Processor Features:

- Interrupt Capability
- PIC16F527 Operating Speed:
 - DC – 20 MHz Crystal oscillator
 - DC – 200 ns Instruction cycle
- High-Endurance Program and Flash Data Memory Cells:
 - 1024 x 12 user execution memory
 - 64 x 8 self-writable data memory
 - 100,000 write program memory endurance
 - 1,000,000 write Flash data memory endurance
 - Program and Flash data retention: >40 years
- General Purpose Registers (SRAM):
 - 68 x 8 for PIC16F527
- Only 36 Single-Word Instructions to Learn:
 - Added RETURN and RETFI6 instructions
 - Added MOVLB instruction
- All Instructions are Single-Cycle except for Program Branches which are Two-Cycle
- Four-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions

Peripheral Features:

- Device Features:
 - One Input-only pin
 - 17 I/Os
 - Individual direction control
 - High-current source/sink
- 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit Programmable Prescaler
- In-Circuit Serial Programming™ (ICSP™) via Two External Pin Connections
- Analog Comparator (CMP):
 - Two analog comparators
 - Absolute and programmable references
- Analog-to-Digital Converter (ADC):
 - 8-bit resolution
 - Eight external input channels
 - One internal channel to convert comparator
 - 0.6V reference input
- Operational Amplifiers (op amps):
 - Two operational amplifiers
 - Fully-accessible visibility

eXtreme Low-Power (XLP) Features

- Sleep mode 50 nA @ 2.0V, typical
- Watchdog Timer (WDT): 500 nA @ 2.0V, typical

Microcontroller Features:

- Brown-out Reset (BOR)
- Power-on Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT) with a Dedicated RC Oscillator
- Programmable Code Protection (CP)
- Power-Saving Sleep mode with Wake-up on Change Feature
- Selectable Oscillator Options:
 - INTOSC: Precision 4 or 8 MHz internal oscillator
 - EXTRC: Low-cost external RC oscillator
 - LP: Power-saving, low-frequency crystal
 - XT: Standard crystal/resonator
 - HS: High-speed crystal/resonator
 - EC: High-speed external clock
- Variety of Packaging Options:
 - 20-Lead PDIP, SOIC, SSOP, QFN, UQFN

CMOS Technology:

- Low-Power, High-Speed CMOS Flash Technology
- Fully-Static Design
- Wide Operating Voltage and Temperature Range:
 - Industrial: 2.0V to 5.5V
 - Extended: 2.0V to 5.5V
- Operating Current:
 - 170 μA @ 2V, 4 MHz, typical
 - 15 μA @ 2V, 32 kHz, typical
- Standby Current:
 - 100 nA @ 2V, typical
TABLE 1: PIC16F527 AND PIC16F570 FAMILY TYPES

<table>
<thead>
<tr>
<th>Device</th>
<th>Data Sheet Index</th>
<th>I/O Pins(1)</th>
<th>Flash</th>
<th>Data EE (B)</th>
<th>SRAM (B)</th>
<th>8-Bit ADC Channels</th>
<th>Op Amp</th>
<th>Comparator</th>
<th>8-Bit Timers</th>
<th>BOR</th>
<th>Interrupts</th>
<th>8 MHz Int. Osc.</th>
<th>Interrupt-on-Change Pins</th>
<th>Weak Pull-up Pins</th>
<th>XLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F527</td>
<td>(1)</td>
<td>18 1 KW</td>
<td>64</td>
<td>68</td>
<td>8</td>
<td>2 2</td>
<td>1</td>
<td>Y</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>PIC16F570</td>
<td>(2)</td>
<td>25 2 KW</td>
<td>64</td>
<td>132</td>
<td>8</td>
<td>2 2</td>
<td>1</td>
<td>Y</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>8</td>
<td>8</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note 1: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

1: DS40001652 PIC16F527 Data Sheet, 20-Pin, 8-bit Flash Microcontroller.
2: DS40001684 PIC16F570 Data Sheet, 28-Pin, 8-bit Flash Microcontroller.

FIGURE 1: 20-PIN DIAGRAM FOR PIC16F527

PDIP, SSOP, SOIC

FIGURE 2: 20-PIN DIAGRAM FOR PIC16F527

QFN, UQFN
TABLE 2: 20-PIN ALLOCATION TABLE

<table>
<thead>
<tr>
<th>I/O</th>
<th>20-Pin PDIP/SOIC/SSOP</th>
<th>20-Pin QFN/UQFN</th>
<th>Analog</th>
<th>Oscillator</th>
<th>Comparator</th>
<th>Reference</th>
<th>Timers</th>
<th>Op Amp</th>
<th>Clock Reference</th>
<th>ICSP™</th>
<th>Basic</th>
<th>Pull-up</th>
<th>Interrupt-on-Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA0</td>
<td>19 16</td>
<td>AN0</td>
<td>—</td>
<td>C1IN+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ICSPDAT</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>RA1</td>
<td>18 15</td>
<td>AN1</td>
<td>—</td>
<td>C1IN-</td>
<td>CVREF</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ICSPCLK</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>RA2</td>
<td>17 14</td>
<td>AN2</td>
<td>—</td>
<td>C1OUT</td>
<td>T0CKI</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RA3</td>
<td>11 7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MCLR</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RA4</td>
<td>3 20</td>
<td>AN3</td>
<td>OSC2</td>
<td>—</td>
<td>—</td>
<td>CLKOUT</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RA5</td>
<td>2 19</td>
<td>—</td>
<td>OSC1</td>
<td>—</td>
<td>—</td>
<td>CLKIN</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RB4</td>
<td>13 10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>OP2-</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RB5</td>
<td>12 9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>OP2+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RB6</td>
<td>11 8</td>
<td>—</td>
</tr>
<tr>
<td>RB7</td>
<td>10 7</td>
<td>—</td>
</tr>
<tr>
<td>RC0</td>
<td>16 13</td>
<td>AN4</td>
<td>—</td>
<td>C2IN+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC1</td>
<td>15 12</td>
<td>AN5</td>
<td>—</td>
<td>C2IN-</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC2</td>
<td>14 11</td>
<td>AN6</td>
<td>—</td>
<td>—</td>
<td>OP2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC3</td>
<td>7 4</td>
<td>AN7</td>
<td>—</td>
<td>—</td>
<td>OP1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC4</td>
<td>6 3</td>
<td>—</td>
<td>C2OUT</td>
<td>—</td>
</tr>
<tr>
<td>RC5</td>
<td>5 2</td>
<td>—</td>
</tr>
<tr>
<td>RC6</td>
<td>8 5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>OP1-</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC7</td>
<td>9 6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>OP1+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VDD</td>
<td>1 18</td>
<td>—</td>
</tr>
<tr>
<td>VSS</td>
<td>20 17</td>
<td>—</td>
</tr>
</tbody>
</table>
Table of Contents

1.0 General Description ... 5
2.0 PIC16F527 Device Varieties ... 6
3.0 Architectural Overview .. 7
4.0 Memory Organization ... 12
5.0 Self-Writable Flash Data Memory Control ... 22
6.0 I/O Port .. 26
7.0 Timer0 Module and TMR0 Register .. 31
8.0 Special Features of the CPU ... 36
9.0 Analog-to-Digital (A/D) Converter ... 54
10.0 Comparator(s) ... 59
11.0 Comparator Voltage Reference Module .. 64
12.0 Operational Amplifier (OPA) Module .. 66
13.0 Instruction Set Summary .. 68
14.0 Development Support .. 76
15.0 Electrical Characteristics .. 80
16.0 DC and AC Characteristics Graphs and Charts ... 98
17.0 Packaging Information ... 112
The Microchip Website .. 130
Customer Change Notification Service .. 130
Customer Support .. 130
Product Identification System .. 131

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Website; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System
Register on our website at www.microchip.com to receive the most current information on all of our products.
1.0 GENERAL DESCRIPTION

The PIC16F527 device from Microchip Technology is a low-cost, high-performance, 8-bit, fully-static, Flash-based CMOS microcontroller. It employs a RISC architecture with only 36 single-word/single-cycle instructions. All instructions are single cycle except for program branches, which take two cycles. The PIC16F527 device delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical, resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy-to-use and easy to remember instruction set reduces development time significantly.

The PIC16F527 product is equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external Reset circuitry. There are several oscillator configurations to choose from, including INTRC Internal Oscillator mode and the power-saving LP (Low-Power) Oscillator mode. Power-Saving Sleep mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16F527 device is available in the cost-effective Flash programmable version, which is suitable for production in any volume. The customer can take full advantage of Microchip’s price leadership in Flash programmable microcontrollers, while benefiting from the Flash programmable flexibility.

The PIC16F527 product is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a ‘C’ compiler, a low-cost development programmer and a full-featured programmer. All the tools are supported on IBM® PC and compatible machines.

<table>
<thead>
<tr>
<th>TABLE 1-1: FEATURES AND MEMORY OF PIC16F527</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Memory</td>
</tr>
<tr>
<td>Maximum Frequency of Operation (MHz)</td>
</tr>
<tr>
<td>Flash Program Memory</td>
</tr>
<tr>
<td>Peripherals</td>
</tr>
<tr>
<td>SRAM Data Memory (bytes)</td>
</tr>
<tr>
<td>Flash Data Memory (bytes)</td>
</tr>
<tr>
<td>Timer Module(s)</td>
</tr>
<tr>
<td>Features</td>
</tr>
<tr>
<td>Wake-up from Sleep on Pin Change</td>
</tr>
<tr>
<td>I/O Pins</td>
</tr>
<tr>
<td>Input Pins</td>
</tr>
<tr>
<td>Internal Pull-ups</td>
</tr>
<tr>
<td>In-Circuit Serial Programming™</td>
</tr>
<tr>
<td>Number of Instructions</td>
</tr>
<tr>
<td>Packages</td>
</tr>
<tr>
<td>Interrupts</td>
</tr>
</tbody>
</table>

1.1 Applications

The PIC16F527 device fits in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The Flash technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make these microcontrollers perfect for applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F527 device very versatile, even in areas where no microcontroller use has been considered before (e.g., timer functions, logic and PLDs in larger systems and coprocessor applications).
2.0 PIC16F527 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16F527 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn Programming℠ (SQTP℠) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16F527 device can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16F527 device uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architectures where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide, making it possible to have all single-word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz, 1 μs @ 4 MHz) except for program branches.

Table 3-1 below lists memory supported by the PIC16F527 device.

TABLE 3-1: PIC16F527 MEMORY

<table>
<thead>
<tr>
<th>Device</th>
<th>Program Memory</th>
<th>Data Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flash (words)</td>
<td>SRAM (bytes)</td>
</tr>
<tr>
<td>PIC16F527</td>
<td>1024</td>
<td>68</td>
</tr>
</tbody>
</table>

The PIC16F527 device can directly or indirectly address its register files and data memory. All Special Function Registers (SFR), including the PC, are mapped in the data memory. The PIC16F527 device has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any Addressing mode. This symmetrical nature and lack of “special optimal situations” make programming with the PIC16F527 device simple, yet efficient. In addition, the learning curve is reduced significantly.

