DC Motor Control
Tips ‘n Tricks
Table of Contents

Tips 'N Tricks Introduction

- **TIP #1:** Brushed DC Motor Drive Circuits 2
- **TIP #2:** Brushless DC Motor Drive Circuits 5
- **TIP #3:** Stepper Motor Drive Circuits 9
- **TIP #4:** Drive Software 13
- **TIP #5:** Writing a PWM Value to the CCP Registers with a Mid-Range PICmicro® MCU 17
- **TIP #6:** Current Sensing 19
- **TIP #7:** Position/Speed Sensing 23
TIPS 'N TRICKS INTRODUCTION

Every motor control circuit can be divided into the drive electronics and the controlling software. These two pieces can be fairly simple or extremely complicated depending upon the motor type, the system requirements and the hardware/software complexity trade-off. Generally, higher performance systems require more complicated hardware. This booklet describes many basic circuits and software building blocks commonly used to control motors. The booklet also provides references to Microchip application notes that describe many motor control concepts in more detail. The application notes can be found on the Microchip Technology web site at www.microchip.com.

Additional motor control design information can be found in the Motor Control Design Center (www.microchip.com/motor).
TIP #1 Brushed DC Motor Drive Circuits

All motors require drive circuitry which controls the current flow through the motor windings. This includes the direction and magnitude of the current flow. The simplest type of motor, to drive, is the Brushed DC motor. Drive circuits for this type of motor are shown below.

FIGURE 1-1: HIGH SIDE DRIVE

This drive can control a Brushed DC motor in one direction. This drive is often used in safety critical applications because a short circuit at the motor terminals cannot turn the motor on.
This is the lowest cost drive technique because of the MOSFET drive simplicity. Most applications can simply use an output pin from the PICmicro® microcontroller to turn the MOSFET on.
The H-Bridge derived its name from the common way the circuit is drawn. This is the only solid state way to operate a motor in both directions.

Application notes that drive Brushed DC motors are listed below and can be found on the Microchip Technology web site at www.microchip.com.

- AN847 – “RC Model Aircraft Motor Control” (DS00847)
- AN893 – “Low-cost Bidirectional Brushed DC Motor Control Using the PIC16F684” (DS00893)
- AN905 – “Brushed DC Motor Fundamentals” (DS00905)
TIP #2 Brushless DC Motor Drive Circuits

A Brushless DC motor is a good example of simplified hardware increasing the control complexity. The motor cannot commutate the windings (switch the current flow), so the control circuit and software must control the current flow correctly to keep the motor turning smoothly. The circuit is a simple half-bridge on each of the three motor windings.

There are two basic commutation methods for Brushless DC motors; sensored and sensorless. Because it is critical to know the position of the motor so the correct winding can be energized, some method of detecting the rotor position is required. A motor with sensors will directly report the current position to the controller. Driving a sensored motor requires a look-up table. The current sensor position directly correlates to a commutation pattern for the bridge circuits.

Without sensors, another property of the motor must be sensed to find the position. A popular method for sensorless applications is to measure the back EMF voltage that is naturally generated by the motor magnets and windings. The induced voltage in the un-driven winding can be sensed and used to determine the current speed of the motor. Then, the next commutation pattern can be determined by a time delay from the previous pattern.
Sensorless motors are lower cost due to the lack of the sensors, but they are more complicated to drive. A sensorless motor performs very well in applications that don’t require the motor to start and stop. A sensor motor would be a better choice in applications that must periodically stop the motor.

FIGURE 2-1: 3 PHASE BRUSHLESS DC MOTOR CONTROL

OA-OF are digital outputs from a PICmicro® MCU.
FIGURE 2-2: BACK EMF SENSING (SENSORLESS MOTOR)

PIC® MCU or dsPIC® DSC

ADC

Low Pass Filter

Analog MUX

A

B

C

FIGURE 2-3: QUADRATURE DECODER (SENSOR MOTOR)

PIC® MCU or dsPIC® DSC

Digital Outputs

Drive Circuit

Motor

Hall Effect Motor Position Sensor

Digital Inputs

Sensor Outputs

A

B

C
Application notes describing Brushless DC Motor Control are listed below and can be found on the Microchip Technology web site at www.microchip.com.

