1.0 OVERVIEW

This Programming Specification describes an SPI-based programming method for the PIC16(L)F188XX family of microcontrollers. Section 3.0 “Programming Algorithms” describes the programming commands, programming algorithms and electrical specifications which are used in that particular programming method. Appendix B contains individual part numbers, device identification and checksum values, pinout and packaging information and Configuration Words.

Note 1: This is a new SPI-compatible programming method with 8-bit commands.

2: The low-voltage entry code is now 32 clocks and MSb, not 33 clocks as in the PIC16(L)F183XX device family.

1.1 Programming Data Flow

Nonvolatile Memory (NVM) programming data can be supplied by either the high-voltage In-Circuit Serial Programming™ (ICSP™) interface or the low-voltage In-Circuit Serial Programming (ICSP) interface. Data can be programmed into the Program Flash Memory (PFM), Data Flash Memory (EEPROM), dedicated “user ID” locations and the Configuration Words.

1.2 Write and/or Erase Selection

Erasing or writing is selected according to the command used to begin operation (see Table 3-1). The terminologies used in this document related to erasing/writing to the program memory are defined in Table 1-1 and are detailed below.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programed Cell</td>
<td>A memory cell with a logic ‘0’</td>
</tr>
<tr>
<td>Erased Cell</td>
<td>A memory cell with a logic ‘1’</td>
</tr>
<tr>
<td>Erase</td>
<td>Change memory cell from a ‘0’ to a ‘1’</td>
</tr>
<tr>
<td>Write</td>
<td>Change memory cell from a ‘1’ to a ‘0’</td>
</tr>
<tr>
<td>Program</td>
<td>Generic Erase and/ or Write</td>
</tr>
</tbody>
</table>

1.2.1 ERASING MEMORY

Memory is erased by row or in bulk, where ‘bulk’ includes many subsets of the total memory space. The duration of the erase is always determined internally. All Bulk ICSP Erase commands have minimum VDD requirements, which are higher than the row erase and write requirements.

1.2.2 WRITING MEMORY

Memory is written one row at a time. Multiple Load Data for NVM commands are used to fill the row data latches. The duration of the write is determined either internally or externally.

1.2.3 MULTI-WORD PROGRAMMING INTERFACE

Program Flash Memory (PFM) panels include a 32-word (one row) programming interface. The row to be programmed must first be erased either with a Bulk Erase or a Row Erase.
1.3 Hardware Requirements

1.3.1 HIGH-VOLTAGE ICSP PROGRAMMING
In High-Voltage ICSP mode, the device requires two programmable power supplies: one for VDD and one for the MCLR/VPP pin.

1.3.2 LOW-VOLTAGE ICSP PROGRAMMING
In Low-Voltage ICSP mode, the device can be programmed using a single VDD source in the operating range. The MCLR/VPP pin does not have to be brought to a different voltage, but can instead be left at the normal operating voltage.

1.3.2.1 Single-Supply ICSP Programming
The LVP bit enables single-supply (low-voltage) ICSP programming. The LVP bit defaults to a '1' (enabled) from the factory. The LVP bit may only be programmed to '0' by entering the High-Voltage ICSP mode, where the MCLR/VPP pin is raised to VIH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIH to the MCLR/VPP pin.

Note 2: While in Low-Voltage ICSP mode, MCLR is always enabled, regardless of the MCLRE bit, and the port pin can no longer be used as a general purpose input.

1.4 Pin Utilization
Five pins are needed for ICSP programming. The pins are listed in Table 1-2. For pin locations and packaging information please refer to Table B-2.

TABLE 1-2: PIN DESCRIPTIONS DURING PROGRAMMING

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>During Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Function</td>
</tr>
<tr>
<td>ICSPCLK</td>
<td>ICSPCLK</td>
</tr>
<tr>
<td>ICSPDAT</td>
<td>ICSPDAT</td>
</tr>
<tr>
<td>MCLR/VPP</td>
<td>Program/Verify mode</td>
</tr>
<tr>
<td>VDD</td>
<td>VDD</td>
</tr>
<tr>
<td>VSS</td>
<td>VSS</td>
</tr>
</tbody>
</table>

Legend: I = Input, O = Output, P = Power

Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.
2.0 MEMORY MAP

FIGURE 2-1: PROGRAM MEMORY MAPPING

<table>
<thead>
<tr>
<th>PIC16(L)F18854</th>
<th>PIC16(L)F18855</th>
<th>PIC16(L)F18875</th>
<th>PIC16(L)F18876</th>
<th>PIC16(L)F18877</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC<15:0>(5)</td>
<td>PC<15:0>(5)</td>
<td>PC<15:0>(5)</td>
<td>PC<15:0>(5)</td>
<td>PC<15:0>(5)</td>
</tr>
<tr>
<td>Stack (16 levels)</td>
<td>Stack (16 levels)</td>
<td>Stack (16 levels)</td>
<td>Stack (16 levels)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1:

- The stack is a separate SRAM panel, apart from all user memory panels.
- Not code-protected.
- Device/Revision IDs are hard-coded in silicon.
- The addresses do not roll over. The region is read as '0'.
- For the purposes of instruction fetching during program execution, only 15 bits (PC<14:0>) are used. However, for the purposes of non-volatile memory reading and writing through ICSP programming operations, the PC uses all 16 bits (PC<15:0>), and the "Load PC Address" command requires a full 16-bit data payload.
2.1 User ID Location

A user may store identification information (user ID) in four designated locations. The user ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled.

2.2 Device/Revision ID

The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

REGISTER 2-1: DEVICEID: DEVICE ID REGISTER

<table>
<thead>
<tr>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>DEV11</td>
<td>DEV10</td>
<td>DEV9</td>
<td>DEV8</td>
<td>DEV7</td>
<td>DEV6</td>
<td>DEV5</td>
<td>DEV4</td>
<td>DEV3</td>
<td>DEV2</td>
</tr>
</tbody>
</table>

Legend:

R = Readable bit
'0' = Bit is cleared
'1' = Bit is set
x = Bit is unknown

bit 13-12 Fixed Value: Read-only bits
These bits are fixed with value '11' for all devices included in this programming specification.

bit 11-0 DEV<11:0>: Device ID bits
Note: Refer to Table B-1 for a list of device ID register values for the devices covered by this programming specification document.

REGISTER 2-2: REVISIONID: REVISION ID REGISTER

<table>
<thead>
<tr>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>MJRREV<5:0></td>
<td>MNRREV<5:0></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

R = Readable bit
'0' = Bit is cleared
'1' = Bit is set
x = Bit is unknown

bit 13-12 Fixed Value: Read-only bits
These bits are fixed with value '10' for all devices included in this programming specification.

bit 11-6 MJRREV<5:0>: Major Revision ID bits
These bits are used to identify a major revision. A major revision is indicated by an all layer revision (B0, C0, etc.)

bit 5-0 MNRREV<5:0>: Minor Revision ID bits
These bits are used to identify a minor revision.
2.3 Configuration Words

The devices have several Configuration Words starting at address 8007h. The individual bits within these Configuration Words are critical to the correct operation of the system. Configuration bits enable or disable specific features, placing these controls outside the normal software process, and they establish configured values prior to the execution of any software.

In terms of programming, these important Configuration bits should be considered:

1. **LVP: Low-Voltage Programming Enable bit**
 - 1 = ON - Low-Voltage Programming is enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored.
 - 0 = OFF - HV on MCLR/VPP must be used for programming.

 It is important to note that the LVP bit cannot be written (to 0) while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the configuration state. For more information, see Section 3.1.2 “Low-Voltage Programming (LVP) Mode”.

2. **CPD: Data NVM (EEPROM) Memory Code Protection bit**
 - 1 = OFF - Data NVM code protection disabled
 - 0 = ON - Data NVM code protection enabled

3. **CP: User NVM Program Memory Code Protection bit**
 - 1 = OFF - User NVM code protection disabled
 - 0 = ON - User NVM code protection enabled

For more information on code protection, see Section 3.3 “Code Protection”.
3.0 PROGRAMMING ALGORITHMS

3.1 Program/Verify Mode

In Program/Verify mode, the program memory and the configuration memory can be accessed and programmed in serial fashion. ICSPDAT and ICSPCLK are used for the data and the clock, respectively. All commands and data words are transmitted MSb first. Data changes on the rising edge of the ICSPCLK and is latched on the falling edge. In Program/Verify mode, both the ICSPDAT and ICSPCLK are Schmitt Trigger inputs. The sequence that enters the device into Program/Verify mode places all other logic into the Reset state. Upon entering Program/Verify mode, all I/Os are automatically configured as high-impedance inputs and the address is cleared.