The PIC16F527 device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is eight bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two’s complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC) and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-2, with the corresponding device pins described in Table 3-2.
TABLE 3-2: PIC16F527 PINOUT DESCRIPTION

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Input Type</th>
<th>Output Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA0/AN0/C1IN+/ICSPDAT</td>
<td>RA0</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O pin. It can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.</td>
</tr>
<tr>
<td>ICSPDAT</td>
<td>ST</td>
<td>CMOS</td>
<td>—</td>
<td>ICSP™ mode Schmitt Trigger.</td>
</tr>
<tr>
<td>C1IN+</td>
<td>AN</td>
<td>—</td>
<td>Comparator 1 input.</td>
<td></td>
</tr>
<tr>
<td>AN0</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
<td></td>
</tr>
<tr>
<td>RA1/AN1/C1IN-/CVREF/ICSPCLK</td>
<td>RA1</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O pin. It can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.</td>
</tr>
<tr>
<td>ICSPCLK</td>
<td>ST</td>
<td>—</td>
<td>Comparator 1 input.</td>
<td></td>
</tr>
<tr>
<td>C1IN-</td>
<td>AN</td>
<td>—</td>
<td>Comparator 1 input.</td>
<td></td>
</tr>
<tr>
<td>CVREF</td>
<td>—</td>
<td>AN</td>
<td>Programmable Voltage Reference output.</td>
<td></td>
</tr>
<tr>
<td>AN1</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
<td></td>
</tr>
<tr>
<td>RA2/AN2/C1OUT/T0CKI</td>
<td>RA2</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>C1OUT</td>
<td>—</td>
<td>CMOS</td>
<td>Comparator 1 output.</td>
<td></td>
</tr>
<tr>
<td>AN2</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
<td></td>
</tr>
<tr>
<td>T0CKI</td>
<td>ST</td>
<td>—</td>
<td>Timer0 Schmitt Trigger input pin.</td>
<td></td>
</tr>
<tr>
<td>RA3/MCLR/VPP</td>
<td>RA3</td>
<td>TTL</td>
<td>—</td>
<td>Standard TTL input with weak pull-up.</td>
</tr>
<tr>
<td>MCLR</td>
<td>ST</td>
<td>—</td>
<td>Master Clear (Reset). When configured as MCLR, this pin is an active-low Reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation or the device will enter Programming mode. Weak pull-up is always on if configured as MCLR.</td>
<td></td>
</tr>
<tr>
<td>VPP</td>
<td>HV</td>
<td>—</td>
<td>Test mode high-voltage pin.</td>
<td></td>
</tr>
<tr>
<td>RA4/AN3/OSC2/CLKOUT</td>
<td>RA4</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O pin. It can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.</td>
</tr>
<tr>
<td>OSC2</td>
<td>—</td>
<td>XTAL</td>
<td>Oscillator crystal output. Connections to crystal or resonator in Crystal Oscillator mode (XT, HS and LP modes only, PORTB in other modes).</td>
<td></td>
</tr>
<tr>
<td>CLKOUT</td>
<td>—</td>
<td>CMOS</td>
<td>EXTRC/INTRC CLKOUT pin (Fosc/4).</td>
<td></td>
</tr>
<tr>
<td>AN3</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
<td></td>
</tr>
<tr>
<td>RA5/OSC1/CLKIN</td>
<td>RA5</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>OSC1</td>
<td>XTAL</td>
<td>—</td>
<td>XTAL oscillator input pin.</td>
<td></td>
</tr>
<tr>
<td>CLKIN</td>
<td>ST</td>
<td>—</td>
<td>EXTRC Schmitt Trigger input.</td>
<td></td>
</tr>
<tr>
<td>RB4/OP2-</td>
<td>RB4</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>OP2-</td>
<td>AN</td>
<td>—</td>
<td>Op amp 2 inverting input.</td>
<td></td>
</tr>
<tr>
<td>RB5/OP2+</td>
<td>RB5</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>OP2+</td>
<td>AN</td>
<td>—</td>
<td>Op amp 2 non-inverting input.</td>
<td></td>
</tr>
<tr>
<td>RB6</td>
<td>RB6</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>RB7</td>
<td>RB7</td>
<td>TTL</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>RC0/AN4/C2IN+</td>
<td>RC0</td>
<td>ST</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>AN4</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
<td></td>
</tr>
<tr>
<td>C2IN+</td>
<td>AN</td>
<td>—</td>
<td>Comparator 2 input.</td>
<td></td>
</tr>
<tr>
<td>RC1/AN5/C2IN-</td>
<td>RC1</td>
<td>ST</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>AN5</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
<td></td>
</tr>
<tr>
<td>C2IN-</td>
<td>AN</td>
<td>—</td>
<td>Comparator 2 input.</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
I = Input, O = Output, I/O = Input/Output, P = Power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input, HV = High Voltage, AN = Analog Voltage
PIC16F527 PINOUT DESCRIPTION (CONTINUED)

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Input Type</th>
<th>Output Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AN6</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
</tr>
<tr>
<td></td>
<td>OP2</td>
<td>—</td>
<td>AN</td>
<td>Op amp 2 output.</td>
</tr>
<tr>
<td>RC3/AN7/OP1</td>
<td>RC3</td>
<td>ST</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td></td>
<td>AN7</td>
<td>AN</td>
<td>—</td>
<td>ADC channel input.</td>
</tr>
<tr>
<td></td>
<td>OP1</td>
<td>—</td>
<td>AN</td>
<td>Op amp 1 output.</td>
</tr>
<tr>
<td>RC4/C2OUT</td>
<td>RC4</td>
<td>ST</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td></td>
<td>C2OUT</td>
<td>—</td>
<td>CMOS</td>
<td>Comparator 2 output.</td>
</tr>
<tr>
<td>RC5</td>
<td>RC5</td>
<td>ST</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td>RC6/OP1-</td>
<td>RC6</td>
<td>ST</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td></td>
<td>OP1-</td>
<td>AN</td>
<td>—</td>
<td>Op amp 1 inverting input.</td>
</tr>
<tr>
<td>RC7/OP1+</td>
<td>RC7</td>
<td>ST</td>
<td>CMOS</td>
<td>Bidirectional I/O port.</td>
</tr>
<tr>
<td></td>
<td>OP1+</td>
<td>AN</td>
<td>—</td>
<td>Op amp 1 non-inverting input.</td>
</tr>
<tr>
<td>Vdd</td>
<td>Vdd</td>
<td>—</td>
<td>P</td>
<td>Positive supply for logic and I/O pins.</td>
</tr>
<tr>
<td>Vss</td>
<td>Vss</td>
<td>—</td>
<td>P</td>
<td>Ground reference for logic and I/O pins.</td>
</tr>
</tbody>
</table>

Legend:
I = Input, O = Output, I/O = Input/Output, P = Power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input, HV = High Voltage, AN = Analog Voltage
3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the PC is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the PC to change (e.g., GOTO or an interrupt), then two cycles are required to complete the instruction (see Example 3-1).

A fetch cycle begins with the PC incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

![Figure 3-2: Clock/Instruction Cycle](image)

![Example 3-1: Instruction Pipeline Flow](image)

All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is “flushed” from the pipeline, while the new instruction is being fetched and then executed.
4.0 MEMORY ORGANIZATION

The PIC16F527 memories are organized into program memory and data memory (SRAM). The self-writable portion of the program memory called self-writable Flash data memory is located at addresses 400h-43Fh. All program mode commands that work on the normal Flash memory, work on the Flash data memory. This includes bulk erase, row/column/cycling toggles, Load and Read data commands (Refer to Section 5.0 “Self-Writable Flash Data Memory Control” for more details). For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one STATUS register bit. For the PIC16F527, with data memory register files of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).

4.1 Program Memory Organization for PIC16F527

The PIC16F527 device has an 11-bit Program Counter (PC) capable of addressing a 2K x 12 program memory space. Program memory is partitioned into user memory, data memory and configuration memory spaces.

The user memory space is the on-chip user program memory. As shown in Figure 4-1, it extends from 0x000 to 0x0FF and partitions into pages, including an Interrupt vector at address 0x004 and a Reset vector at address 0x3FF.

The data memory space is the self-writable Flash data memory block and is located at addresses PC = 400h-43Fh. All program mode commands that work on the normal Flash memory, work on the Flash data memory block. This includes bulk erase, Load and Read data commands.

The configuration memory space extends from 0x440 to 0x7FF. Locations from 0x448 through 0x44F are reserved. The user ID locations extend from 0x444 through 0x447. The Backup OSCCAL locations extend from 0x448 through 0x7FF. The Configuration Word is physically located at 0x7FF.

Refer to “PIC16F527 Memory Programming Specification” (DS41640) for more details.
4.2 Data Memory (SRAM and SFRs)

Data memory is composed of registers or bytes of SRAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers (SFR) and General Purpose Registers (GPR).

The Special Function Registers are registers used by the CPU and peripheral functions for controlling desired operations of the PIC16F527. See Section 4.3 “STATUS Register” for details.

4.2.1 GENERAL PURPOSE REGISTER FILE

The General Purpose Register file is accessed directly or indirectly. See Section 4.8 “Direct and Indirect Addressing”.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (see Section 4.3 “STATUS Register”).

The Special Function Registers can be classified into two sets. The Special Function Registers associated with the “core” functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

FIGURE 4-2: PIC16F527 REGISTER FILE MAP

File Address	00h	01h	02h	03h	04h	05h	06h	07h	08h	09h	0Ah	0Bh	0Ch	0Dh	0Eh	0Fh	10h	11h	12h	13h	14h	15h	16h	17h	18h	19h	1AH	1BH	1CH	1DH	1EH	1FH		
BSR<1:0>																																		
INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)	INDF(1)															
TMR0	EECON	TMR0	IW																															
PCL	PCL	PCL	PCL																															
STATUS	STATUS	STATUS	STATUS																															
FSR	FSR	FSR	FSR																															
OSCCAL	EEDATA	OSCCAL	INTCON1																															
PORTA	EADDR	PORTA	ISTATUS																															
PORTB	CM1CON0	PORTB	IFSR																															
PORTC	CM2CON0	PORTC	IBSPR																															
ADCON0	VRCON	ADCON0	OPACON																															
ADRES	ANSEL	ADRES	ANSEL																															
INTCON0	INTC0	INTC0	INTC0																															

General Purpose Registers: Addresses map back to addresses in Bank 0.