- AN857 – “Brushless DC Motor Control Made Easy” (DS00857)
- AN885 – “Brushless DC Motor Fundamentals” (DS00885)
- AN899 – “Brushless DC Motor Control Using PIC18FXX31” (DS00899)
- AN901 – “Using the dsPIC30F for Sensorless BLDC Control” (DS00901)
- AN957 – “Sensored BLDC Motor Control Using dsPIC30F2010” (DS00957)
- AN992 – “Sensorless BLDC Motor Control Using dsPIC30F2010” (DS00992)
- AN1017 – “Sinusoidal Control of PMSM with dsPIC30F DSC” (DS01017)
- GS005 – “Using the dsPIC30F Sensorless Motor Tuning Interface” (DS93005)
TIP #3 Stepper Motor Drive Circuits

Stepper motors are similar to Brushless DC motors in that the control system must commutate the motor through the entire rotation cycle. Unlike the brushless motor, the position and speed of a stepping motor is predictable and does not require the use of sensors.

There are two basic types of stepper motors, although some motors are built to be used in either mode. The simplest stepper motor is the unipolar motor. This motor has four drive connections and one or two center tap wires that are tied to ground or V SUPPLY, depending on the implementation. Other motor types are the bipolar stepper and various combinations of unipolar and bipolar, as shown in Figure 3-1 and Figure 3-2. When each drive connection is energized, one coil is driven and the motor rotates one step. The process is repeated until all the windings have been energized. To increase the step rate, often the voltage is increased beyond the motors rated voltage. If the voltage is increased, some method of preventing an over current situation is required.
There are many ways to control the winding current, but the most popular is a chopper system that turns off current when it reaches an upper limit and enables the current flow a short time later. Current sensor systems are discussed in TIP #6. Some systems are built with a current chopper, but they do not detect the current, rather the system is designed to begin a fixed period chopping cycle after the motor has stepped to the next position. These are simpler systems to build, as they only require a change in the software.

FIGURE 3-1: 4 AND 5 WIRE STEPPER MOTORS

- Unipolar 5 Wire
- Bipolar 4 Wire

FIGURE 3-2: 6 AND 8 WIRE STEPPER MOTORS

- Short for Unipolar
- Individual coils wire anyway appropriate 8 Wire
- Unipolar and Bipolar 6 Wire
FIGURE 3-3: UNIPOLAR MOTOR (4 LOW SIDE SWITCHES)

01-04 are outputs from a PIC® MCU or dsPIC® DSC
A-H are digital outputs from a PIC® MCU or dsPIC® DSC.
TIP #4 Drive Software
Pulse-Width Modulation (PWM) Algorithms

Pulse-Width Modulation is critical to modern digital motor controls. By adjusting the pulse width, the speed of a motor can be efficiently controlled without larger linear power stages. Some PICmicro® devices and all dsPIC® DSCs have hardware PWM modules on them. These modules are built into the Capture/Compare/PWM (CCP) peripheral. CCP peripherals are intended for a single PWM output, while the Enhanced CCP (ECCP) is designed to produce the complete H-Bridge output for bidirectional Brushed DC motor control. If cost is a critical design point, a PICmicro device with a CCP module may not be available, so software generated PWM is a good alternative.