3.1.1 HIGH-VOLTAGE PROGRAM/VERIFY MODE ENTRY AND EXIT

There are two different modes of entering Program/Verify mode via high voltage:

• VPP – First Entry mode
• VDD – First Entry mode

3.1.1.1 VPP – First Entry Mode

To enter Program/Verify mode via the VPP-First mode, the following sequence must be followed:

1. Hold ICSPCLK and ICSPDAT low. All other pins should be unpowered.
2. Raise the voltage on MCLR from 0V to VIHH.
3. Raise the voltage on VDD from 0V to the desired operating voltage.

The VPP-first entry prevents the device from executing code prior to entering Program/Verify mode. For example, when the Configuration Word has MCLR disabled (MCLRE = 0), the power-up time is disabled (PWRTE = 0), the internal oscillator is selected (FOSC = 100), and RA0 and RA1 are driven by the user application, the device will execute code. Since this may prevent entry, VPP-First Entry mode is strongly recommended, as it prevents user code from changing EEPROM contents or driving pins to affect Test mode entry. See the timing diagram in Figure 3-2.

3.1.1.2 VDD – First Entry Mode

To enter Program/Verify mode via the VDD-First mode, the following sequence must be followed:

1. Hold ICSPCLK and ICSPDAT low.
2. Raise the voltage on VDD from 0V to the desired operating voltage.
3. Raise the voltage on MCLR from VDD or below to VIHH.

The VDD-First mode is useful when programming the device when VDD is already applied, for it is not necessary to disconnect VDD to enter Program/Verify mode. See the timing diagram in Figure 3-1.
3.1.1.3 Program/Verify Mode Exit

To exit Program/Verify mode, lower MCLR from VIH or lower (VIL). VDD-First Entry mode should use VDD-Last Exit mode (see Figure 3-1). VPP-First Entry mode should use VPP-Last Exit mode (see Figure 3-2).

FIGURE 3-1: PROGRAMMING ENTRY AND EXIT MODES – VPP FIRST AND LAST

<table>
<thead>
<tr>
<th>VPP FIRST</th>
<th>VPP LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>VDD</td>
</tr>
<tr>
<td>VPP</td>
<td>VPP</td>
</tr>
<tr>
<td>VIL</td>
<td>VIL</td>
</tr>
<tr>
<td>ICSPDAT</td>
<td>ICSPDAT</td>
</tr>
<tr>
<td>ICSPCLK</td>
<td>ICSPCLK</td>
</tr>
</tbody>
</table>

FIGURE 3-2: PROGRAMMING ENTRY AND EXIT MODES – VDD FIRST AND LAST

<table>
<thead>
<tr>
<th>VDD FIRST</th>
<th>VDD LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>VDD</td>
</tr>
<tr>
<td>VPP</td>
<td>VPP</td>
</tr>
<tr>
<td>VIL</td>
<td>VIL</td>
</tr>
<tr>
<td>ICSPDAT</td>
<td>ICSPDAT</td>
</tr>
<tr>
<td>ICSPCLK</td>
<td>ICSPCLK</td>
</tr>
</tbody>
</table>
3.1.2 LOW-VOLTAGE PROGRAMMING (LVP) MODE

The Low-Voltage Programming mode allows the devices to be programmed using VDD only, without high voltage. When the LVP bit of the Configuration Word 3 register is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. This can only be done while in the High-Voltage Entry mode.

Entry into the Low-Voltage ICSP Program/Verify mode requires the following steps:

1. MCLR is brought to VIL.
2. A 32-bit key sequence is presented on ICSPDAT. The LSb of pattern is a "don't care x". The program/verify mode entry pattern detect hardware verifies only the first 31 bits of the sequence and the last clock is required before the pattern detect goes active.

The key sequence is a specific 32-bit pattern, ‘32’h4d434850’ (more easily remembered as MCHP in ASCII). The device will enter Program/Verify mode only if the sequence is valid. The Most Significant bit of the Most Significant nibble must be shifted in first. Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained. For low-voltage programming timing, see Figure 3-3 and Figure 3-4.

FIGURE 3-3: LVP ENTRY (POWERING-UP)

FIGURE 3-4: LVP ENTRY (POWERED)

Exiting Program/Verify mode is done by raising MCLR from below VIL to VIH level (or higher, up to VDD).

Note: To enter LVP mode, the MSb of the Most Significant nibble must be shifted in first. This differs from entering the key sequence on some other device families.
3.1.3 PROGRAM/VERIFY COMMANDS

Once a device has entered ICSP Program/Verify mode (using either high voltage or LVP entry), the programming host device may issue seven commands to the microcontroller, each eight bits in length. The commands are summarized in Table 3-1. The commands are used to erase and program the device. The commands load and use the Program Counter (PC).

Some of the eight-bit commands also have a data payload associated with it (such as Load Data for NVM and Read Data from NVM).

If the programming host device issues an 8-bit command byte that has a data payload associated with it, the host device is responsible for sending an additional 24 clock pulses (for example, three 8-bit bytes), in order to send or receive the payload data associated with the command.

The actual useful payload bits associated with a command are command-specific and will be less than 24 bits. However, the payload field is always padded with additional Start, Stop and Pad bits, to bring the total payload field size to 24 bits, so as to be compatible with many 8-bit SPI-based systems.

Within a 24-bit payload field, the first bit transmitted is always a Start bit, followed by a variable number of Pad bits, followed by the useful data payload bits and ending with one Stop bit. The useful data payload bits are always transmitted Most Significant bit (MSb) first.

When the programming device issues a command that involves a host to microcontroller payload (for example, Load PC Address), the Start, Stop and Pad bits should all be driven by the programmer to '0'. When the programming host device issues a command that involves microcontroller to host payload data (for example, Read Data from NVM), the Start, Stop and Pad bits should be treated as "don't care" bits and the values should be ignored by the host.

When the programming host device issues an 8-bit command byte to the microcontroller, the host should wait a minimum amount of delay (which is command-specific) prior to sending any additional clock pulses (associated with either a 24-bit data payload field or the next command byte).

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Command Value</th>
<th>Payload Expected</th>
<th>Delay after Command</th>
<th>Data/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load PC Address</td>
<td>1000 0000</td>
<td>80</td>
<td>Yes</td>
<td>TDLY</td>
</tr>
<tr>
<td>Bulk Erase Program Memory</td>
<td>0001 1000</td>
<td>18</td>
<td>No</td>
<td>TERAB</td>
</tr>
<tr>
<td>Row Erase Program Memory</td>
<td>1111 0000</td>
<td>F0</td>
<td>No</td>
<td>TERAR</td>
</tr>
<tr>
<td>Load Data for NVM</td>
<td>0000 00J0</td>
<td>00/02</td>
<td>Yes</td>
<td>TDLY J = 1; PC = PC + 1 after writing; J = 0; PC is unchanged</td>
</tr>
<tr>
<td>Read Data from NVM</td>
<td>1111 11J0</td>
<td>FE/FC</td>
<td>Yes</td>
<td>TDLY J = 1; PC = PC + 1 after reading; J = 0; PC is unchanged</td>
</tr>
<tr>
<td>Increment Address</td>
<td>1111 1000</td>
<td>F8</td>
<td>No</td>
<td>TDLY PC = PC + 1</td>
</tr>
<tr>
<td>Begin Internally Timed</td>
<td>1110 0000</td>
<td>E0</td>
<td>No</td>
<td>TPINT</td>
</tr>
<tr>
<td>Programming</td>
<td></td>
<td></td>
<td></td>
<td>Commits latched data to NVM</td>
</tr>
<tr>
<td>(self timed)</td>
<td></td>
<td></td>
<td></td>
<td>(self timed)</td>
</tr>
<tr>
<td>Begin Externally Timed</td>
<td>1100 0000</td>
<td>C0</td>
<td>No</td>
<td>TPEXT</td>
</tr>
<tr>
<td>Programming</td>
<td></td>
<td></td>
<td></td>
<td>Commits latched data to NVM</td>
</tr>
<tr>
<td>(externally timed). After TPEXT, “End Externally Timed Programming” command must be issued.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Externally Timed</td>
<td>1000 0010</td>
<td>82</td>
<td>No</td>
<td>TDIS</td>
</tr>
<tr>
<td>Programming</td>
<td></td>
<td></td>
<td></td>
<td>Should be issued within required time delay (TPEXT) after “Begin Externally Timed Programming” command.</td>
</tr>
</tbody>
</table>
3.1.3.1 Load Data for NVM

The Load Data for NVM command is used to load one programming data latch (for example, one 14-bit instruction word for program memory/configuration memory/user ID memory, or one 8-bit byte for an EEPROM data memory address). The word programs into program memory after the Begin Internally Timed Programming or Begin Externally Timed Programming command is issued. The Load Data for NVM command can be used to load data for Program Flash Memory (PFM) (see Figure 3-6) or the Data Flash Memory (DFM) (see Figure 3-7). Depending on the value of bit 1 of the command, the PC may or may not be incremented (see Table 3-1).