Note 1: Not a physical register. See Section 4.8 “Direct and Indirect Addressing”.
Table 4-1: Special Function Register Summary

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR/BOR</th>
<th>Value on all other Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 0</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A W(2)</td>
<td>Working Register (W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A TRIS</td>
<td>I/O Control Registers (TRISA, TRISB, TRISC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A OPTION</td>
<td>Contains control bits to configure Timer0 and Timer0/WDT prescaler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A BSR(R)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00h INDF</td>
<td>Uses contents of FSR to address data memory (not a physical register)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01h TMRO</td>
<td>Timer0 module Register</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02h PCL(T)</td>
<td>Low-order eight bits of PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03h STATUS(R)</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04h FSR(R)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05h OSCCAL</td>
<td>CAL6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06h PORTA</td>
<td>RA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07h PORTB</td>
<td>RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08h PORTC</td>
<td>RC7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09h ADCNO0</td>
<td>ADCS0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0Ah ADRES</td>
<td>ADC Conversion Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0Bh INTCON0</td>
<td>ADIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 1</td>
<td>N/A W(2)</td>
<td>Working Register (W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A TRIS</td>
<td>I/O Control Registers (TRISA, TRISB, TRISC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A OPTION</td>
<td>Contains control bits to configure Timer0 and Timer0/WDT prescaler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A BSR(R)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20h INDF</td>
<td>Uses contents of FSR to address data memory (not a physical register)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21h EECON</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22h PCL(T)</td>
<td>Low-order eight bits of PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23h STATUS(R)</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24h FSR(R)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25h EEDATA</td>
<td>Self Read/Write Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26h EEADR</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27h CM1CON0</td>
<td>C1OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28h CM2CON0</td>
<td>C2OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29h VRCON</td>
<td>VREN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2Ah ANSEL</td>
<td>ANS7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2Bh INTCON0</td>
<td>ADIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- x = unknown, u = unchanged, – = unimplemented, read as ‘0’ (if applicable), q = value depends on condition.
- Shaded cells = unimplemented or unused

Note:
1. The upper byte of the Program Counter is not directly accessible. See Section 4.6 “Program Counter” for an explanation of how to access these bits.
2. Registers are implemented as two physical registers. When executing from within an ISR, a secondary register is used at the same logical location. Both registers are persistent. See Section 8.11 “Interrupts”.
3. These registers show the contents of the registers in the other context: ISR or main line code. See Section 8.11 “Interrupts.”
<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR/BOR</th>
<th>Value on all other Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 2</td>
<td>V<sup>(2)</sup></td>
<td>Working Register (W)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>TRIS</td>
<td>I/O Control Registers (TRISA, TRISB, TRISC)</td>
<td>1</td>
</tr>
<tr>
<td>OPTION</td>
<td>Contains control bits to configure Timer0 and Timer0/WDT prescaler</td>
<td>1</td>
</tr>
<tr>
<td>BSR<sup>(2)</sup></td>
<td>— — — — — —</td>
<td>BSR1</td>
<td>BSR0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>INDF</td>
<td>Uses contents of FSR to address data memory (not a physical register)</td>
<td>x</td>
</tr>
<tr>
<td>TRIS</td>
<td>I/O Control Registers (TRISA, TRISB, TRISC)</td>
<td>1</td>
</tr>
<tr>
<td>OPTION</td>
<td>Contains control bits to configure Timer0 and Timer0/WDT prescaler</td>
<td>1</td>
</tr>
<tr>
<td>BSR<sup>(2)</sup></td>
<td>— — — — — —</td>
<td>BSR1</td>
<td>BSR0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>INDF</td>
<td>Uses contents of FSR to address data memory (not a physical register)</td>
<td>x</td>
</tr>
<tr>
<td>PCL<sup>(2)</sup></td>
<td>Low-order eight bits of PC</td>
<td>1</td>
</tr>
<tr>
<td>STATUS<sup>(2)</sup></td>
<td>Reserved</td>
<td>Reserved</td>
<td>PA0</td>
<td>TO</td>
<td>PD</td>
<td>Z</td>
<td>DC</td>
<td>C</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FSR<sup>(2)</sup></td>
<td>Indirect data memory address pointer</td>
<td>x</td>
</tr>
<tr>
<td>OSCCAL</td>
<td>CAL6</td>
<td>CAL5</td>
<td>CAL4</td>
<td>CAL3</td>
<td>CAL2</td>
<td>CAL1</td>
<td>CAL0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PORTA</td>
<td>RA5</td>
<td>RA4</td>
<td>RA3</td>
<td>RA2</td>
<td>RA1</td>
<td>RA0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PORTB</td>
<td>RB5</td>
<td>RB4</td>
<td>RB3</td>
<td>RB2</td>
<td>RB1</td>
<td>RB0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PORTC</td>
<td>RC7</td>
<td>RC6</td>
<td>RC5</td>
<td>RC4</td>
<td>RC3</td>
<td>RC2</td>
<td>RC1</td>
<td>RC0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ADCON0</td>
<td>ADCS1</td>
<td>ADCS0</td>
<td>CHS3</td>
<td>CHS2</td>
<td>CHS1</td>
<td>CHS0</td>
<td>GO/DONE</td>
<td>ADON</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ADRES</td>
<td>ADC Conversion Result</td>
<td>x</td>
</tr>
<tr>
<td>INTCON0</td>
<td>ADIF</td>
<td>CWIF</td>
<td>TOIF</td>
<td>RAIF</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>INTCON1</td>
<td>ADIE</td>
<td>CWIE</td>
<td>TOIE</td>
<td>RAIE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ISTATUS<sup>(3)</sup></td>
<td>Reserved</td>
<td>Reserved</td>
<td>PA0</td>
<td>TO</td>
<td>PD</td>
<td>Z</td>
<td>DC</td>
<td>C</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IFSR<sup>(3)</sup></td>
<td>Indirect data memory address pointer</td>
<td>x</td>
</tr>
<tr>
<td>IBSR<sup>(3)</sup></td>
<td>— — — — — —</td>
<td>BSR1</td>
<td>BSR0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>OPACON</td>
<td>— — — — — —</td>
<td>OPACON</td>
<td>OPACON</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>INTCN0</td>
<td>ADIF</td>
<td>CWIF</td>
<td>TOIF</td>
<td>RAIF</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- x = unknown, u = unchanged, = = unimplemented, read as '0' (if applicable), q = value depends on condition.
- Shaded cells = unimplemented or unused

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 “Program Counter” for an explanation of how to access these bits.

Note 2: Registers are implemented as two physical registers. When executing from within an ISR, a secondary register is used at the same logical location. Both registers are persistent. See Section 8.11 “Interrupts”.

Note 3: These registers show the contents of the registers in the other context: ISR or main line code. See Section 8.11 “Interrupts”.
4.3 STATUS Register

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uuuu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF and MOVWF instructions be used to alter the STATUS register. These instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see Section 13.0 “Instruction Set Summary”.

REGISTER 4-1: STATUS: STATUS REGISTER

<table>
<thead>
<tr>
<th></th>
<th>R-0</th>
<th>R-0</th>
<th>R/W-0</th>
<th>R-1</th>
<th>R-1</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reserved</td>
<td>Reserved</td>
<td>PA0</td>
<td>TO</td>
<td>PD</td>
<td>Z</td>
<td>DC</td>
<td>C</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- bit 7-6: Reserved: Read as ‘0’
- bit 5: PA0: Program Page Preselect bit
 - 1 = Page 1 (200h-3FFh)
 - 0 = Page 0 (000h-1FFh)
- bit 4: TO: Time-Out bit
 - 1 = After power-up, CLRWDT instruction, or SLEEP instruction
 - 0 = A WDT time-out occurred
- bit 3: PD: Power-Down bit
 - 1 = After power-up or by the CLRWDT instruction
 - 0 = By execution of the SLEEP instruction
- bit 2: Z: Zero bit
 - 1 = The result of an arithmetic or logic operation is zero
 - 0 = The result of an arithmetic or logic operation is not zero
- bit 1: DC: Digit carry/borrow bit (for ADDWF and SUBWF instructions)
 - ADDWF:
 - 1 = A carry from the 4th low-order bit of the result occurred
 - 0 = A carry from the 4th low-order bit of the result did not occur
 - SUBWF:
 - 1 = A borrow from the 4th low-order bit of the result did not occur
 - 0 = A borrow from the 4th low-order bit of the result occurred
- bit 0: C: Carry/borrow bit (for ADDWF, SUBWF and RRF, RLF instructions)
 - ADDWF: SUBWF: RRF or RLF:
 - 1 = A carry occurred
 - 0 = A borrow did not occur; Load bit with LSb or MSb, respectively
 - 0 = A carry did not occur
4.4 OPTION Register

The OPTION register is a 8-bit wide, write-only register, which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A Reset sets the OPTION <7:0> bits.

REGISTER 4-2: OPTION: OPTION REGISTER

<table>
<thead>
<tr>
<th>W-1</th>
<th>W-1</th>
<th>W-1</th>
<th>W-1</th>
<th>W-1</th>
<th>W-1</th>
<th>W-1</th>
<th>W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAWU(2)</td>
<td>RAPU</td>
<td>T0CS(1)</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS2</td>
<td>PS1</td>
<td>PS0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7
- **RAWU**: Enable PORTA Interrupt Flag on Pin Change bit(2)
 - 1 = Disabled
 - 0 = Enabled

bit 6
- **RAPU**: Enable PORTA Weak Pull-Ups bit
 - 1 = Disabled
 - 0 = Enabled

bit 5
- **T0CS**: Timer0 Clock Source Select bit(1)
 - 1 = Transition on T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)

bit 4
- **T0SE**: Timer0 Source Edge Select bit
 - 1 = Increment on high-to-low transition on T0CKI pin
 - 0 = Increment on low-to-high transition on T0CKI pin

bit 3
- **PSA**: Prescaler Assignment bit
 - 1 = Prescaler assigned to the WDT
 - 0 = Prescaler assigned to Timer0

bit 2-0
- **PS<2:0>**: Prescaler Rate Select bits

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Timer0 Rate</th>
<th>WDT Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1 : 2</td>
<td>1 : 1</td>
</tr>
<tr>
<td>001</td>
<td>1 : 4</td>
<td>1 : 2</td>
</tr>
<tr>
<td>010</td>
<td>1 : 8</td>
<td>1 : 4</td>
</tr>
<tr>
<td>011</td>
<td>1 : 16</td>
<td>1 : 8</td>
</tr>
<tr>
<td>100</td>
<td>1 : 32</td>
<td>1 : 16</td>
</tr>
<tr>
<td>101</td>
<td>1 : 64</td>
<td>1 : 32</td>
</tr>
<tr>
<td>110</td>
<td>1 : 128</td>
<td>1 : 64</td>
</tr>
<tr>
<td>111</td>
<td>1 : 256</td>
<td>1 : 128</td>
</tr>
</tbody>
</table>

Note 1: If the T0CS bit is set to ‘1’, it will override the TRIS function on the T0CKI pin.

Note 2: The RAWU bit of the OPTION register must be cleared to enable the RAIF function in the INTCON0 register.
4.5 OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the 8 MHz internal oscillator macro. It contains seven bits of calibration that uses a two's complement scheme for controlling the oscillator speed. See Register 4-3 for details.