The following algorithms are designed to efficiently produce an 8-bit PWM output on the mid-range family of PICmicro microcontrollers. These algorithms are implemented as macros. If you want these macros to be a subroutine in your program, simply remove the macro statements and replace them with a label and a return statement.
EXAMPLE 4-1: 1 OUTPUT 8-BIT PWM

```
pwm_counter equ xxx ;variable
pwm equ xxx ;variable

set_pwm macro A ;sets the pwm
 ;setpoint to the
 ;value A
    MOVLW A
    MOVWF pwm
    endm

update_PWM macro ;performs one update
 ;of the PWM signal
 ;place the PWM output
 ;pin at bit 0 or 7 of
 ;the port
    MOVF pwm_counter,w
    SUBWF pwm, w ;if the output
    is on bit 0
    RLF PORTC,f ;replace PORTC with
    ;the correct port if
    ;the output is on bit
    ;7 of the port
    ;replace the rlf with
    ;rrf incf
    ;pwm_counter,f
```
EXAMPLE 4-2: 8 OUTPUT 8-BIT PWM

```assembly
pwm_counter equ xxx ;variable
pwm0 equ xxx ;
pwm1 equ pwm0+1
pwm2 equ pwm1+1
pwm3 equ pwm2+1
pwm4 equ pwm3+1
pwm5 equ pwm4+1
pwm6 equ pwm5+1
pwm7 equ pwm6+1
output equ pwm7+1

set_pwm macro A,b; sets pwm b with
;the value A
   MOVLW pwm0
   ADDLW b
   MOVWF fsr
   MOVLW a
   MOVWF indf
endm

update_PWM macro ;performs one
;update of all 8
;PWM signals
;all PWM signals
;must be on the
;same port
   MOVF pwm_counter,w
   SUBWF pwm0,w
   RLF output,f
   MOVF pwm_counter,w
   SUBWF pwm1,w
   RLF output,f
   MOVF pwm_counter,w
   SUBWF pwm2,w
   RLF output,f
```

© 2006 Microchip Technology Inc.
EXAMPLE 4-3: 8 OUTPUT 8-BIT PWM (CONTINUED)

```assembly
MOVF pwm_counter, w
SUBWF pwm3, w
RLF output, f
MOVF pwm_counter, w
SUBWF pwm4, w
RLF output, f
MOVF pwm_counter, w
SUBWF pwm5, w
RLF output, f
MOVF pwm_counter, w
SUBWF pwm6, w
RLF output, f
MOVF pwm_counter, w
SUBWF pwm7, w
RLF output, w
MOVWF PORTC
INCF pwm_counter, f
endm
```
TIP #5 Writing a PWM Value to the CCP Registers With a Mid-Range PICmicro® Microcontroller

The two PWM LSb’s are located in the CCPCON register of the CCP. This can make changing the PWM period frustrating for a developer. Example 5-1 through Example 5-3 show three macros written for the mid-range product family that can be used to set the PWM period. The first macro takes a 16-bit value and uses the 10 MSb’s to set the PWM period. The second macro takes a 16-bit value and uses the 10 LSb’s to set the PWM period. The last macro takes 8 bits and sets the PWM period. This assumes that the CCP is configured for no more than 8 bits.

EXAMPLE 5-1: LEFT JUSTIFIED 16-BIT MACRO

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pwm_tmp equ xxx</td>
<td>this variable must be allocated someplace</td>
</tr>
<tr>
<td>setPeriod macro a</td>
<td>a is 2 SFR’s in Low:High arrangement</td>
</tr>
<tr>
<td></td>
<td>the 10 MSb’s are the desired PWM value</td>
</tr>
<tr>
<td>RRF a,w</td>
<td>This macro will change w</td>
</tr>
<tr>
<td>MOVWF pwm_tmp</td>
<td></td>
</tr>
<tr>
<td>RRF pwm_tmp,w</td>
<td></td>
</tr>
<tr>
<td>ANDLW 0x30</td>
<td></td>
</tr>
<tr>
<td>IORLW 0x0F</td>
<td></td>
</tr>
<tr>
<td>MOVWF CCP1CON</td>
<td></td>
</tr>
<tr>
<td>MOVF a+1,w</td>
<td></td>
</tr>
<tr>
<td>MOVWF CCPR1L</td>
<td></td>
</tr>
</tbody>
</table>