![FIGURE 3-5: CLOCK AND DATA TIMING](image)

Note: All clock pulses for both the 8-bit commands and the 24-bit payload fields are generated by the host programming device. The microcontroller does not drive the ICSPCLK line. The ICSPDAT signal is a bidirectional data line. For all commands and payload fields, except the Read Data from NVM payload, the host programming device continuously drives the ICSPDAT line. Both the host programmer device and the microcontroller should latch received ICSPDAT values on the falling edge of the ICSPCLK line. When the microcontroller is receiving ICSPDAT line values from the host programmer, the ICSPDAT values must be valid a minimum of TDS before the falling edges of ICSPCLK and should remain valid for a minimum of TDH after the falling edge of ICSPDAT. See Figure 3-5.
FIGURE 3-7: LOAD DATA FOR NVM (DFM)

ICSPCLK: 7 6 5 4 3 2 1 0

ICSPDAT: 0 0 0 0 0 0 0 0

Start Bit

8-Bit Command

24-Bit Payload Field

Stop Bit
3.1.3.2 Read Data from NVM

The Read Data from NVM command will transmit data bits out of the current PC address. The ICSPDAT pin will go into Output mode on the first falling edge of ICSPCLK, and it will revert to Input mode (high-impedance) after the 24th falling edge of the clock. The Start and Stop bits are only one half of a bit time wide, and should therefore be ignored by the host programmer device (since the latched value may be indeterminate). Additionally, the host programmer device should only consider the MSb to LSb payload bits as valid, and should ignore the values of the pad bits. If the program memory is code-protected (CP), the data will be read as zeros (see Figure 3-8 and Figure 3-9). Depending on the value of bit ‘1’ of the command, the PC may or may not be incremented (see Table 3-1). The Read Data for NVM command can be used to read data for Program Flash Memory (PFM) (see Figure 3-8) or the Data Flash Memory (DFM) (see Figure 3-9).

FIGURE 3-8: READ DATA FROM NVM (PFM OR CONFIGURATION WORDS)

FIGURE 3-9: READ DATA FROM NVM (DFM – EEPROM)
3.1.3.3 Increment Address

The address is incremented by one when this command is received. It is not possible to decrement the address. To reset this counter, the user must use the Load PC Address command. See Figure 3-10.

FIGURE 3-10: INCREMENT ADDRESS

3.1.3.4 Load PC Address

The PC value is set using the supplied data. The address implies the memory panel (PFM or DFM) to be accessed (see Figure 3-11).

FIGURE 3-11: LOAD PC ADDRESS
3.1.3.5 Begin Internally Timed Programming

The write programming latches must already have been loaded using the Write Data for NVM command, prior to issuing the Begin Programming command. Programming of the addressed memory will begin after this command is received. An internal timing mechanism executes the write. The user must allow for the Erase/Write cycle time, \(T_{PINT} \), in order for the programming to complete, prior to issuing the next command byte (see Figure 3-12).

After the programming cycle is complete all the data latches are reset to ‘1’.

FIGURE 3-12: BEGIN INTERNALLY TIMED PROGRAMMING

3.1.3.6 Begin Externally Timed Programming

Data to be programmed must be previously loaded by Load Data for NVM command before every Begin Programming command. To complete the programming, the End Externally Timed Programming command must be sent in the specified time window defined by \(T_{PEXT} \) (see Figure 3-13).

Externally timed writes are not supported for Configuration bits. Any externally timed write to the Configuration Word will have no effect on the targeted word.

FIGURE 3-13: BEGIN EXTERNALLY TIMED PROGRAMMING

3.1.3.7 End Externally Timed Programming

This command is required to terminate the programming sequence after a Begin Externally Timed Programming command is given. If no programming command is in progress or if the programming cycle is internally timed, this command will execute as No-operation (NOP) (Figure 3-14).

FIGURE 3-14: END PROGRAM TIMING
3.1.3.8 Bulk Erase Memory

The Bulk Erase Memory command performs different functions dependent on the current state of the PC address. The Bulk Erase command affects specific portions of the memory depending on the initial value of the Program Counter. Whenever a Bulk Erase command is executed, the device will erase all bytes within the regions listed in Table 3-2.

TABLE 3-2: BULK ERASE

<table>
<thead>
<tr>
<th>Address</th>
<th>Area(s) Erased</th>
<th>CP = x and CPD = 1 (both disabled)</th>
<th>CP = x or CPD = 0 (either enabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h-7FFFh</td>
<td>Program Flash Memory</td>
<td>Program Flash Memory</td>
<td>EEPROM Configuration Words</td>
</tr>
<tr>
<td></td>
<td>Configuration Words</td>
<td>EEPROM</td>
<td>Configuration Words</td>
</tr>
<tr>
<td>8000h-80FDh</td>
<td>Program Flash Memory</td>
<td>Program Flash Memory</td>
<td>EEPROM</td>
</tr>
<tr>
<td></td>
<td>User ID Words</td>
<td>EEPROM</td>
<td>User ID Words</td>
</tr>
<tr>
<td></td>
<td>Configuration Words</td>
<td>EEPROM</td>
<td>Configuration Words</td>
</tr>
<tr>
<td>F000h-FFFFh</td>
<td>EEPROM only</td>
<td>EEPROM only</td>
<td>EEPROM only</td>
</tr>
</tbody>
</table>

After receiving the Bulk Erase Memory command, the erase will not complete until the time interval, TERAB, has expired (see Figure 3-15). The programming host device should not issue another 8-bit command until after the TERAB interval has fully elapsed.

FIGURE 3-15: BULK ERASE MEMORY

3.1.3.9 Row Erase Memory

The Row Erase Memory command will erase an individual row. When write and erase operations are done on a row basis, the row size (number of 14-bit words) for erase operation is 32 and the row size (number of 14-bit latches) for the write operation is 32. If the program memory is code-protected, the Row Erase Program Memory command will be ignored. When the address is 8000h-800Bh, the Row Erase Program Memory command will only erase the user ID locations regardless of the setting of the CP Configuration bit.

The Flash memory row defined by the current PC will be erased. The user must wait TERAR for erasing to complete (see Figure 3-16).

FIGURE 3-16: ROW ERASE MEMORY
3.2 Programming Algorithms

The devices use internal latches to temporarily store the 14-bit words used for programming. The data latches allow the user to write the program words with a single Begin Internally Timed Programming or Begin Externally Timed Programming command. The Load Data for NVM command is used to load a single data latch. The data latch will hold the data until the Begin Internally Timed Programming or Begin Externally Timed Programming command is given.

The data latches are aligned with the LSbs of the address. The address at the time the Begin Internally Timed Programming or Begin Externally Timed Programming command is given will determine which memory row is written. Writes cannot cross a physical row boundary. For example, attempting to write from address 0002h-0021h in a 32-latch device will result in data being written to 0020h-003Fh.

If more than the maximum number of latches are written without a Begin Internally Timed Programming or Begin Externally Timed Programming command, the data in the data latches will be overwritten. Figure 3-17 through Figure 3-22 show the recommended flowcharts for programming.

Note: The program Flash memory and EEPROM memory regions are programmed one row (32 words) at a time (Figure 3-20), while the user ID and Configuration words are programmed one word at a time (Figure 3-19).

