</td>
<td>—</td>
<td>S5(1,3)</td>
<td>IOY</td>
<td>Y</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RA5</td>
<td>2/19</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T1CKI</td>
<td>CCP2(1)</td>
<td>P2A(1)</td>
<td>—</td>
<td>SDO(1,2)</td>
<td>IOY</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RB4</td>
<td>13/10</td>
<td>AN10</td>
<td>CPS10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SDA1/SO1</td>
<td>IOY</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RB5</td>
<td>12/9</td>
<td>AN11</td>
<td>CPS11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>RX(1)</td>
<td>SDA2(1,2)</td>
<td>—</td>
<td>SCL(1)</td>
<td>IOY</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RB6</td>
<td>11/8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SCL1/SCK1</td>
<td>IOY</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RB7</td>
<td>10/7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T(X(1)</td>
<td>SCL2(1)</td>
<td>IOY</td>
<td>—</td>
</tr>
<tr>
<td>RC0</td>
<td>16/13</td>
<td>AN4</td>
<td>CPS4</td>
<td>C2IN+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>P1D(1)</td>
<td>—</td>
<td>S5(1,2)</td>
<td>—</td>
<td>Y</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC1</td>
<td>15/12</td>
<td>AN5</td>
<td>CPS5</td>
<td>C12IN1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>P1C(1)</td>
<td>—</td>
<td>SDO(1,2)</td>
<td>—</td>
<td>—</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RC2</td>
<td>14/11</td>
<td>AN6</td>
<td>CPS6</td>
<td>C12IN2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>P1D(1)</td>
<td>P2B(1)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MDCIN1</td>
<td>Y</td>
</tr>
<tr>
<td>RC3</td>
<td>7/4</td>
<td>AN7</td>
<td>CPS7</td>
<td>C12IN3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>P1C(1)</td>
<td>CCP2(1)</td>
<td>P2A(1)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MDCIN2</td>
</tr>
<tr>
<td>RC4</td>
<td>6/3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>P1B</td>
<td>TX(1)</td>
<td>CK(1)</td>
<td>—</td>
<td>MDOU</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RC5</td>
<td>5/2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>CCP1</td>
<td>P1A</td>
<td>—</td>
<td>—</td>
<td>MDCIN2</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RC6</td>
<td>8/5</td>
<td>AN8</td>
<td>CPS8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>CCP4</td>
<td>—</td>
<td>—</td>
<td>S5</td>
<td>—</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RC7</td>
<td>9/6</td>
<td>AN9</td>
<td>CPS9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SDO</td>
<td>—</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>Vdd</td>
<td>1/18</td>
<td>—</td>
<td>Vdd</td>
</tr>
<tr>
<td>Vss</td>
<td>20/20</td>
<td>—</td>
<td>Vss</td>
</tr>
</tbody>
</table>

Note 1: Pin functions can be assigned to one of two pin locations via software.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, tTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PiCtail, PIC32 logo, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-055-3

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949:2002