REGISTER 4-3: OSCCAL: OSCILLATOR CALIBRATION REGISTER

<table>
<thead>
<tr>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL6</td>
<td>CAL5</td>
<td>CAL4</td>
<td>CAL3</td>
<td>CAL2</td>
<td>CAL1</td>
<td>CAL0</td>
<td>—</td>
</tr>
</tbody>
</table>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-1 CAL<6:0>: Oscillator Calibration bits

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0111111 = Maximum frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0000001</td>
<td></td>
</tr>
<tr>
<td>0000000 = Center frequency</td>
<td></td>
</tr>
<tr>
<td>1111111</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1000000 = Minimum frequency</td>
<td></td>
</tr>
</tbody>
</table>

bit 0 Unimplemented: Read as '0'
4.6 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits <8:0> of the PC are provided by the GOTO instruction word. The Program Counter (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (see Figure 4-3).

For a CALL instruction, or any instruction where the PCL is the destination, bits <7:0> of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (see Figure 4-3).

Instructions where the PCL is the destination, or modify PCL instructions, include MOVWF PCL, ADDWF PCL and BSF PCL,5.

Note: Because bit 8 of the PC is cleared in the CALL instruction or any modify PCL instruction, all subroutine calls or computed jumps are limited to the first 256 locations of any program memory page (512 words long).

4.6.1 EFFECTS OF RESET

The PC is set upon a Reset, which means that the PC addresses the last location in the last page (i.e., the oscillator calibration instruction). After executing MOVWF XX, the PC will roll over to location 00h and begin executing user code.

The STATUS register page preselect bits are cleared upon a Reset, which means that page 0 is pre-selected. Therefore, upon a Reset, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.7 Stack

The PIC16F527 device has a 4-deep, 12-bit wide hardware PUSH/POP stack.

A CALL instruction or an interrupt will PUSH the current PC value, incremented by one, into Stack Level 1. If there was a previous value in the Stack 1 location, it will be pushed into the Stack 2 location. This process will be continued throughout the remaining stack locations populated with values. If more than four sequential CALLs are executed, only the most recent four return addresses are stored.

A RETLW, RETURN or RETFIE instruction will POP the contents of Stack Level 1 into the PC. If there was a previous value in the Stack 2 location, it will be copied into the Stack Level 1 location. This process will be continued throughout the remaining stack locations populated with values. If more than four sequential RETLWs are executed, the stack will be filled with the address previously stored in Stack Level 4. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Note 1: There are no Status bits to indicate Stack Overflows or Stack Underflow conditions.

2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETFIE and RETLW instructions.
4.8 Direct and Indirect Addressing

4.8.1 DIRECT DATA ADDRESSING: BSR REGISTER

Traditional data memory addressing is performed in the Direct Addressing mode. In Direct Addressing, the Bank Select Register bits BSR<1:0>, in the new BSR register, are used to select the data memory bank. The address location within that bank comes directly from the opcode being executed.

BSR<1:0> are the bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3).

A new instruction supports the addition of the BSR register, called the MOVLB instruction. See Section 13.0 "Instruction Set Summary" for more information.

4.8.2 INDIRECT DATA ADDRESSING: INDF AND FSR REGISTERS

The INDF Register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a pointer). This is indirect addressing.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF Register indirectly results in a no-operation (although Status bits may be affected).

The FSR is an 8-bit wide register. It is used in conjunction with the INDF Register to indirectly address the data memory area.

The FSR<6:0> bits are used to select data memory addresses 00h to 1Fh.

FSR<7> is unimplemented and read as ‘0’.

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

```
MOVLW 0x10 ;initialize pointer
MOVWF FSR ;to RAM
NEXT    CLR FSR ;clear INDF
         INCF FSR,F ;register
         BTFSC FSR,4 ;all done?
         GOTO NEXT ;NO, clear next
          : ;YES, continue
          :
```
FIGURE 4-4: DIRECT/INDIRECT ADDRESSING

Note 1: For register map detail see Figure 4-2.
5.0 SELF-WRITABLE FLASH DATA MEMORY CONTROL

Flash Data memory consists of 64 bytes of self-writable memory and supports a self-write capability that can write a single byte of memory at one time. Data to be written to the self-writable data memory is first written into a write latch before writing the data to Flash memory.

Although each Flash data memory location is 12 bits wide, access is limited to the lower eight bits. The upper four bits will automatically default to ‘1’ in any self-write procedure. The lower eight bits are fully readable and writable during normal operation and throughout the full VDD range.

The self-writable Flash data memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers, EECON, EEDATA and EEADR.

5.1 Reading Flash Data Memory

To read a Flash data memory location the user must:
• Write the EEADR register
• Set the RD bit of the EECON register

The value written to the EEADR register determines which Flash data memory location is read. Setting the RD bit of the EECON register initiates the read. Data from the Flash data memory read is available in the EEDATA register immediately. The EEDATA register will hold this value until another read is initiated or it is modified by a write operation. Program execution is suspended while the read cycle is in progress. Execution will continue with the instruction following the one that sets the WR bit. See Example 5-1 for sample code.

EXAMPLE 5-1: READING FROM FLASH DATA MEMORY

```
MOVLB 0x01 ; Switch to Bank 1
MOVF DATA_EE_ADDR,W;
MOVF EEADR ; Data Memory
    ; Address to read
BSF EECON, RD ; EE Read
MOVF EEDATA, W ; W = EEDATA
```

Note: Only a BSF command will work to enable the Flash data memory read documented in Example 5-1. No other sequence of commands will work, no exceptions.

Note 1: To prevent accidental corruption of the Flash data memory, an unlock sequence is required to initiate a write or erase cycle. This sequence requires that the bit set instructions used to configure the EECON register happen exactly as shown in Example 5-2 and Example 5-3, depending on the operation requested.

2: In order to prevent any disruptions of self-writes or row erases performed on the self-writable Flash data memory, interrupts should be disabled prior to executing those routines.

5.1.1 ERASING FLASH DATA MEMORY

A row must be manually erased before writing new data. The following sequence must be performed for a single row erase.

1. Load EEADR with an address in the row to be erased.
2. Set the FREE bit to enable the erase.
3. Set the WREN bit to enable write access to the array.
4. Disable interrupts.
5. Set the WR bit to initiate the erase cycle.

If the WREN bit is not set in the instruction cycle after the FREE bit is set, the FREE bit will be cleared in hardware.

If the WR bit is not set in the instruction cycle after the WREN bit is set, the WREN bit will be cleared in hardware.

Sample code that follows this procedure is included in Example 5-2.

Program execution is suspended while the erase cycle is in progress. Execution will continue with the instruction following the one that sets the WR bit.

EXAMPLE 5-2: ERASING A FLASH DATA MEMORY ROW

```
MOVLB 0x01 ; Switch to Bank 1
MOVLW EE_ADR_ERASE ; LOAD ADDRESS OF ROW TO ERASE
MOVWF EEADR ;
BSF EECON,FREE ; SELECT ERASE
BSF EECON,WREN ; ENABLE WRITES
BSF EECON,WR ; INITITATE ERASE
```
5.1.2 WRITING TO FLASH DATA MEMORY

Once a cell is erased, new data can be written. Program execution is suspended during the write cycle. The self-write operation writes one byte of data at one time. The data must first be loaded into a write latch. Once the write latch is loaded, the data will be written to Flash data memory.

The self-write sequence is shown below.
1. Load EEADR with the address.
2. Load EEDATA with the data to be written.
3. Set the WREN bit to enable write access to the array.
4. Disable interrupts.
5. Set the WR bit to load the data into the write latch.

Once the WR bit is set and the processor recognizes that the write latch is loaded, it will immediately perform the Flash data memory write of that byte.

The specific sequence of setting the WREN bit and setting the WR bit must be executed to properly initiate loading of the write latches and the write to Flash data memory.

If the WR bit is not set in the instruction cycle after the WREN bit is set, the WREN bit will be cleared in hardware.

Sample code that follows this procedure is included in Example 5-3.

Example 5-3: Writing to Flash Data Memory

```assembly
MOVLW EE_ADR_WRITE ; LOAD ADDRESS
MOVWF EEADR ; INTO EEADR
MOVLW EE_DATA_WRITE ; LOAD DATA
MOVWF EEDATA ; INTO EEDATA

BSF EECON, WREN ; ENABLE WRITES
BCF INTCON, GIE ; DISABLE INTERRUPTS
BSF EECON, WR ; LOAD WRITE LATCH ; AND PERFORM DATA ; MEMORY WRITE
```

Note 1: Only a series of BSF commands will work to enable the memory write sequence documented in Example 5-3. No other sequence of commands will work, no exceptions.

Note 2: Bits <5:3> of the EEADR register indicate which row is to be erased.

2. Bits <5:3> of the EEADR register indicate which row is to be erased.

Example 5-4: Write/Verify of Flash Data Memory

```assembly
MOVF EEDATA, W ; EEDATA has not changed ; from previous write
BSF EECON, RD ; Read the value written
XORWF EEDATA, W ;
BTFSS STATUS, Z ; Is data the same
GOTO WRITE_ERR ; No, handle error ; Yes, continue
```

Note 1: The FREE bit may be set by any command normally used by the core. However, the WREN and WR bits can only be set using a series of BSF commands, as documented in Example 5-1. No other sequence of commands will work, no exceptions.

2. Bits <5:3> of the EEADR register indicate which row is to be erased.

5.2 Write/Verify

Depending on the application, good programming practice may dictate that data written to the Flash data memory be verified. Example 5-4 is an example of a write/verify.
5.3 Register Definitions — Memory Control

REGISTER 5-1: EEDATA: FLASH DATA REGISTER

<table>
<thead>
<tr>
<th></th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEDATA7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEDATA6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEDATA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEDATA4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEDATA3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEDATA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEDATA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEDATA0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-0 **EEDATA<7:0>:** Eight bits of data to be read from/written to data Flash

REGISTER 5-2: EEADR: FLASH ADDRESS REGISTER

<table>
<thead>
<tr>
<th></th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EEADR5</td>
<td>EEADR4</td>
<td>EEADR3</td>
<td>EEADR2</td>
<td>EEADR1</td>
<td>EEADR0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'.

bit 5-0 **EEADR<5:0>:** Six bits of data to be read from/written to data Flash
REGISTER 5-3: EECON: FLASH CONTROL REGISTER

<table>
<thead>
<tr>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>FREE</td>
<td>WRERR</td>
<td>WREN</td>
<td>WR</td>
<td>RD</td>
</tr>
</tbody>
</table>

| bit 7-5 | Unimplemented: Read as ‘0’.
| bit 4 | FREE: Flash Data Memory Row Erase Enable bit
| | 1 = Program memory row being pointed to by EEADR will be erased on the next write cycle. No write will be performed. This bit is cleared at the completion of the erase operation.
| | 0 = Perform write only
| bit 3 | WRERR: Write Error Flag bit
| | 1 = A write operation terminated prematurely (by device Reset)
| | 0 = Write operation completed successfully
| bit 2 | WREN: Write Enable bit
| | 1 = Allows write cycle to Flash data memory
| | 0 = Inhibits write cycle to Flash data memory
| bit 1 | WR: Write Control bit
| | 1 = Initiate a erase or write cycle
| | 0 = Write/Erase cycle is complete
| bit 0 | RD: Read Control bit
| | 1 = Initiate a read of Flash data memory
| | 0 = Do not read Flash data memory

5.4 Code Protection

Code protection does not prevent the CPU from performing read or write operations on the Flash data memory. Refer to the code protection chapter for more information.
6.0 I/O PORT
As with any other register, the I/O register(s) can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's Input/Output modes. On Reset, all I/O ports are defined as input (inputs are at high-impedance) since the I/O control registers are all set.