The value of the PC at the time of issuing the Begin Internally Timed Programming or Begin Externally Timed Programming command determines what row (of program Flash memory or EEPROM) or what word (of user ID or Configuration word) will get programmed.
FIGURE 3-17: DEVICE PROGRAM/VERIFY FLOWCHART

Start

Enter Programming Mode

Bulk Erase Device

Write Program Memory\(^1\)

Verify Program Memory

Write EEPROM

Verify EEPROM Memory

Write User IDs

Verify User IDs

Write Configuration Words\(^2\)

Verify Configuration Words

Exit Programming Mode

Done

Note 1: See Figure 3-11.

2: See Figure 3-16.
FIGURE 3-18: PROGRAM MEMORY FLOWCHART

Start

Bulk Erase Program Memory\(^{(1, 2)}\)

Program Cycle\(^{(3)}\)

Read Data from NVM

Data Correct?

Yes

No

Report Programming Failure

Increment PC Address to Next Row

All Locations Done?

No

Yes

Done

Note 1: This step is optional if the device has already been erased or has not been previously programmed.
2: If the device is code-protected or must be completely erased, then Bulk Erase the device per Figure 3-17.
3: See Figure 3-15.

FIGURE 3-19: ONE-WORD PROGRAM CYCLE

Program Cycle
(for Programming User ID and Configuration Words)

Load Data for NVM Command

Begin Programming Command (Internally Timed)

Wait TPINT
FIGURE 3-20: MULTIPLE-WORD PROGRAM CYCLE

Program Cycle
(for Writing to Program Flash Memory or Data Flash/EEPROM Memory)

- Load Data for NVM (Latch 1)
- Increment Address
- Load Data for NVM (Latch 2)
- Increment Address
- Load Data for NVM (Latch 32)
- Begin Programming Command (Internally timed)
 - Wait TPINT
- Begin Programming Command (Externally timed)
 - Wait TPEXT
- End Externally Timed Programming Command
 - Wait TDIS
FIGURE 3-21: USER ID AND CONFIGURATION MEMORY PROGRAM FLOWCHART

Start

Load PC Address (selects Bulk Erase regions)

Bulk Erase Program Memory(1)

Load PC Address (8000h)

One-word Program Cycle(2)
(User ID)

Read from NVM Command

Data Correct?

Yes

Increment PC Address

No

Address = 8004h?

Yes

Load PC Address Command (8007h)

One-word Program Cycle(2)
(Config. Word)

Read Data from NVM Command

Data Correct?

No

Report Programming Failure

Yes

Increment PC Address

No

Address = 800Ch?

Yes

Done

Note 1: This step is optional if the device is erased or not previously programmed.

2: See Figure 3-12.
3.3 Code Protection

Code protection is controlled using the CP bit. When code protection is enabled, all program memory locations (0000h-7FFFh) read as '0'. Further programming is disabled for the program memory (0000h-7FFFh), until the next bulk erase operation is performed. Program memory can still be programmed and read during program execution.

The user ID locations and Configuration Words can be programmed and read out regardless of the code protection settings.

3.3.1 PROGRAM MEMORY

Code protection is enabled by programming the CP bit to '0'. The only way to disable code protection is to use the Bulk Erase Memory command (with the PC set to an address so as to Bulk Erase all program Flash contents).

3.3.2 DATA MEMORY

Data memory protection is enabled by programming the CPD bit to '0'. The only way to disable code protection is to use the Bulk Erase Memory command.
3.4 Hex File Usage

In the hex file there are two bytes per program word stored in the Intel® INHX32 hex format. Data is stored LSB first, MSB second. Because there are two bytes per word, the addresses in the hex file are 2x the address in program memory. For example, if the Configuration Word 1 is stored at 8007h, in the hex file this will be referenced as 1000Eh-1000Fh.

3.4.1 CONFIGURATION WORD

To allow portability of code, it is strongly recommended that the programmer is able to read the Configuration Words and user ID locations from the hex file. If the Configuration Words information was not present in the hex file, a simple warning message may be issued. Similarly, while saving a hex file, Configuration Words and user ID information should be included.

3.4.2 DEVICE ID

If a device ID is present in the hex file at 1000Ch-1000Dh (8006h on the part), the programmer should verify the device ID against the value read from the part. On a mismatch condition, the programmer should generate a warning message.

3.4.3 CHECKSUM COMPUTATION

The checksum is calculated by two different methods dependent on the setting of the CP Configuration bit. Refer to Appendix B: “PIC16(L)F188XX Device ID, Checksums and Pinout Descriptions” for checksum computation examples.

3.4.3.1 Program Code Protection Disabled

With the program code protection disabled, the checksum is computed by reading the contents of the program memory locations and adding up the program memory data starting at address 0000h, up to the maximum user addressable location (e.g., 0FFFh). Any Carry bits exceeding 16 bits are ignored. Additionally, the relevant bits of the Configuration Words are added to the checksum. All unimplemented Configuration bits are masked to ‘0’.

3.4.3.2 Program Code Protection Enabled

When the MPLAB® IDE check box for Configure → ID Memory... → Use Unprotected Checksum is checked, then the 16-bit checksum of the equivalent unprotected device is computed and stored in the user ID. Each nibble of the unprotected checksum is stored in the Least Significant nibble of each of the four user ID locations. The Most Significant checksum nibble is stored in the user ID at location 8000h, the second Most Significant nibble is stored at location 8001h, and so forth for the remaining nibbles and ID locations.

The checksum of a code-protected device is computed in the following manner: the Least Significant nibble of each user ID is used to create a 16-bit value. The Least Significant nibble of user ID location 8000h is the Most Significant nibble of the 16-bit value. The Least Significant nibble of user ID location 8001h is the second Most Significant nibble, and so forth for the remaining User IDs and 16-bit value nibbles. The resulting 16-bit value is summed with the Configuration Words. All unimplemented Configuration bits are masked to ‘0’.
3.5 Electrical Specifications

Refer to device-specific data sheet for absolute maximum ratings.

TABLE 3-3: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

<table>
<thead>
<tr>
<th>AC/DC CHARACTERISTICS</th>
<th>Standard Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Production tested at 25°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Characteristics</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdd</td>
<td>Supply Voltage</td>
<td>PICXXLF1XXX</td>
<td>1.80</td>
<td>—</td>
<td>3.60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(VDDMIN(1), VDDMAX)</td>
<td>PICXXF1XXX</td>
<td>2.30</td>
<td>—</td>
<td>5.50</td>
<td>V</td>
</tr>
<tr>
<td>VPEW</td>
<td>Read/Write and Row Erase operations</td>
<td>VDDMIN</td>
<td>—</td>
<td>VDDMAX</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VBE</td>
<td>Bulk Erase operations</td>
<td>VBOR(2)</td>
<td>—</td>
<td>VDDMAX</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IODD</td>
<td>Current on Vdd, Idle</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IDDP</td>
<td>Current on Vdd, Programming</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IPP</td>
<td>Current on MCLR/VPP</td>
<td>—</td>
<td>—</td>
<td>600</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>VPP</td>
<td>High voltage on MCLR/VPP for Program/Verify mode entry</td>
<td>8.0</td>
<td>—</td>
<td>9.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>TVHHR</td>
<td>MCLR rise time (VIL to VIHH) for Program/Verify mode entry</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>I/O pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vih</td>
<td>(ICSPCLK, ICSPDAT, MCLR/VPP) input high level</td>
<td>0.8 VDD</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VIL</td>
<td>(ICSPCLK, ICSPDAT, MCLR/VPP) input low level</td>
<td>—</td>
<td>—</td>
<td>0.2 VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOH</td>
<td>ICSPDAT output high level</td>
<td>VDD-0.7</td>
<td>VDD-0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>ICSPDAT output low level</td>
<td>—</td>
<td>—</td>
<td>VSS+0.6</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming Mode Entry and Exit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TENTS</td>
<td>Programing mode entry setup time: ICSPCLK, ICSPDAT setup time before VDD or MCLR↑</td>
</tr>
<tr>
<td>TENTH</td>
<td>Programing mode entry hold time: ICSPCLK, ICSPDAT hold time after VDD or MCLR↑</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial Program/Verify</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TCKL</td>
<td>Clock Low Pulse Width</td>
</tr>
<tr>
<td>TCKH</td>
<td>Clock High Pulse Width</td>
</tr>
<tr>
<td>TDS</td>
<td>Data in setup time before clock↓</td>
</tr>
<tr>
<td>TDH</td>
<td>Data in hold time after clock↓</td>
</tr>
<tr>
<td>TCO</td>
<td>Clock↑ to data out valid (during a Read Data command)</td>
</tr>
</tbody>
</table>

Note 1: Bulk-erased devices default to brown-out enabled, with BORV = 1 (low trip point). VDDMIN is the VBOR threshold (with BORV = 1) when performing low-voltage programming on a bulk-erased device, to ensure that the device is not held in Brown-out Reset.

