High-Performance RISC CPU:
- Only 35 instructions to learn:
 - All single-cycle instructions except branches
- Operating Speed:
 - DC – 16 MHz oscillator/clock input
 - DC – 250 ns instruction cycle
- Up to 4K x 14 Words of Flash Program Memory
- Up to 256 bytes of Data Memory (RAM)
- Interrupt Capability
- 8-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes
- Processor Self-Write/Read access to Program Memory

Special Microcontroller Features:
- Precision internal oscillator:
 - 16 MHz or 500 kHz operation
 - Factory calibrated to ±1%, typical
 - Software tunable
 - Software selectable ÷1, ÷2, ÷4 or ÷8 divider
- Power-saving Sleep mode
- Industrial and Extended Temperature Range
- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Brown-out Reset (BOR)
- Multiplexed Master Clear with Pull-up/Input Pin
- Programmable Code Protection
- In-Circuit Serial Programming™ (ICSP™) via Two Pins
- High-Endurance Flash Cell:
 - 10,000 write Flash endurance (typical)
 - Flash retention: > 40 years
- Wide Operating Voltage Range:
 - 1.8V to 5.5V (PIC16F720/721)
 - 1.8V to 3.6V (PIC16LF720/721)

Low-Power Features:
- Standby Current:
 - 50 nA @ 1.8V, typical
- Operating Current:
 - 100 μA @ 1 MHz, 1.8V, typical
- Low-Power Watchdog Timer Current:
 - 500nA @ 1.8V, typical

Peripheral Features:
- Up to 17 I/O Pins and 1 input-only Pin:
 - High-current source/sink for direct LED drive
 - Interrupt-on-pin change
 - Individually programmable weak pull-ups
- A/D Converter:
 - 8-bit resolution
 - 12 channels
 - Selectable voltage reference
- Timer0: 8-bit Timer/Counter with 8-bit programmable prescaler
- Enhanced Timer1
 - 16-bit timer/counter with prescaler
 - External gate input mode with toggle and single shot modes
 - Interrupt-on-gate completion
- Timer2: 8-bit Timer/Counter with 8-bit period register, prescaler and postscale
- Capture, Compare, PWM module (CCP)
 - 16-bit Capture, max resolution 12.5 ns
 - 16-bit Compare, max resolution 250 ns
 - 10-bit PWM, max frequency 15 kHz
- Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)
- Synchronous Serial Port (SSP)
 - SPI (Master/Slave)
 - \(!\text{C}^\text{TM}\) (Slave) with address mask

<table>
<thead>
<tr>
<th>Device</th>
<th>Program Memory</th>
<th>SRAM</th>
<th>I/O</th>
<th>Timers 8/16-bit</th>
<th>8-bit A/D Channel</th>
<th>AUSART</th>
<th>CCP</th>
<th>SSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F720</td>
<td>2048</td>
<td>128</td>
<td>18</td>
<td>2/1</td>
<td>12</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PIC16F721</td>
<td>4096</td>
<td>256</td>
<td>18</td>
<td>2/1</td>
<td>12</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PIC16LF720</td>
<td>2048</td>
<td>128</td>
<td>18</td>
<td>2/1</td>
<td>12</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PIC16LF721</td>
<td>4096</td>
<td>256</td>
<td>18</td>
<td>2/1</td>
<td>12</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
FIGURE 1: 20-PIN DIAGRAM FOR PIC16F720/721 AND PIC16LF720/721

PDIP, SOIC, SSOP

VDD → [1] 20 → VSS
RA5/T1CKI/CLKIN → [2] 19 → RA0/AN0/ICSPDAT
RC5/CCP1 → [5] 16 → RC0/AN4
RC4 → [6] 15 → RC1/AN5

FIGURE 2: 20-PIN DIAGRAM FOR PIC16F720/721 AND PIC16LF720/721

20-Pin QFN (4x4)

RA4/AN3/T2/CLKOUT → VDD → VSS → RA0/AN0/ICSPDAT
RA5/T1CKI/CLKIN → RA1/AN1/ICSPCLK
RA3/MCLR/VPP → RA2/AN2/T0CKI/INT
RC5/CCP1 → RC0/AN4
RC4 → RC1/AN5
RC3/AN7 → RC2/AN6
RC6/AN8/SS → RB5/AN11/RX/DT
RC7/AN9/SDO → RB6/SCK/SCL
RB7/TX/CK → RB4/AN10/SDI/SDA
TABLE 2: 20-PIN ALLOCATION TABLE (PIC16F720/721 AND PIC16LF720/721)

<table>
<thead>
<tr>
<th>IO</th>
<th>20-Pin DIP/SOIC/SSOP</th>
<th>20-Pin QFN</th>
<th>A/D</th>
<th>Timers</th>
<th>CCP</th>
<th>AUSART</th>
<th>SSP</th>
<th>Interrupt</th>
<th>Pull-up</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA0</td>
<td>19 16</td>
<td>AN0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>ICSPDAT/ICDDAT</td>
</tr>
<tr>
<td>RA1</td>
<td>18 15</td>
<td>AN1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>ICSPCLK/ICDCLK</td>
</tr>
<tr>
<td>RA2</td>
<td>17 14</td>
<td>AN2 T0CKI</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>INT/IOC</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RA3</td>
<td>4 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>MCLR/VPP</td>
</tr>
<tr>
<td>RA4</td>
<td>3 20</td>
<td>AN3 T1G</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>CLKOUT</td>
</tr>
<tr>
<td>RA5</td>
<td>2 19</td>
<td>— T1CKI</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>CLKIN</td>
</tr>
<tr>
<td>RB4</td>
<td>13 10</td>
<td>AN10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SDI/SDA</td>
<td>IOC</td>
<td></td>
</tr>
<tr>
<td>RB5</td>
<td>12 9</td>
<td>AN11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>RX/DT</td>
<td>IOC</td>
<td></td>
</tr>
<tr>
<td>RB6</td>
<td>11 8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SCK/SCL</td>
<td>IOC</td>
<td></td>
</tr>
<tr>
<td>RB7</td>
<td>10 7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>TX/CK</td>
<td>IOC</td>
<td></td>
</tr>
<tr>
<td>RC0</td>
<td>16 13</td>
<td>AN4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RC1</td>
<td>15 12</td>
<td>AN5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RC2</td>
<td>14 11</td>
<td>AN6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RC3</td>
<td>7 4</td>
<td>AN7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RC4</td>
<td>6 3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RC5</td>
<td>5 2</td>
<td>—</td>
<td>—</td>
<td>CCP1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RC6</td>
<td>8 5</td>
<td>AN8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SS</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RC7</td>
<td>9 6</td>
<td>AN9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SDO</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>VDD</td>
<td>1 18</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
</tr>
<tr>
<td>Vss</td>
<td>20 17</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Vss</td>
</tr>
</tbody>
</table>
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, rPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC32 logo, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.