6.1 PORTA
PORTA is a 6-bit I/O register. Only the low-order six bits are used (RA<5:0>). Bits 7 and 6 are unimplemented and read as '0's. Please note that RA3 is an input-only pin. The Configuration Word can set several I/Os to alternate functions. When acting as alternate functions, the pins will read as '0' during a port read. Pins RA0, RA1, RA3 and RA4 can be configured with weak pull-ups and also for wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If RA3/MCLR is configured as MCLR, weak pull-up is always on and wake-up on change for this pin is not enabled.

6.2 PORTB
PORTB is a 4-bit I/O register. Only the high-order four bits are used (RB<7:4>). Bits 0 through 3 are unimplemented and read as '0's.

6.3 PORTC
PORTC is an 8-bit I/O register.

6.4 TRIS Register
The Output Driver Control register is loaded with the contents of the W register by executing the TRIS instruction. A '1' from a TRIS register bit puts the corresponding output driver in a High-Impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are RA3, which is input-only and the T0CKI pin, which may be controlled by the OPTION register (see Register 4-2).

TRIS registers are “write-only”. Active bits in these registers are set (output drivers disabled) upon Reset.
6.5 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All port pins, except the MCLR pin which is input-only, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., `MOVF PORTB, W`). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except MCLR) can be programmed individually as input or output.

FIGURE 6-1: BLOCK DIAGRAM OF I/O PIN (Example shown of RA2 with Weak Pull-up and Wake-up on change)

- **Note 1:** I/O pins have protection diodes to VDD and VSS.
- **2:** Pin enabled as analog for ADC or comparator.
6.6 Register Definitions — PORT Control

TABLE 6-1: PORTA: PORTA REGISTER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
<td>RA5</td>
<td>RA4</td>
<td>RA3</td>
<td>RA2</td>
<td>RA1</td>
<td>RA0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7-6: Unimplemented: Read as ‘0’
bit 5-0: RA<5:0>: PORTA I/O Pin bits
1 = Port pin is >VIH min.
0 = Port pin is <VIL max.

TABLE 6-2: PORTA PINS ORDER OF PRECEDENCE

<table>
<thead>
<tr>
<th>Priority</th>
<th>RA5</th>
<th>RA4</th>
<th>RA3/MCLR</th>
<th>AN2</th>
<th>CVREF</th>
<th>AN0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OSC1</td>
<td>OSC2</td>
<td>RA3/MCLR</td>
<td>AN2</td>
<td>CVREF</td>
<td>AN0</td>
</tr>
<tr>
<td>2</td>
<td>C1IN</td>
<td>C1OUT</td>
<td>—</td>
<td>C1OUT</td>
<td>C1IN+</td>
<td>C1IN-</td>
</tr>
<tr>
<td>3</td>
<td>TRISA5</td>
<td>AN3</td>
<td>—</td>
<td>T0CKI</td>
<td>C1IN-</td>
<td>TRISA0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>TRISA4</td>
<td>—</td>
<td>TRISA2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

TABLE 6-3: WEAK PULL-UP ENABLED PINS

<table>
<thead>
<tr>
<th>Device</th>
<th>RA0 Weak Pull-up</th>
<th>RA1 Weak Pull-up</th>
<th>RA3 Weak Pull-up</th>
<th>RA4 Weak Pull-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F527</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note 1: When MCLRE = 1, the weak pull-up on MCLR is always enabled.

REGISTER 6-1: PORTB: PORTB REGISTER

<table>
<thead>
<tr>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB7</td>
<td>RB6</td>
<td>RB5</td>
<td>RB4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7-4: RB<7:4>: PORTB I/O Pin bits
1 = Port pin is >VIH min.
0 = Port pin is <VIL max.

bit 3-0: Unimplemented: Read as ‘0’

TABLE 6-4: PORTB PINS ORDER OF PRECEDENCE

<table>
<thead>
<tr>
<th>Priority</th>
<th>RB7</th>
<th>RB6</th>
<th>RB5</th>
<th>RB4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRISB7</td>
<td>TRISB6</td>
<td>OP2+</td>
<td>OP2-</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>TRISB5</td>
<td>TRISB4</td>
</tr>
</tbody>
</table>
REGISTER 6-2: PORTC: PORTC REGISTER

<table>
<thead>
<tr>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC7</td>
<td>RC6</td>
<td>RC5</td>
<td>RC4</td>
<td>RC3</td>
<td>RC2</td>
<td>RC1</td>
<td>RC0</td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- n = Value at POR
 - '1' = Bit is set
 - '0' = Bit is cleared
- x = Bit is unknown

bit 7-0 RC<7:0>: PORTC I/O Pin bits
 1 = Port pin is >Vih min.
 0 = Port pin is <Vil max.

TABLE 6-5: PORTC PINS ORDER OF PRECEDENCE

<table>
<thead>
<tr>
<th>Priority</th>
<th>RC7</th>
<th>RC6</th>
<th>RC5</th>
<th>RC4</th>
<th>RC3</th>
<th>RC2</th>
<th>RC1</th>
<th>RC0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OP1+</td>
<td>OP1-</td>
<td>TRISC5</td>
<td>C2OUT</td>
<td>OP1</td>
<td>OP2</td>
<td>C2IN-</td>
<td>C2IN+</td>
</tr>
<tr>
<td>2</td>
<td>TRISC7</td>
<td>TRISC6</td>
<td>---</td>
<td>TRISC4</td>
<td>AN7</td>
<td>AN6</td>
<td>AN5</td>
<td>AN4</td>
</tr>
<tr>
<td>3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>TRISC3</td>
<td>TRISC2</td>
<td>TRISC1</td>
</tr>
</tbody>
</table>

REGISTER 6-3: ANSEL REGISTER

<table>
<thead>
<tr>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS7</td>
<td>ANS6</td>
<td>ANS5</td>
<td>ANS4</td>
<td>ANS3</td>
<td>ANS2</td>
<td>ANS1</td>
<td>ANS0</td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- n = Value at POR
 - '1' = Bit is set
 - '0' = Bit is cleared
- x = Bit is unknown

bit 7-0 ANS<7:0>: ADC Analog Input Pin Select(1), (2)
 0 = Analog function on selected ANx pin is disabled
 1 = ANx configured as an analog input

Note 1: When the ANSx bits are set, the channels selected will automatically be forced into Analog mode, regardless of the pin function previously defined, and the digital output drivers and input buffers will also be disabled. Exceptions exist when there is more than one analog function active on the ANx pin. It is the user’s responsibility to ensure that the ADC loading on the other analog functions does not affect their application.

2: The ANS<7:0> bits are active regardless of the condition of ADON.

TABLE 6-6: REGISTERS ASSOCIATED WITH THE I/O PORTS

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-On Reset</th>
<th>Value on MCLR and WDT Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>TRIS(1)</td>
<td>I/O Control Registers (TRISA, TRISB, TRISC)(1)</td>
<td>1111 1111</td>
<td>1111 1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06h</td>
<td>PORTA</td>
<td>—</td>
<td>—</td>
<td>RA5</td>
<td>RA4</td>
<td>RA3</td>
<td>RA2</td>
<td>RA1</td>
<td>RA0</td>
<td>——xxx 1xxx</td>
<td>——uuu 1uuu</td>
</tr>
<tr>
<td>07h</td>
<td>PORTB</td>
<td>RB7</td>
<td>RB6</td>
<td>RB5</td>
<td>RB4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1xxx —— 1111</td>
<td>——uuu ——</td>
</tr>
<tr>
<td>27h</td>
<td>PORTC</td>
<td>RC7</td>
<td>RC6</td>
<td>RC5</td>
<td>RC4</td>
<td>RC3</td>
<td>RC2</td>
<td>RC1</td>
<td>RC0</td>
<td>xxx—xxx 1xxx</td>
<td>xxxx ——</td>
</tr>
</tbody>
</table>

Legend: x = unknown, u = unchanged, — = unimplemented, read as ‘0’, Shaded cells = unimplemented, read as ‘0’

Note 1: TRISA3 is read-only ‘1’, and cannot be set as output.
6.7 I/O Programming Considerations

6.7.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and rewrite the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Example 6-1 shows the effect of two sequential Read-Modify-Write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin (“wired OR”, “wired AND”). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT (e.g., PIC16F527)

<table>
<thead>
<tr>
<th>Initial PORTB Settings</th>
<th>PORTB<5:3> Inputs</th>
<th>PORTB<2:0> Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF PORTB, 5</td>
<td>--01 -ppp--11 pppp</td>
<td></td>
</tr>
<tr>
<td>BCF PORTB, 4</td>
<td>--10 -ppp--11 pppp</td>
<td></td>
</tr>
<tr>
<td>MOVLW 007h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIS PORTB</td>
<td>--10 -ppp--11 pppp</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The user may have expected the pin values to be ‘--00 pppp’. The 2nd BCF caused RB5 to be latched as the pin value (High).

6.7.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 6-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 6-2: SUCCESSIVE I/O OPERATION

This example shows a write to PORTB followed by a read from PORTB.

Data setup time = (0.25 TCY – TPD)
where: TCY = instruction cycle.
TPD = propagation delay

Therefore, at higher clock frequencies, a write followed by a read may be problematic.
7.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select:
 - Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit of the OPTION register. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (see Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

There are two types of Counter mode. The first Counter mode uses the T0CKI pin to increment Timer0. It is selected by setting the T0CS bit of the OPTION register, setting the C1T0CS bit of the CM1CON0 register and setting the CTOUTEN bit of the CM1CON0 register. In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit of the OPTION register determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.1 “Using Timer0 with an External Clock”.

The second Counter mode uses the output of the comparator to increment Timer0. It can be entered in by setting the T0CS bit of the OPTION register, and clearing the C1T0CS bit of the CM1CON0 register (CTOUTEN [CM1CON0<6>] does not affect this mode of operation). This enables an internal connection between the comparator and the Timer0.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit, PSA of the OPTION register. Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 7.2 “Prescaler” details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.

FIGURE 7-1: TIMER0 BLOCK DIAGRAM

[Diagram of Timer0 block diagram with notes]

Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register (see Register 4-2).

Note 2: The prescaler is shared with the Watchdog Timer.