Note 2: The hardware requires Vdd to be above the BOR threshold, at the ~2.4V nominal setting, in order to perform Bulk Erase operations. This threshold does not depend on the BORV Configuration bit settings. The threshold is the same for both F and LF devices, even though the LF devices may not have a user configurable ~2.4V nominal BOR trip point setting. Refer to the microcontroller device data sheet specifications for min./typ./max. limits of the VBOR level (at the BORV = 0 setting of F devices).

Note 3: Externally timed writes are not supported for Configuration bits.
TABLE 3-3: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE (CONTINUED)

<table>
<thead>
<tr>
<th>AC/DC CHARACTERISTICS</th>
<th>Standard Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production tested at 25°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Characteristics</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLZD</td>
<td>Clock↓ to data low-impedance (during a Read Data command)</td>
<td>0</td>
<td>—</td>
<td>80</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>THZD</td>
<td>Clock↓ to data high-impedance (during a Read Data command)</td>
<td>0</td>
<td>—</td>
<td>80</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TDLY</td>
<td>Data input not driven to next clock input (delay required between command/data or command/command)</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>TERAB</td>
<td>Bulk Erase cycle time</td>
<td>—</td>
<td>—</td>
<td>5.6</td>
<td>ms</td>
<td>PIC16(L)F18854, PIC16(L)F188x5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>8.4</td>
<td>ms</td>
<td>PIC16(L)F188x6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>14</td>
<td>ms</td>
<td>PIC16(L)F188x7</td>
</tr>
<tr>
<td>TERAR</td>
<td>Row Erase cycle time</td>
<td>—</td>
<td>—</td>
<td>2.8</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>TPI</td>
<td>Internally timed programming operation time</td>
<td>—</td>
<td>—</td>
<td>2.8</td>
<td>ms</td>
<td>Program memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>5.6</td>
<td>ms</td>
<td>Configuration Words</td>
</tr>
<tr>
<td>TPEXT</td>
<td>Delay required between Begin Externally Timed Programming and End Externally Timed Programming commands</td>
<td>1.0</td>
<td>—</td>
<td>2.1</td>
<td>ms</td>
<td>(Note 3)</td>
</tr>
<tr>
<td>TDIS</td>
<td>Delay required after End Externally Timed Programming command</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>TEXIT</td>
<td>Time delay when exiting Program/Verify mode</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Bulk-erased devices default to brown-out enabled, with BORV = 1 (low trip point). VDDMIN is the VBOR threshold (with BORV = 1) when performing low-voltage programming on a bulk-erased device, to ensure that the device is not held in Brown-out Reset.

Note 2: The hardware requires VDD to be above the BOR threshold, at the ~2.4V nominal setting, in order to perform Bulk Erase operations. This threshold does not depend on the BORV Configuration bit settings. The threshold is the same for both F and LF devices, even though the LF devices may not have a user configurable ~2.4V nominal BOR trip point setting. Refer to the microcontroller device data sheet specifications for min./typ./max. limits of the VBOR level (at the BORV = 0 setting of F devices).

Note 3: Externally timed writes are not supported for Configuration bits.
APPENDIX A: REVISION HISTORY

Revision A (06/2014)

Initial release of the document.

Revision B (12/2014)

Added Sections 3.1.3.6 and 3.1.3.7.
Updated Appendix B.
Updated Example B-1, B-2, B-3 and B-4.
Updated Figures 2-1, 3-1, 3-2, 3-18, and 3-19.
Updated Register B-4.
Updated Sections 1.2.2, 1.2.3, 3.1.1.1, 3.1.1.2, 3.1.1.3, 3.1.3.1, and 3.2.
Updated Table 3-1, 3-2, and 3-3.
APPENDIX B: PIC16(L)F188XX DEVICE ID, CHECKSUMS AND PINOUT DESCRIPTIONS

TABLE B-1: DEVICE IDs AND CHECKSUMS

<table>
<thead>
<tr>
<th>Device</th>
<th>Device ID</th>
<th>Config. 1</th>
<th>Config. 2</th>
<th>Config. 3</th>
<th>Config. 4</th>
<th>Config. 5</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F18854</td>
<td>306Ah</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16LF18854</td>
<td>306Bh</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16F18855</td>
<td>306Ch</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16LF18855</td>
<td>306Dh</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16F18875</td>
<td>306Fh</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16LF18875</td>
<td>3070h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16F18856</td>
<td>3071h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16LF18856</td>
<td>3072h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16F18876</td>
<td>3073h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16LF18876</td>
<td>3074h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16F18857</td>
<td>3075h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16LF18857</td>
<td>3076h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
<tr>
<td>PIC16F18877</td>
<td>3077h</td>
<td>3FFF</td>
<td>2977</td>
<td>3FFF</td>
<td>3EE3</td>
<td>3FFF</td>
<td>3F7F</td>
</tr>
</tbody>
</table>
EXAMPLE B-1: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED

PIC16F18854, BLANK DEVICE

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F18854</td>
<td>Sum of Memory addresses 0000h-0FFFh</td>
<td>F000h (1000h*3FFFh)</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 1</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 1 mask</td>
<td>2977h</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 2</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 2 mask</td>
<td>3EE3h</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 3</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 3 mask</td>
<td>3F7Fh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 4</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 4 mask</td>
<td>3003h</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 5 Unprotected</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 5 mask</td>
<td>0003h</td>
</tr>
</tbody>
</table>
| | Checksum | F000h + (3FFFh and 2977h) + (3FFFh and 3EE3h) + (3FFFh and 3F7Fh) +
| | | (3FFFh and 3003h) + (3FFFh and 0003h) |
| | | = F000h + 2977h + 3EE3h + 3F7Fh + 3003h + 0003h |
| | | = C7DFh |

EXAMPLE B-2: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED

PIC16F18854, 00AAh AT FIRST AND LAST ADDRESS

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F18854</td>
<td>Sum of Memory addresses 0000h-0FFFh</td>
<td>7156h (AAh + (FFEh*3FFFh) + AAh)</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 1</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 1 mask</td>
<td>2977h</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 2</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 2 mask</td>
<td>3EE3h</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 3</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 3 mask</td>
<td>3F7Fh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 4</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 4 mask</td>
<td>3003h</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 5 Unprotected</td>
<td>3FFFh</td>
</tr>
<tr>
<td></td>
<td>Configuration Word 5 mask</td>
<td>0003h</td>
</tr>
</tbody>
</table>
| | Checksum | 7156h + (3FFFh and 2977h) + (3FFFh and 3EE3h) + (3FFFh and 3F7Fh) +
| | | (3FFFh and 3003h) + (3FFFh and 0003h) |
| | | = 7156h + 2977h + 3EE3h + 3F7Fh + 3003h + 0003h |
| | | = 4935h |
EXAMPLE B-3: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED
PIC16F18854, BLANK DEVICE

PIC16F18854	Configuration Word 1	3FFFh
	Configuration Word 1 mask	2977h
	Configuration Word 2	3FFFh
	Configuration Word 2 mask	3EE3h
	Configuration Word 3	3FFFh
	Configuration Word 3 mask	3F7Fh
	Configuration Word 4	3FFFh
	Configuration Word 4 mask	3003h
	Configuration Word 5 Unprotected	3FFCh
	Configuration Word 5 mask	0003h

Sum of User IDs = (000Ch and 000Fh) << 12 + (0007h and 000Fh) << 8 + (000Dh and 000Fh) << 4 + (000Fh and 000Fh)
= C000h + 0700h + 00D0h + 000Fh
= 27DFh

Checksum = (3FFFh and 2977h) + (3FFFh and 3EE3h) + (3FFFh and 3F7Fh) + (3FFFh and 3003h) + (3FFCh and 0003h) + 27DFh
= 9FBBh

EXAMPLE B-4: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED
PIC16F18854, 00AAh AT FIRST AND LAST ADDRESS