© 2006 Microchip Technology Inc. DS41233B-page 17
EXAMPLE 5-2: RIGHT JUSTIFIED 16-BIT MACRO

```assembly
pwm_tmp equ xxx ;this variable must be allocated someplace
setPeriod macro a ;a is 2 bytes in Low:High arrangement ;the 10 LSb's are the desired PWM value
SWAPF a,w ;This macro will ;change w
ANDLW 0x30
IORLW 0x0F
MOVWF CCP1CON
RLF a,w
IORLW 0x0F
MOVWF pwm_tmp
RRF pwm_tmp,f
RRF pwm_tmp,w
MOVWF CCPR1L
```

EXAMPLE 5-3: 8-BIT MACRO

```assembly
pwm_tmp equ xxx ;this variable must be allocated someplace
setPeriod macro a ;a is 1 SFR
SWAPF a,w ;This macro will ;change w
ANDLW 0x30
IORLW 0x0F
MOVWF CCP1CON
RLF a,w
MOVWF pwm_tmp
MOVWF CCPR1L
```
TIP #6 Current Sensing

The torque of an electric motor can be monitored and controlled by keeping track of the current flowing through the motor. Torque is directly proportional to the current. Current can be sensed by measuring the voltage drop through a known value resistor or by measuring the magnetic field strength of a known value inductor. Current is generally sensed at one of two places, the supply side of the drive circuit (high side current sense) or the sink side of the drive circuit (low side current sense). Low side sensing is much simpler but the motor will no longer be grounded, causing a safety issue in some applications. High side current sensing generally requires a differential amplifier with a common mode voltage range within the voltage of the supply.
FIGURE 6-1: RESISTIVE HIGH SIDE CURRENT SENSING

- VSUPPLY
- Current Sensor Resistor
- RS+
- RS-
- MAX4172 High Side Current Sensor Amplifier
- 1k
- ADC
- PIC® MCU or dsPIC®DSC
- CCP
- MOSFET Driver
Tips ‘n Tricks

Current measurement can also be accomplished using a Hall Effect Sensor to measure the magnetic field surrounding a current carrying wire. Naturally, this Hall Effect Sensor can be located on the high side or the low side of the load. The actual location of the sensor does not matter because the sensor does not rely upon the voltage on the wire. This is a non-intrusive method that can be used to measure motor current.

FIGURE 6-3: MAGNETIC CURRENT SENSING
TIP #7 Position/Speed Sensing

The motor RPM can be measured by understanding that a motor is a generator. As long as the motor is spinning, it will produce a voltage that is proportional to the motors RPM. This is called back EMF. If the PWM signal to the motor is turned off and the voltage across the windings is measured, the back EMF voltage can be sensed from there and the RPM's can be known.

FIGURE 7-1: BACK EMF MOTOR SPEED SENSING

Note 1: If motor voltage is greater than VDD, an attenuator will be required. Sample back EMF while Q1 is off.
Rotary Encoder Sensing

Rotary encoders are typically used to provide direct physical feedback of motor position, and/or speed. A rotary encoder consists of a rotary element attached to the motor that has a physical feature, measured by a stationary component. The measurements can yield motor speed and sometimes they can provide a motor position. Rotary encoders are built using many different technologies. The most common type is an optical rotary encoder. The optical rotary encoder is used in the computer mice that have a ball. It is built with an encoder disc that is attached to the motor. The encoder disc has many radial slots cut into the disc at a specific interval. An LED and a photo detector are used to count the slots as they go by. By timing the rate that the slots go by, the speed of rotation can be determined.