Note 3: The C1T0CS bit is in the CM1CON0 register.
TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Register on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>CM1CON0</td>
<td>C1OUT</td>
<td>C1OUTEN</td>
<td>C1POL</td>
<td>C1T0CS</td>
<td>C1ON</td>
<td>C1NREF</td>
<td>C1PREF</td>
<td>C1WU</td>
<td>62</td>
</tr>
<tr>
<td>CM2CON0</td>
<td>C2OUT</td>
<td>C2OUTEN</td>
<td>C2POL</td>
<td>C2PREF2</td>
<td>C2ON</td>
<td>C2NREF</td>
<td>C2PREF1</td>
<td>C2WU</td>
<td>63</td>
</tr>
<tr>
<td>OPTION</td>
<td>RAWU</td>
<td>RAPU</td>
<td>T0CS</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS2</td>
<td>PS1</td>
<td>PS0</td>
<td>17</td>
</tr>
<tr>
<td>TRIS(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

Legend: Shaded cells are not used by Timer0. _ = unimplemented, x = unknown, u = unchanged.

Note 1: The TRIS of the T0CKI pin is overridden when T0CS = 1.
7.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (see Figure 7-4). Therefore, it is necessary for T0CKI to be high for at least 2 TOSC (and a small RC delay of 2 Tt0H) and low for at least 2 TOSC (and a small RC delay of 2 Tt0H). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4 TOSC (and a small RC delay of 4 Tt0H) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of Tt0H. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-4 shows the delay from the external clock edge to the timer incrementing.

Note 1: Delay from clock input change to Timer0 increment is 3 Tosc to 7 Tosc. (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on Timer0 input = ±4 Tosc max.

2: External clock if no prescaler selected; prescaler output otherwise.

3: The arrows indicate the points in time where sampling occurs.
7.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (see Section 8.7 “Watchdog Timer (WDT)”). For simplicity, this counter is being referred to as “prescaler” throughout this data sheet.

The PSA and PS<2:0> bits of the OPTION register determine prescaler assignment and prescale ratio. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLR TMR0, MOVWF TMR0, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

7.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed “on-the-fly” during program execution). To avoid an unintended device Reset, the following instruction sequence (see Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

Note: The prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT and vice versa.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 → WDT)

```
CLRWDT ;Clear WDT
CLRF TMR0 ;Clear TMR0 & Prescaler
MOVLW b'00xx1111'
CLRWDT ;PS<2:0> are 000 or 001
MOVLW b'00xx1xxx' ;Set Postscaler to
OPTION ;desired WDT rate
CLRWDT ;Clear WDT and
;prescaler
MOVLW b'xxxx0xxx' ;Select Timer0, new
;prescale value and
;clock source
OPTION
```

To change the prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 7-2: CHANGING PRESCALER (WDT → TIMER0)

```
CLRWDT ;Clear WDT and
;prescaler
MOVLW b'xxxx0xxx' ;Select TMR0, new
;prescale value and
;clock source
OPTION
```

Note: The prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT and vice versa.
FIGURE 7-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

Note 1: T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register (see Register 4-2).
8.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits that deal with the needs of real-time applications. The PIC16F527 microcontrollers have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection. These features are:

- Oscillator Selection
- Reset:
 - Power-on Reset (POR)
 - Brown-out Reset (BOR)
 - Device Reset Timer (DRT)
 - Wake-up from Sleep on Pin Change
- Interrupts
- Automatic Context Saving
- Watchdog Timer (WDT)
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming™
- Clock Out

The device has a Watchdog Timer, which can be shut off only through Configuration bit WDTE. The Watchdog Timer runs off of its own RC oscillator for added reliability.

There is also a Device Reset Timer (DRT), intended to keep the chip in Reset until the crystal oscillator is stable. The DRT can be enabled with the DRTEN Configuration bit. For the HS, XT or LP oscillator options, the 18 ms (nominal) delay is always provided by the Device Reset Timer and the DRTEN bit is ignored. When using the EC clock, INTRC or EXTRC oscillator options, there is a standard delay of 10 us on power-up, which can be extended to 18 ms with the use of the DRT timer. With the DRT timer on-chip, most applications require no additional external Reset circuitry.

The Sleep mode is designed to offer a very low current Power-Down mode. The user can wake-up from Sleep through a change on input pin or through a Watchdog Timer time-out. Several oscillator options are also made available to allow the part to fit the application, including an internal 4/8 MHz oscillator. The EXTRC oscillator option saves system cost while the LP crystal option saves power. A set of Configuration bits are used to select various options.

8.1 Configuration Bits

The PIC16F527 Configuration Words consist of 12 bits, although some bits may be unimplemented and read as ‘1’. Configuration bits can be programmed to select various device configurations (see Register 8-1).

Note: For QTP and SQTP code applications, if the device is configured such that the Internal Oscillator is selected and the MCLRE fuse is cleared, it is possible for code to execute when memory is verified in ICSP™ mode. If customer code writes to Flash data memory, the potential exists for corruption of addresses 400h to 43Fh during code verification. In this configuration, Flash data memory should be erased in code prior to being written in code.
8.2 Register Definitions — Configuration Word

REGISTER 8-1: CONFIG: CONFIGURATION WORD REGISTER

bit 11-10	Unimplemented: Read as ‘1’
bit 9	DRTEN: Device Reset Timer Enable bit
1	DRT Enabled (18 ms)
0	DRT Disabled
bit 8	BOREN: Brown-out Reset Enable bit
1	BOR Enabled
0	BOR Disabled
bit 7	CPSW: Code Protection bit – Self-Writable Memory
1	Code protection off
0	Code protection on
bit 6	IOSCFS: Internal Oscillator Frequency Select bit
1	8 MHz INTOSC speed
0	4 MHz INTOSC speed
bit 5	MCLRE: Master Clear Enable bit
1	RA3/MCLR pin functions as MCLR
0	RA3/MCLR pin functions as RA3, MCLR tied internally to VDD
bit 4	CP: Code Protection bit – User Program Memory
1	Code protection off
0	Code protection on
bit 3	WDTE: Watchdog Timer Enable bit
1	WDT enabled
0	WDT disabled
bit 2-0	FOSC<2:0>: Oscillator Selection bits
000	LP oscillator and automatic 18 ms DRT (DRTEN fuse ignored)
001	XT oscillator and automatic 18 ms DRT (DRTEN fuse ignored)
010	HS oscillator and automatic 18 ms DRT (DRTEN fuse ignored)
011	EC oscillator with RA4 function on RA4/OSC2/CLKOUT and 10 us start-up time(2,3)
100	INTRC with RA4 function on RA4/OSC2/CLKOUT and 10 us start-up time(2,3)
101	INTRC with CLKOUT function on RA4/OSC2/CLKOUT and 10 us start-up time(2,3)
110	EXTRC with RA4 function on RA4/OSC2/CLKOUT and 10 us start-up time(2,3)
111	EXTRC with CLKOUT function on RA4/OSC2/CLKOUT and 10 us start-up time(2,3)

Note 1: Refer to the “PIC16F527 Memory Programming Specification” (DS41640) to determine how to access the Configuration Word.

2: DRT length and start-up time are functions of the Clock mode selection. It is the responsibility of the application designer to ensure the use of either will result in acceptable operation. Refer to Section 15.0 “Electrical Characteristics” for VDD rise time and stability requirements for this mode of operation.

3: The optional DRTEN fuse can be used to extend the start-up time to 18 ms.
8.3 Oscillator Configurations

8.3.1 OSCILLATOR TYPES

The PIC16F527 device can be operated in up to six different oscillator modes. The user can program up to three Configuration bits (FOSC<2:0>). To select one of these modes:

- **LP**: Low-Power Crystal
- **XT**: Crystal/Resonator
- **HS**: High-Speed Crystal/Resonator
- **INTRC**: Internal 4/8 MHz Oscillator
- **EXTRC**: External Resistor/Capacitor
- **EC**: External High-Speed Clock Input

8.3.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In HS, XT or LP modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (see Figure 8-1). The PIC16F527 oscillator designs require the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in HS, XT or LP modes, the device can have an external clock source drive the OSC1/CLKIN pin (see Figure 8-2). In this mode, the output drive levels on the OSC2 pin are very weak. If the part is used in this fashion, then this pin should be left open and unloaded. Also when using this mode, the external clock should observe the frequency limits for the Clock mode chosen (HS, XT or LP).

<table>
<thead>
<tr>
<th>Osc Type</th>
<th>Resonator Freq.</th>
<th>Cap. Range C1</th>
<th>Cap. Range C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT</td>
<td>4.0 MHz</td>
<td>30 pF</td>
<td>30 pF</td>
</tr>
<tr>
<td>HS</td>
<td>16 MHz</td>
<td>10-47 pF</td>
<td>10-47 pF</td>
</tr>
</tbody>
</table>

Note 1: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

Note 2: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.

Note 1: Available in EC mode only.
8.3.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 kΩ resistor provides the negative feedback for stability. The 10 kΩ potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

![Figure 8-3: External Parallel Resonant Crystal Oscillator Circuit](image)

FIGURE 8-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330Ω resistors provide the negative feedback to bias the inverters in their linear region.

![Figure 8-4: External Series Resonant Crystal Oscillator Circuit](image)

FIGURE 8-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.3.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit-to-unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 8-5 shows how the R/C combination is connected to the PIC16F527 device. For REXT values below 3.0 kΩ, the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 MΩ), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 5.0 kΩ and 100 kΩ.

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

<table>
<thead>
<tr>
<th>Osc Type</th>
<th>Resonator Freq.</th>
<th>Cap. Range C1</th>
<th>Cap. Range C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>32 kHz</td>
<td>15 pF</td>
<td>15 pF</td>
</tr>
<tr>
<td>XT</td>
<td>200 kHz</td>
<td>47-68 pF</td>
<td>47-68 pF</td>
</tr>
<tr>
<td></td>
<td>1 MHz</td>
<td>15 pF</td>
<td>15 pF</td>
</tr>
<tr>
<td></td>
<td>4 MHz</td>
<td>15 pF</td>
<td>15 pF</td>
</tr>
<tr>
<td>HS</td>
<td>20 MHz</td>
<td>15-47 pF</td>
<td>15-47 pF</td>
</tr>
</tbody>
</table>

Note 1: For VDD > 4.5V, C1 = C2 = 30 pF is recommended.

Note 2: These values are for design guidance only. Rs may be required to avoid over-driving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.
Although the oscillator will operate with no external capacitor (C\text{EXT} = 0 \text{ pF}), we recommend using values above 20 pF for noise and stability reasons. With no external capacitance or with values below 20 pF, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

Section 15.0 “Electrical Characteristics” shows RC frequency variation from part-to-part due to normal process variation. The variation is larger for larger values of R (since leakage current variation will affect RC frequency more for large R) and for smaller values of C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications section for variation of oscillator frequency due to V\text{DD} for given R\text{EXT}/C\text{EXT} values, as well as frequency variation due to operating temperature for given R, C and V\text{DD} values.