PIC16F18854	Configuration Word 1	3FFFh
	Configuration Word 1 mask	2977h
	Configuration Word 2	3FFFh
	Configuration Word 2 mask	3EE3h
	Configuration Word 3	3FFFh
	Configuration Word 3 mask	3F7Fh
	Configuration Word 4	3FFFh
	Configuration Word 4 mask	3003h
	Configuration Word 5 Unprotected	3FFCh
	Configuration Word 5 mask	0003h

Sum of User IDs = (0004h and 000Fh) << 12 + (0009h and 000Fh) << 8 + (0003h and 000Fh) << 4 + (0005h and 000Fh)
= 4000h + 0900h + 0030h + 0005h
= 4935h

Checksum = (3FFFh and 2977h) + (3FFFh and 3EE3h) + (3FFFh and 3F7Fh) + (3FFFh and 3003h) + (3FFCh and 0003h) + 4935h
= 2111h
<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Package Code</th>
<th>Package Drawing Number(^{(1)})</th>
<th>VDD PIN</th>
<th>Vdd PIN</th>
<th>VSS PIN</th>
<th>MCLR PORT</th>
<th>ICSPCLK PORT</th>
<th>ICSPDAT PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16(L)F18854</td>
<td>28-pin SPDIP (SP)</td>
<td>C04-070</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SSOP (SS)</td>
<td>C04-073</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SOIC (SO)</td>
<td>C04-052</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin UQFN (MV)</td>
<td>C04-152</td>
<td>17 16, 5 26 RE3 24 RB6 25 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16(L)F18855</td>
<td>28-pin SPDIP (SP)</td>
<td>C04-070</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SSOP (SS)</td>
<td>C04-073</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SOIC (SO)</td>
<td>C04-052</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin UQFN (MV)</td>
<td>C04-152</td>
<td>17 16, 5 26 RE3 24 RB6 25 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16(L)F18875</td>
<td>40-pin PDIP (P)</td>
<td>C04-016</td>
<td>32, 11 31, 12 1 RE3 39 RB6 40 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-pin TQFP (PT)</td>
<td>C04-076</td>
<td>28, 7 6 18 RE3 16 RB6 17 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-pin UQFN (MV)</td>
<td>C04-156</td>
<td>26, 7 27, 6 16 RE3 14 RB6 15 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16(L)F18856</td>
<td>28-pin SPDIP (SP)</td>
<td>C04-070</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SSOP (SS)</td>
<td>C04-073</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SOIC (SO)</td>
<td>C04-052</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin UQFN (MV)</td>
<td>C04-152</td>
<td>17 16, 5 26 RE3 24 RB6 25 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin QFN (ML)</td>
<td>C04-105</td>
<td>17 16, 5 26 RE3 24 RB6 25 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16(L)F18876</td>
<td>40-pin PDIP (P)</td>
<td>C04-016</td>
<td>32, 11 31, 12 1 RE3 39 RB6 40 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-pin TQFP (PT)</td>
<td>C04-076</td>
<td>28, 7 6 18 RE3 16 RB6 17 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-pin UQFN (MV)</td>
<td>C04-156</td>
<td>26, 7 27, 6 16 RE3 14 RB6 15 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-pin QFN (ML)</td>
<td>C04-103</td>
<td>28, 8, 7 6 18 RE3 16 RB6 17 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16(L)F18857</td>
<td>28-pin SPDIP (SP)</td>
<td>C04-070</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SSOP (SS)</td>
<td>C04-073</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin SOIC (SO)</td>
<td>C04-052</td>
<td>20 19, 8 1 RE3 27 RB6 28 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-pin QFN (ML)</td>
<td>C04-105</td>
<td>17 16, 5 26 RE3 24 RB6 25 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16(L)F18877</td>
<td>40-pin PDIP (P)</td>
<td>C04-016</td>
<td>32, 11 31, 12 1 RE3 39 RB6 40 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-pin TQFP (PT)</td>
<td>C04-076</td>
<td>28, 7 6 18 RE3 16 RB6 17 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-pin UQFN (MV)</td>
<td>C04-156</td>
<td>26, 7 27, 6 16 RE3 14 RB6 15 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-pin QFN (ML)</td>
<td>C04-103</td>
<td>28, 8, 7 6 18 RE3 16 RB6 17 RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The most current package drawings can be found in the Microchip Packaging Specification, DS00049, found at http://www.microchip.com/packaging. The drawing numbers listed above do not include the current revision designator which is added at the end of the number.
REGISTER B-1: CONFIGURATION WORD 1: OSCILLATORS

<table>
<thead>
<tr>
<th>Bit</th>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>FCMEN</td>
<td>Fail-Safe Clock Monitor Enable bit</td>
</tr>
<tr>
<td>12</td>
<td>CSWEN</td>
<td>Clock Switch Enable bit</td>
</tr>
<tr>
<td>11</td>
<td>CLKOUTEN</td>
<td>Clock Out Enable bit</td>
</tr>
<tr>
<td>10-9</td>
<td>RSTOSC<2:0></td>
<td>Power-up default value for COSC bits</td>
</tr>
<tr>
<td>8</td>
<td>CLKOUTEN</td>
<td>Clock Out Enable bit</td>
</tr>
<tr>
<td>7</td>
<td>Unimplemented</td>
<td>Read as '1'</td>
</tr>
<tr>
<td>6-4</td>
<td>RSTOSC<2:0></td>
<td>Power-up default value for COSC bits</td>
</tr>
<tr>
<td>3</td>
<td>Unimplemented</td>
<td>Read as '1'</td>
</tr>
<tr>
<td>2-0</td>
<td>FEXTOSC<2:0></td>
<td>FEXTOSC External Oscillator mode Selection bits</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **P** = Programmable bit
- **U** = Unimplemented bit, read as '1'
- **x** = Bit is unknown
- **'0'** = Bit is cleared
- **'1'** = Bit is set
- **n** = Value when blank or after Bulk Erase
- **W** = Writable bit

Bit Descriptions:
- **bit 13**: FCMEN - Fail-Safe Clock Monitor Enable bit
 - 1 = FSCM timer enabled
 - 0 = FSCM timer disabled
- **bit 12**: CSWEN - Clock Switch Enable bit
 - 1 = Writing to NOSC and NDIV is allowed
 - 0 = The NOSC and NDIV bits cannot be changed by user software
- **bit 11**: CLKOUTEN - Clock Out Enable bit
 - **If FEXTOSC = EC (high, mid or low) or Not Enabled:**
 - 1 = CLKOUT function is disabled; I/O or oscillator function on OSC2
 - 0 = CLKOUT function is enabled; FOSC/4 clock appears at OSC2
 - **Otherwise:**
 - This bit is ignored.
- **bit 7**: Unimplemented: Read as '1'
- **bit 6-4**: RSTOSC<2:0> - Power-up default value for COSC bits
 - This value is the Reset-default value for COSC and selects the oscillator first used by user software.
 - 111 = EXTOSC operating per FEXTOSC bits (device manufacturing default)
 - 110 = HFINTOSC with HFFRQ = 4'b0000
 - 101 = Reserved
 - 100 = LFINTOSC
 - 011 = SOSC
 - 010 = EXTOSC with 2x PLL, with EXTOSC operating per FEXTOSC bits
 - 001 = EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits
 - 000 = HFINTOSC with 2x PLL and HFFRQ = 4'b1111
- **bit 3**: Unimplemented: Read as '1'
- **bit 2-0**: FEXTOSC<2:0> - FEXTOSC External Oscillator mode Selection bits
 - 111 = EC (External Clock) above 8 MHz; PFM set to high power (device manufacturing default)
 - 110 = EC (External Clock) for 100 kHz to 8 MHz; PFM set to medium power
 - 101 = EC (External Clock) below 100 kHz; PFM set to low power
 - 100 = Oscillator not enabled
 - 011 = Reserved (do not use)
 - 010 = HS (Crystal oscillator) above 4 MHz; PFM set to high power
 - 001 = XT (Crystal oscillator) above 100 kHz, below 4 MHz; PFM set to medium power
 - 000 = LP (Crystal oscillator) optimized for 32.768 kHz; PFM set to low power
REGISTER B-2: CONFIGURATION WORD 2: SUPERVISORS