Sensing motor position requires a second LED and photo detector. The second sensor pair is mounted so the output pulses are 90° out of phase from the first pair. The two outputs represent the motion of the encoder disc as a quadrature modulated pulse train. By adding a third index signal, that pulses once for each revolution, the exact position of the rotor can be known.
An encoder with quadrature outputs can be used to track relative position from a known reference point. Another type of encoder uses a binary encoded disk so that the exact rotor position is always known. This type of encoder is called an absolute encoder.
FIGURE 7-2: OPTICAL SPEED/DIRECTION/POSITION SENSING

Note: Frequency of one signal provides RPM of motor. Pulse count provides motor position. A-B phase provides motor direction.
Quadrature sensing can easily be accomplished in software, but there is generally an upper limit to the RPM. By using a few gates, the sensing can be done partially in hardware and partially in software. The new PIC18FXX31 and dsPIC® 16-bit Digital Signal Controller families include an encoder interface that allows MUCH higher RPM motors to be measured with an excellent degree of accuracy.

Older Methods of Motor Sensing

Resolvers and analog tachometers are two older technologies for motor position/velocity sensing. An analog tachometer is simply an electric generator with a linear output over a specified range of RPM’s. By knowing the output characteristics, the RPM can be known by simply measuring the voltage across the tachometer terminals.

A resolver is a pair of coils that are excited by an external AC signal. The two coils are at 90° to each other so they pick up the AC signal at different strengths, depending on their orientation. The result is a sine or cosine output related to the angle of the resolver in reference to the AC signal. Inverse cosine/sine will produce the angle of the sensor. This type of sensor can be very accurate and is still used where absolute position must be known.
Tips ‘n Tricks

Application Note References

• AN532 – “Servo Control of a DC Brush Motor” (DS00532)
• AN696 – “PIC18CXXX/PIC16CXXX DC Servomotor” (DS00696)
• AN718 – “Brush-DC Servomotor Implementation using PIC17C756A” (DS00718)
• AN822 – “Stepper Motor Microstepping with the PIC18C452” (DS00822)
• AN843 – “Speed Control of 3-Phase Induction Motor Using PIC18 Microcontrollers” (DS00843)
• AN847 – “RC Model Aircraft Motor Control” (DS00847)
• AN857 – “Brushless DC Motor Control Made Easy” (DS00857)
• AN885 – “Brushless DC (BLDC) Motor Fundamentals” (DS00885)
• AN899 – “Brushless DC Motor Control Using the PIC18FXX31” (DS00899)
• AN893 – “Low-cost Bidirectional Brushed DC Motor Control Using the PIC16F684” (DS00893)
• AN894 – “Motor Control Sensor Feedback Circuits” (DS00894)
• AN898 – “Determining MOSFET Driver Needs for Motor Drive Applications” (DS00898)
• AN901 – “Using the dsPIC30F for Sensorless BLDC Control” (DS00901)
• AN905 – “Brushed DC Motor Fundamentals” (DS00905)
• AN906 – “Stepper Motor Control Using the PIC16F684” (DS00906)
• AN907 – “Stepper Motor Fundamentals” (DS00907)
• AN1017 – “Sinusoidal Control of PMSM Motors with dsPIC30F DSC” (DS01017)
• GS001 – “Getting Started with BLDC Motors and dsPIC30F Devices” (DS93001)

Application notes can be found on the Microchip Technology web site at www.microchip.com.

Motor Control Development Tools

• “PICDEM™ MC Development Board” (DM183011)
 Used to evaluate the PIC18FXX31 8-bit Microcontroller family.
• PICDEM™ MCLV Development Board (DM183021)
• “dsPIC30F Motor Control Development System” (DM300020)
 Used to evaluate the dsPIC30F 16-bit Digital Signal Controller family.
• Motor Control (MC) Graphical User Interface (GUI)
 The MC-GUI allows user to configure the motor and a wide range of system parameters for a selected motor type.
 The MC-GUI is free and can be downloaded at www.microchip.com
Tips ‘n Tricks

Visit the Motor Control Design Center at www.microchip.com/motor for additional design resources.
Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Temple, Arizona and Mountain View, California in October 2003. The Company’s quality system processes grid procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.