FIGURE 8-5: EXTERNAL RC OSCILLATOR MODE

8.3.5 INTERNAL 4/8 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4/8 MHz (nominal) system clock at V\text{DD} = 5V and 25°C, (see Section 15.0 “Electrical Characteristics” for information on variation overvoltage and temperature).

In addition, a calibration instruction is programmed into the last address of memory, which contains the calibration value for the internal RC oscillator. This location is always non-code protected, regardless of the code-protect settings. This value is programmed as a \texttt{MOVLW XX} instruction where \texttt{XX} is the calibration value, and is placed at the Reset vector. This will load the W register with the calibration value upon Reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register or ignoring it.

OSCCAL, when written to with the calibration value, will “trim” the internal oscillator to remove process variation from the oscillator frequency.

Note: Erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part so it can be reprogrammed correctly later.

For the PIC16F527 device, only bits <7:1> of OSCCAL are used for calibration. See Register 4-3 for more information.

Note: The bit 0 of the OSCCAL register is unimplemented and should be written as ‘0’ when modifying OSCCAL for compatibility with future devices.
8.4 Reset

The device differentiates between various kinds of Reset:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Time-out Reset during normal operation
- WDT Time-out Reset during Sleep
- Wake-up from Sleep on pin change

Some registers are not reset in any way, they are unknown on POR/BOR and unchanged in any other Reset. Most other registers are reset to “Reset state” on Power-on Reset (POR)/Brown-out Reset (BOR), MCLR, WDT or Wake-up on pin change Reset during normal operation. They are not affected by a WDT Reset during Sleep or MCLR Reset during Sleep, since these Resets are viewed as resumption of normal operation. The exceptions to this are the TO and PD bits. They are set or cleared differently in different Reset situations. These bits are used in software to determine the nature of Reset. See Table 4-1 for a full description of Reset states of all registers.

TABLE 8-3: RESET CONDITION FOR SPECIAL REGISTERS

<table>
<thead>
<tr>
<th>Status Condition</th>
<th>Status Addr: 03h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on Reset (POR) or Brown-out Reset (BOR)</td>
<td>0001 1xxx</td>
</tr>
<tr>
<td>MCLR Reset during normal operation</td>
<td>000u uuuu</td>
</tr>
<tr>
<td>MCLR Reset during Sleep</td>
<td>0001 0uuu</td>
</tr>
<tr>
<td>WDT Reset during Sleep</td>
<td>0000 0uuu</td>
</tr>
<tr>
<td>WDT Reset normal operation</td>
<td>0000 uuuu</td>
</tr>
<tr>
<td>Wake-up from Sleep on pin change</td>
<td>0000 10uuu</td>
</tr>
<tr>
<td>Wake-up from Sleep on comparator change</td>
<td>0101 0uuu</td>
</tr>
</tbody>
</table>

Legend: u = unchanged, x = unknown, – = unimplemented bit, read as ‘0’.
8.4.1 MCLR ENABLE

This Configuration bit, when set to a ‘1’, enables the external MCLR Reset function. When cleared to ‘0’, the MCLR function is tied to the internal VDD and the pin is assigned to be an input-only pin function. See Figure 8-6.

FIGURE 8-6: MCLR SELECT

8.5 Power-on Reset (POR)

The PIC16F527 device incorporates an on-chip Power-on Reset (POR) circuitry, which provides an internal chip Reset for most power-up situations.

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the internal POR, program the MCLR/VPP pin as MCLR and tie through a resistor to VDD, or program the pin as an input pin. An internal weak pull-up resistor is implemented using a transistor (refer to Table 15-8 for the pull-up resistor ranges). This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Section 15.0 “Electrical Characteristics” for details.

When the device starts normal operation (exit the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating parameters are met.

A simplified block diagram of the on-chip Power-on Reset circuit is shown in Figure 8-7.

The Power-on Reset circuit and the Device Reset Timer (see Section 8.6 “Device Reset Timer (DRT)”) circuit are closely related. On power-up, the Reset latch is set and the DRT is reset. The DRT timer begins counting once it detects MCLR to be high. After the time-out period, it will reset the Reset latch and thus end the on-chip Reset signal.

A power-up example where MCLR is held low is shown in Figure 8-8. VDD is allowed to rise and stabilize before bringing MCLR high. The chip will actually come out of Reset TDRT msec after MCLR goes high.

In Figure 8-9, the on-chip Power-on Reset feature is being used (MCLR and VDD are tied together or the pin is programmed to be an input pin). The VDD is stable before the start-up timer times out and there is no problem in getting a proper Reset. However, Figure 8-10 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses that MCLR is high and when MCLR and VDD actually reach their full value, is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip may not function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (see Figure 8-9).

Note: When the device starts normal operation (exit the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Notes AN522, Power-Up Considerations (DS00522) and AN607, Power-up Trouble Shooting (DS00607).
FIGURE 8-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Vdd

Power-up Detect

MCLR/VPP

BOR

BOREN

POR (Power-on Reset)

MCLR Reset

WDT Time-out

WDT Reset

Pin Change

Sleep

Wake-up on pin Change Reset

Comparator Change

Wake-up on Comparator Change

Device Reset Timer (10 µs or 18 ms)

CHIP Reset

FIGURE 8-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

VDD

MCLR

Internal POR

DRT Time-out

Internal Reset

TDRT

FIGURE 8-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

VDD

MCLR

Internal POR

TDRT

DRT Time-out

Internal Reset
FIGURE 8-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

Note: When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final value. In this example, the chip will reset properly if, and only if, V1 ≥ VDD min.
8.6 Device Reset Timer (DRT)

On the PIC16F527 device, the DRT runs any time the device is powered up. DRT runs from Reset and varies based on oscillator selection and Reset type (see Table 8-4).

The DRT operates on an internal RC oscillator. The processor is kept in Reset as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a Reset condition after MCLR has reached a logic high (VIH MCLR) level. Programming MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases. This allows savings in cost-sensitive and/or space restricted applications, as well as allowing the use of that pin as a general purpose input.

The Device Reset Time delays will vary from chip-to-chip due to VDD, temperature and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out from Sleep. This is particularly important for applications using the WDT to wake from Sleep mode automatically.

Reset sources are POR, MCLR, WDT time-out and wake-up on pin or comparator change. See Section 8.10.2 “Wake-up from Sleep”, Notes 1, 2 and 3.

8.7 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the external RC oscillator of the OSC1/CLKIN pin and the internal 4/8 MHz oscillator. This means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or Sleep, a WDT Reset or wake-up Reset, generates a device Reset.

The TO bit of the STATUS register will be cleared upon a Watchdog Timer Reset.

The WDT can be permanently disabled by programming the configuration WDTE as a ‘0’ (see Section 8.1 “Configuration Bits”). Refer to the PIC16F527 Programming Specifications to determine how to access the Configuration Word.

<table>
<thead>
<tr>
<th>Oscillator Configuration</th>
<th>POR Reset</th>
<th>Subsequent Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS, XT, LP</td>
<td>18 ms</td>
<td>18 ms</td>
</tr>
<tr>
<td>EC</td>
<td>10 µs</td>
<td>10 µs</td>
</tr>
<tr>
<td>INTOSC, EXTRC</td>
<td>10 µs</td>
<td>10 µs</td>
</tr>
</tbody>
</table>

8.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).

Under worst-case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

8.7.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device Reset.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum Sleep time before a WDT wake-up Reset.
TABLE 8-5: REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Register on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION</td>
<td>RAWU</td>
<td>RAPU</td>
<td>T0SC</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS2</td>
<td>PS1</td>
<td>PS0</td>
<td>17</td>
</tr>
</tbody>
</table>

Legend: Shaded boxes = Not used by Watchdog Timer.

8.8 Time-out Sequence (TO) and Power-down (PD) Reset Status

The TO and PD bits in the STATUS register can be tested to determine if a Reset condition has been caused by a power-up condition, a MCLR or Watchdog Timer (WDT) Reset.

TABLE 8-6: TO/PD STATUS AFTER RESET

<table>
<thead>
<tr>
<th>TO</th>
<th>PD</th>
<th>Reset Caused By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>WDT wake-up from Sleep</td>
</tr>
<tr>
<td>0</td>
<td>u</td>
<td>WDT time-out (not from Sleep)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>MCLR wake-up from Sleep</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Power-up or Brown-out Reset</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
<td>MCLR not during Sleep</td>
</tr>
</tbody>
</table>

Legend: u = unchanged

Note 1: The TO and PD bits maintain their status (u) until a Reset occurs. A low pulse on the MCLR input does not change the TO and PD Status bits.
8.9 Brown-out Reset (BOR)

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out. The Brown-out Reset feature is enabled by the BOREN Configuration bit.

If VDD falls below VBOR for greater than parameter (TBOR) (see Figure 8-12), the brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for less than parameter (TBOR).

Please see Section 15.0 “Electrical Characteristics” for the VBOR specification and other parameters shown in Figure 8-12.

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 8-12). If enabled, the Device Reset Timer will now be invoked, and will keep the chip in Reset an additional 18 ms.

Note: The Device Reset Timer is enabled by the DRTEN bit in the Configuration Word register.

If VDD drops below VBOR while the Device Reset Timer is running, the chip will go back into a Brown-out Reset and the Device Reset Timer will be re-initialized. Once VDD rises above VBOR, the Device Reset Timer will execute a 18 ms Reset.

FIGURE 8-12: BROWN-OUT RESET TIMING AND CHARACTERISTICS

![Brown-out Reset Timing Diagram](image)

FIGURE 8-13: BROWN-OUT SITUATIONS

![Brown-out Situations Diagram](image)
8.10 Power-down Mode (Sleep)

A device may be powered down (Sleep) and later powered up (wake-up from Sleep).

8.10.1 SLEEP

The Power-Down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the TO bit of the STATUS register is set, the PD bit of the STATUS register is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low or high-impedance).

Note: A Reset generated by a WDT time-out does not drive the MCLR pin low.

For lowest current consumption while powered down, the T0CKI input should be at VDD or VSS and the MCLR/VPP pin must be at a logic high level if MCLR is enabled.

8.10.2 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

1. An external Reset input on RB3/MCLR/VPP pin, when configured as MCLR.
2. A Watchdog Timer Time-out Reset (if WDT was enabled).
3. From an interrupt source, see Section 8.11 “Interrupts” for more information.

On waking from Sleep, the processor will continue to execute the instruction immediately following the SLEEP instruction. If the WUR bit is also set, upon waking from Sleep, the device will reset. If the GIE bit is also set, upon waking from Sleep, the processor will branch to the interrupt vector. Please see Section 8.11 “Interrupts” for more information.

The TO and PD bits can be used to determine the cause of the device Reset. The TO bit is cleared if a WDT time-out occurred and subsequently caused a wake-up. The PD bit, which is set on power-up, is cleared when SLEEP is invoked.

Note: Caution: Right before entering Sleep, read the input pins. When in Sleep, wake-up occurs when the values at the pins change from the state they were in at the last reading. If a wake-up on change occurs and the pins are not read before re-entering Sleep, a wake-up will occur immediately even if no pins change while in Sleep mode.