<table>
<thead>
<tr>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>U-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBUG</td>
<td>STVREN</td>
<td>PPS1WAY</td>
<td>ZCDDIS</td>
<td>BORV</td>
<td>—</td>
<td>BOREN1</td>
<td>BOREN0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **P** = Programmable bit
- **U** = Unimplemented bit, read as ‘1’
- **x** = Bit is unknown
- ‘0’ = Bit is cleared
- ‘1’ = Bit is set
- **n** = Value when blank or after Bulk Erase
- **W** = Writable bit

bit 13 DEBUG: Debugger Enable bit
- 1 = Background debugger disabled
- 0 = Background debugger enabled

bit 12 STVREN: Stack Overflow/Underflow Reset Enable bit
- 1 = Stack Overflow or Underflow will cause a Reset
- 0 = Stack Overflow or Underflow will not cause a Reset

bit 11 PPS1WAY: PPSLOCK One-Way Set Enable bit
- 1 = The PPSLOCK bit can be cleared and set only once; PPS registers remain locked after one clear/set cycle
- 0 = The PPSLOCK bit can be set and cleared repeatedly (subject to the unlock sequence)

bit 10 ZCDDIS: Zero-Cross Detect Disable bit
- 1 = ZCD disabled. ZCD can be enabled by setting the ZCDSEN bit of the ZCDCON register
- 0 = ZCD always enabled (ZCDSEN bit is ignored)

bit 9 BORV: Brown-out Reset Voltage Selection bit
- 1 = Brown-out Reset Voltage (V_{BOR}) set to lower trip point level
- 0 = Brown-out Reset Voltage (V_{BOR}) set to higher trip point level
The higher voltage setting is recommended for operation at or above 16 MHz.

bit 8 Unimplemented: Read as ‘1’

bit 7-6 BOREN<1:0>: Brown-out Reset Enable bits
When enabled, Brown-out Reset Voltage (V_{BOR}) is set by the BORV bit
- 11 = Brown-out Reset is enabled; SBOREN bit is ignored
- 10 = Brown-out Reset is enabled while running, disabled in Sleep; SBOREN bit is ignored
- 01 = Brown-out Reset is enabled according to SBOREN
- 00 = Brown-out Reset is disabled

bit 5 LPBOREN: Low-Power BOR Enable bit
- 1 = ULPBOR is disabled
- 0 = ULBPB is enabled

bit 4-2 Unimplemented: Read as ‘1’

bit 1 PWRT: Power-up Timer Enable bit
- 1 = PWRT is disabled
- 0 = PWRT is enabled

bit 0 MCLRE: Master Clear (MCLR) Enable bit
- If LVP = 1:
 - RE3 pin function is MCLR (it will reset device when driven low)
- If LVP = 0:
 - 1 = MCL pin is MCLR (it will reset device when driven low)
 - 0 = MCL pin may be used as general purpose RE3 input
REGISTER B-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG

<table>
<thead>
<tr>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDTCCS2</td>
<td>WDTCCS1</td>
<td>WDTCCS0</td>
<td>WDTCSW2</td>
<td>WDTCSW1</td>
<td>WDTCSW0</td>
<td></td>
</tr>
</tbody>
</table>

bit 13

<table>
<thead>
<tr>
<th>U-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDTE1</td>
<td>WDTE0</td>
<td>WDTCS4</td>
<td>WDTCS3</td>
<td>WDTCS2</td>
<td>WDTCS1</td>
<td>WDTCS0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 7

Legend:

- **R** = Readable bit
- **P** = Programmable bit
- **x** = Bit is unknown
- **U** = Unimplemented bit, read as ‘1’
- ‘0’ = Bit is cleared
- ‘1’ = Bit is set
- **W** = Writable bit
- **n** = Value when blank or after Bulk Erase

bit 13-11 WDTCCS<2:0>: WDT input clock selector.

- **000** = WDT reference clock is the 31.25 kHz HFINTOSC (MFINTOSC) output
- **001** = WDT reference clock is the 31.0 kHz LFINTOSC (default value)
- **010** = Reserved
- **011** = Software Control
- **100** = Reserved
- **101** = Software Control
- **110** = Reserved
- **111** = Software Control

bit 10-8 WDTCSW<2:0>: WDT Window Select bits

<table>
<thead>
<tr>
<th>WDTCSW</th>
<th>WDTWS at POR</th>
<th>Software control of WDTWS?</th>
<th>Keyed access required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Window delay</td>
<td>Window opening</td>
<td>Percent of time</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>87.5</td>
<td>12.5</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
<td>62.5</td>
<td>37.5</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>37.5</td>
<td>62.5</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>n/a</td>
<td>100</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
<td>n/a</td>
<td>100</td>
</tr>
</tbody>
</table>

bit 7 Unimplemented: Read as ‘1’

bit 6-5 WDTE<1:0>: WDT Operating mode:

- **00** = WDT disabled, SWDTEN is ignored
- **01** = WDT enabled/disabled by SWDTEN bit in WDTCN0
- **10** = WDT enabled while Sleep = 0, suspended when Sleep = 1; SWDTEN ignored
- **11** = WDT enabled regardless of Sleep; SWDTEN is ignored
REGISTER B-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG (CONTINUED)

bit 4-0
WDTCPS<4:0>: WDT Period Select bits

<table>
<thead>
<tr>
<th>WDTCPS</th>
<th>Value</th>
<th>Divider Ratio</th>
<th>Typical time out (FIN = 31 kHz)</th>
<th>Software control of WDTPS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>00000</td>
<td>1:32</td>
<td>2^4</td>
<td>1 ms</td>
</tr>
<tr>
<td>00001</td>
<td>00001</td>
<td>1:64</td>
<td>2^5</td>
<td>2 ms</td>
</tr>
<tr>
<td>00010</td>
<td>00010</td>
<td>1:128</td>
<td>2^6</td>
<td>4 ms</td>
</tr>
<tr>
<td>00011</td>
<td>00011</td>
<td>1:256</td>
<td>2^7</td>
<td>8 ms</td>
</tr>
<tr>
<td>00100</td>
<td>00100</td>
<td>1:512</td>
<td>2^8</td>
<td>16 ms</td>
</tr>
<tr>
<td>00101</td>
<td>00101</td>
<td>1:1024</td>
<td>2^9</td>
<td>32 ms</td>
</tr>
<tr>
<td>00110</td>
<td>00110</td>
<td>1:2048</td>
<td>2^10</td>
<td>64 ms</td>
</tr>
<tr>
<td>00111</td>
<td>00111</td>
<td>1:4096</td>
<td>2^11</td>
<td>128 ms</td>
</tr>
<tr>
<td>01000</td>
<td>01000</td>
<td>1:8192</td>
<td>2^12</td>
<td>256 ms</td>
</tr>
<tr>
<td>01001</td>
<td>01001</td>
<td>1:16384</td>
<td>2^13</td>
<td>512 ms</td>
</tr>
<tr>
<td>01010</td>
<td>01010</td>
<td>1:32768</td>
<td>2^14</td>
<td>1 s</td>
</tr>
<tr>
<td>01011</td>
<td>01011</td>
<td>1:65536</td>
<td>2^15</td>
<td>2 s</td>
</tr>
<tr>
<td>01100</td>
<td>01100</td>
<td>1:131072</td>
<td>2^16</td>
<td>4 s</td>
</tr>
<tr>
<td>01101</td>
<td>01101</td>
<td>1:262144</td>
<td>2^17</td>
<td>8 s</td>
</tr>
<tr>
<td>01110</td>
<td>01110</td>
<td>1:524299</td>
<td>2^18</td>
<td>16 s</td>
</tr>
<tr>
<td>01111</td>
<td>01111</td>
<td>1:1048576</td>
<td>2^19</td>
<td>32 s</td>
</tr>
<tr>
<td>10000</td>
<td>10000</td>
<td>1:2097152</td>
<td>2^20</td>
<td>64 s</td>
</tr>
<tr>
<td>10001</td>
<td>10001</td>
<td>1:4194304</td>
<td>2^21</td>
<td>128 s</td>
</tr>
<tr>
<td>10010</td>
<td>10010</td>
<td>1:8388608</td>
<td>2^22</td>
<td>256 s</td>
</tr>
<tr>
<td>10011</td>
<td>10011</td>
<td>1:32</td>
<td>2^5</td>
<td>1 ms</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11110</td>
<td>11110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REGISTER B-4: CONFIGURATION WORD 4: MEMORY

<table>
<thead>
<tr>
<th>R/P-1</th>
<th>R/P-1</th>
<th>U-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVP</td>
<td>SCANE</td>
<td></td>
<td>WRT1</td>
<td>WRT0</td>
</tr>
</tbody>
</table>

bit 13
LVP: Low-Voltage Programming Enable bit

- **1**: Low-Voltage Programming is enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored.
- **0**: High voltage (meeting VIHH level) on MCLR/VPP must be used for programming.

The LVP bit cannot be written (to zero) while operating from the LVP programming interface. This prevents accidental lockout from low-voltage programming while using low-voltage programming. High voltage programming is always available, regardless of the LVP Configuration bit value.

bit 12
SCANE: Scanner Enable bit

- **1**: Scanner module is available for use, SCANMD bit enables the module.
- **0**: Scanner module is not available for use, SCANMD bit is ignored.

bit 11-2
Unimplemented: Read as ‘1’

bit 1-0
WRT<1:0>: Program Flash Self-Write Erase Protection bits

4 kW Flash memory: (PIC16(L)F18854)

- **11**: Write protection off
- **10**: 0000h to 01FFh write-protected, 0200h to 0FFFh may be modified by EECON control
- **01**: 0000h to 07FFh write-protected, 0800h to 0FFFh may be modified by EECON control
- **00**: 0000h to 0FFFh write-protected, no addresses may be modified by EECON control

8 kW Flash memory: (PIC16(L)F18855/18875)

- **11**: Write protection off
- **10**: 0000h to 01FFh write-protected, 0200h to 1FFFh may be modified by EECON control
- **01**: 0000h to 0FFFh write-protected, 1000h to 1FFFh may be modified by EECON control
- **00**: 0000h to 1FFFh write-protected, no addresses may be modified by EECON control

16 kW Flash memory: (PIC16(L)F18856/18876)

- **11**: Write protection off
- **10**: 0000h to 01FFh write-protected, 0200h to 3FFFh may be modified by EECON control
- **01**: 0000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by EECON control
- **00**: 0000h to 3FFFh write-protected, no addresses may be modified by EECON control

32 kW Flash memory: (PIC16(L)F18857/18877)

- **11**: Write protection off
- **10**: 0000h to 01FFh write-protected, 0200h to 7FFFh may be modified by EECON control
- **01**: 0000h to 3FFFh write-protected, 4000h to 7FFFh may be modified by EECON control
- **00**: 0000h to 7FFFh write-protected, no addresses may be modified by EECON control

Legend:

- **R** = Readable bit
- **P** = Programmable bit
- **x** = Bit is unknown
- **U** = Unimplemented bit, read as ‘1’
- **W** = Writable bit
- **n** = Value when blank or after Bulk Erase

- **‘0’** = Bit is cleared
- **‘1’** = Bit is set
REGISTER B-5: CONFIGURATION WORD 5: CODE PROTECTION

<table>
<thead>
<tr>
<th></th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 13-2</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>R/P-1</th>
<th>R/P-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 7-0</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>CPD</td>
<td>CP</td>
</tr>
</tbody>
</table>

Legend:

- R = Readable bit
- P = Programmable bit
- x = Bit is unknown
- U = Unimplemented bit, read as ‘1’
- ‘0’ = Bit is cleared
- ‘1’ = Bit is set
- W = Writable bit
- n = Value when blank or after Bulk Erase

bit 13-2

- **Reserved**: Always write ‘1’ to these locations.

bit 1

- **CPD**: Data NVM (EEPROM) Memory Code Protection bit
 - 1 = EEPROM code protection disabled
 - 0 = EEPROM code protection enabled

bit 0

- **CP**: Program Flash Memory Code Protection bit
 - 1 = Program Flash Memory code protection disabled
 - 0 = Program Flash Memory code protection enabled
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOG, KEELOG logo, Kleer, LANcheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC Microcontroller logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MFPI, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, Varisense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, dsPICDEM® II code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- **Austin, TX**
 Tel: 512-257-3370
- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088
- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- **Cleveland**
 Independence, OH
 Tel: 216-447-0464
 Fax: 216-447-0643
- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924
- **Detroit**
 Novi, MI
 Tel: 248-848-4000
- **Houston, TX**
 Tel: 281-894-5983
- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-8323
 Fax: 317-773-5453
- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
- **New York, NY**
 Tel: 631-435-6000
- **San Jose, CA**
 Tel: 408-735-9110
- **Canada - Toronto**
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

- **Australia - Sydney**
 Tel: 61-2-9868-6733
 Fax: 61-2-9868-6755
- **China - Beijing**
 Tel: 86-10-8569-7000
 Fax: 86-10-8528-2104
- **China - Chengdu**
 Tel: 86-28-8665-5511
 Fax: 86-28-8665-7889
- **China - Chongqing**
 Tel: 86-23-8980-9588
 Fax: 86-23-8980-9500
- **China - Hangzhou**
 Tel: 86-571-8792-8115
 Fax: 86-571-8792-8116
- **China - Hong Kong SAR**
 Tel: 852-2943-5100
 Fax: 852-2401-3431
- **China - Nanjing**
 Tel: 86-25-8473-2460
 Fax: 86-25-8473-2470
- **China - Qingdao**
 Tel: 86-532-8502-7355
 Fax: 86-532-8502-7205
- **China - Shanghai**
 Tel: 86-21-5407-5533
 Fax: 86-21-5407-5066
- **China - Shenyang**
 Tel: 86-24-2334-2829
 Fax: 86-24-2334-2393
- **China - Shenzhen**
 Tel: 86-755-8864-2200
 Fax: 86-755-8203-1760
- **China - Wuhan**
 Tel: 86-27-5980-5300
 Fax: 86-27-5980-5118
- **China - Xian**
 Tel: 86-29-8833-7252
 Fax: 86-29-8833-7256
- **China - Xiamen**
 Tel: 86-592-2388138
 Fax: 86-592-2388130
- **China - Zhuhai**
 Tel: 86-756-3210040
 Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

- **India - New Delhi**
 Tel: 91-11-4160-8631
 Fax: 91-11-4160-8632
- **India - Pune**
 Tel: 91-20-3019-1500
- **Japan - Osaka**
 Tel: 81-6-6152-7160
 Fax: 81-6-6152-9310
- **Japan - Tokyo**
 Tel: 81-3-6880-3770
 Fax: 81-3-6880-3771
- **Korea - Daegu**
 Tel: 82-53-744-4301
 Fax: 82-53-744-4302
- **Korea - Seoul**
 Tel: 82-2-554-7200
 Fax: 82-2-558-5932 or 82-2-558-5934
- **Malaysia - Kuala Lumpur**
 Tel: 60-3-6201-9857
 Fax: 60-3-6201-9859
- **Malaysia - Penang**
 Tel: 60-4-227-8870
 Fax: 60-4-227-4068
- **Philippines - Manila**
 Tel: 63-2-634-9065
 Fax: 63-2-634-9069
- **Singapore**
 Tel: 65-6334-8870
 Fax: 65-6334-8850
- **Taiwan - Hsin Chu**
 Tel: 886-3-5778-366
 Fax: 886-3-5770-955
- **Taiwan - Kaohsiung**
 Tel: 886-7-213-7830
- **Taiwan - Taipei**
 Tel: 886-2-2508-8600
 Fax: 886-2-2508-0102
- **Thailand - Bangkok**
 Tel: 66-2-694-1351
 Fax: 66-2-694-1350

EUROPE

- **Austria - Wels**
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-393
- **Denmark - Copenhagen**
 Tel: 45-4450-2828
 Fax: 45-4485-2829
- **France - Paris**
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79
- **Germany - Dusseldorf**
 Tel: 49-2129-3766400
- **Germany - Munich**
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
- **Germany - Pforzheim**
 Tel: 49-7231-424750
- **Italy - Milan**
 Tel: 39-0331-742611
 Fax: 39-0331-466781
- **Italy - Venice**
 Tel: 39-049-7625286
- **Netherlands - Drunen**
 Tel: 31-416-690399
 Fax: 31-416-690340
- **Poland - Warsaw**
 Tel: 48-22-3325737
- **Spain - Madrid**
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91
- **Sweden - Stockholm**
 Tel: 46-8-5090-4654
- **UK - Wokingham**
 Tel: 44-118-921-5800
 Fax: 44-118-921-5820

© 2014 Microchip Technology Inc.