Note: Caution: Right before entering Sleep, read the comparator Configuration register(s) CM1CON0 and CM2CON0. When in Sleep, wake-up occurs when the comparator output bit C1OUT and C2OUT change from the state they were in at the last reading. If a wake-up on comparator change occurs and the pins are not read before re-entering Sleep, a wake-up will occur immediately, even if no pins change while in Sleep mode.

The WDT is cleared when the device wakes from Sleep, regardless of the wake-up source.
8.11 Interrupts

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

These following interrupt sources are available on the PIC16F527 device:
- Timer0 Overflow
- ADC Completion
- Comparator Output Change
- Interrupt-on-change pin

Refer to the corresponding chapters for details.

8.11.1 OPERATION

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:
- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)

The enable bits for specific interrupts can be found in the INTCON1 register. An interrupt is recorded for a specific interrupt via flag bits found in the INTCON0 register.

The ADC Conversion flag and the Timer0 Overflow flags will be set regardless of the status of the GIE and individual interrupt enable bits.

The Comparator and Interrupt-on-change flags must be enabled for use. One or both of the comparator outputs can be enabled to affect the interrupt flag by clearing the C1WU bit in the CM1CON0 register and the C2WU bit in the CM2CON0 register. The Interrupt-on-change flag is enabled by clearing the RAWU bit in the OPTION register.

The following events happen when an interrupt event occurs while the GIE bit is set:
- Current prefetched instruction is flushed
- GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Several registers are automatically switched to a secondary set of registers to store critical data. (See Section 8.12 “Automatic Context Switching”)
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

8.12 Automatic Context Switching

While the device is executing from the ISR, a secondary set of W, STATUS, FSR and BSR registers are used by the CPU. These registers are still addressed at the same location, but hold persistent, independent values for use inside the ISR. This allows the contents of the primary set of registers to be unaffected by interrupts in the main line execution. The contents of the secondary set of context registers are visible in the SFR map as the IW, ISTATUS, IFSR and IBSR registers. When executing code from within the ISR, these registers will read back the main line context, and vice versa.

The RETFIE instruction exits the ISR by popping the previous address from the stack, switching back to the original set of critical registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1: Individual interrupt flag bits may be set, regardless of the state of any other enable bits.

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

3: All interrupts should be disabled prior to executing writes or row erases in the self-writable Flash data memory.

4: The user must manage the contents of the context registers if they are using interrupts that will vector to the Interrupt Service Routine (ISR). The context registers (IW, ISTATUS, IFSR and IBSR) power up in unknown states following POR and BOR events.

8.13 Interrupts during Sleep

Any of the interrupt sources can be used to wake from Sleep. To wake from Sleep, the peripheral must be operating without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 8.10 “Power-down Mode (Sleep)” for more details.
TABLE 8-7: INTERRUPT PRIORITIES

<table>
<thead>
<tr>
<th>Vector or Wake-up and Vector</th>
<th>In Sleep</th>
<th>GIE</th>
<th>WUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAKE UP AND Vector</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Wake-up Reset</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wake-up Inline</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Watchdog Wake-up Inline</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>Watchdog Wake-up Reset</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>
8.14 Register Definitions — Interrupt Control

REGISTER 8-2: INTCON0 REGISTER

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3-1</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIF</td>
<td>CWIF</td>
<td>T0IF</td>
<td>RAIF</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>GIE</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7

- **ADIF**: A/D Converter Interrupt Flag bit
 - 1 = A/D conversion complete (must be cleared by software)
 - 0 = A/D conversion has not completed or has not been started

bit 6

- **CWIF**: Comparator 1 or 2 Interrupt Flag bit
 - 1 = Comparator interrupt-on-change has occurred\(^{(1)}\)
 - 0 = No change in Comparator 1 or 2 output

bit 5

- **T0IF**: Timer0 Overflow Interrupt Flag bit
 - 1 = TMR0 register has overflowed (must be cleared by software)
 - 0 = TMR0 register did not overflow

bit 4

- **RAIF**: Port A Interrupt-on-change Flag bit
 - 1 = Wake-up or interrupt has occurred (cleared in software)\(^{(2)}\)
 - 0 = Wake-up or interrupt has not occurred

bit 3-1

- **Unimplemented**: Read as ‘0’

bit 0

- **GIE**: Global Interrupt Enable bit
 - 1 = Interrupt sets PC to address 0x004 (Vector to ISR)
 - 0 = Interrupt causes wake-up and inline code execution

Note 1: This bit only functions when the C1WU or C2WU bits are cleared (see Register 10-1 and Register 10-2).

Note 2: The RAWU bit of the OPTION register must be cleared to enable this function (see Register 4-2).
REGISTER 8-3: INTCON1 REGISTER

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIE</td>
<td>CWIE</td>
<td>T0IE</td>
<td>RAIE</td>
<td></td>
<td></td>
<td></td>
<td>WUR</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **1** = Bit is set
- **0** = Bit is cleared
- **x** = Bit is unknown

- **bit 7** ADIE: A/D Converter (ADC) Interrupt Enable bit
 - 1 = Enables the ADC interrupt
 - 0 = Disables the ADC interrupt

- **bit 6** CWIE: Comparator 1 and 2 Interrupt Enable bit
 - 1 = Enables the Comparator 1 and 2 Interrupt
 - 0 = Disables the Comparator 1 and 2 Interrupt

- **bit 5** T0IE: Timer0 Overflow Interrupt Enable bit
 - 1 = Enables the Timer0 interrupt
 - 0 = Disables the Timer0 interrupt

- **bit 4** RAIE: Port A on Pin Change Interrupt Enable bit
 - 1 = Interrupt-on-change pin enabled
 - 0 = Interrupt-on-change pin disabled

- **bit 3-1** Unimplemented: Read as '0'

- **bit 0** WUR: Wake-up Reset Enable bit
 - 1 = Interrupt source causes device Reset on wake-up
 - 0 = Interrupt source wakes up device from Sleep (Vector to ISR or inline execution)
8.15 **Program Verification/Code Protection**

If the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes.

The first 64 locations and the last location (OSCCAL) can be read, regardless of the code protection bit setting.

8.16 **ID Locations**

Four memory locations are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify.

Use only the lower four bits of the ID locations and always program the upper eight bits as '0's.

8.17 **In-Circuit Serial Programming™**

The PIC16F527 microcontroller can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed.

The devices are placed into a Program/Verify mode by holding the ICSPCLK and ICSPDAT pins low while raising the MCLR (VPP) pin from VIL to VIH (see programming specification). ICSPCLK becomes the programming clock and ICSPDAT becomes the programming data. Both ICSPCLK and ICSPDAT are Schmitt Trigger inputs in this mode.

After Reset, a 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16F527 Programming Specifications.

A typical In-Circuit Serial Programming connection is shown in Figure 8-14.
9.0 ANALOG-TO-DIGITAL (A/D) CONVERTER

The A/D Converter allows conversion of an analog signal into an 8-bit digital signal.

9.1 Clock Divisors

The ADC has four clock source settings ADCS<1:0>. There are three divisor values 16, 8 and 4. The fourth setting is INTOSC with a divisor of four. These settings will allow a proper conversion when using an external oscillator at speeds from 20 MHz to 350 kHz. Using an external oscillator at a frequency below 350 kHz requires the ADC oscillator setting to be INTOSC/4 (ADCS<1:0> = 11) for valid ADC results.

The ADC requires 13 TAD periods to complete a conversion. The divisor values do not affect the number of TAD periods required to perform a conversion. The divisor values determine the length of the TAD period. When the ADCS<1:0> bits are changed while an ADC conversion is in process, the new ADC clock source will not be selected until the next conversion is started. This clock source selection will be lost when the device enters Sleep.

9.1.1 VOLTAGE REFERENCE

There is no external voltage reference for the ADC. The ADC reference voltage will always be VDD.

9.1.2 ANALOG MODE SELECTION

The ANS<7:0> bits are used to configure pins for analog input. Upon any Reset, ANS<7:0> defaults to FF. This configures the affected pins as analog inputs. Pins configured as analog inputs are not available for digital output. Users should not change the ANS bits while a conversion is in process. ANS bits are active regardless of the condition of ADON.

9.1.3 ADC CHANNEL SELECTION

The CHS bits are used to select the analog channel to be sampled by the ADC. The CHS<3:0> bits can be changed at any time without adversely effecting a conversion. To acquire an external analog signal, the CHS<3:0> selection must match one of the pin(s) selected by the ANS<7:0> bits. When the ADC is on (ADON = 1) and a channel is selected that is also being used by the comparator, then both the comparator and the ADC will see the analog voltage on the pin.

9.1.4 THE GO/DONE BIT

The GO/DONE bit is used to determine the status of a conversion, to start a conversion and to manually halt a conversion in process. Setting the GO/DONE bit starts a conversion. When the conversion is complete, the ADC module clears the GO/DONE bit and sets the ADIF bit in the INTCON0 register.

A conversion can be terminated by manually clearing the GO/DONE bit while a conversion is in process. Manual termination of a conversion may result in a partially converted result in ADRES.

The GO/DONE bit is cleared when the device enters Sleep, stopping the current conversion. The ADC does not have a dedicated oscillator, it runs off of the instruction clock. Therefore, no conversion can occur in Sleep.

The GO/DONE bit cannot be set when ADON is clear.

9.1.5 A/D ACQUISITION REQUIREMENTS

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-1. The source impedance (Rs) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), see Figure 9-1. The maximum recommended impedance for analog sources is 10 kΩ. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSB error is used (256 steps for the ADC). The 1/2 LSB error is the maximum error allowed for the ADC to meet its specified resolution.

Note: It is the user’s responsibility to ensure that the use of the ADC and op amp simultaneously on the same pin does not adversely affect the signal being monitored or adversely effect device operation.
EQUATION 9-1: ACQUISITION TIME EXAMPLE

Assumptions:

Temperature = 50°C and external impedance of 10 kΩ 5.0V VDD

\[\text{Tacq} = \text{Amplifier Settling Time} + \text{Hold Capacitor Charging Time} + \text{Temperature Coefficient} \]

\[= \text{TAMP} + Tc + TCOFF \]

\[= 2 \mu s + Tc + [(\text{Temperature} - 25°C)(0.05 \mu s/°C)] \]

Solving for Tc:

\[Tc = C_{HOLD} (R_{IC} + R_{SS} + R_{S}) \ln(1/512) \]

\[= -25\mu F (1 \Omega + 7 \kappa \Omega + 10 \kappa \Omega) \ln(0.00196) \]

\[= 2.81 \mu s \]

Therefore:

\[\text{Tacq} = 2 \mu s + 2.81 \mu s + [(50°C-25°C)(0.05 \mu s/°C)] \]

\[= 6.06 \mu s \]

Note 1: The charge holding capacitor (\(C_{HOLD} \)) is not discharged after each conversion.

2: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.

FIGURE 9-1: ANALOG INPUT MODULE

Legend:

- CPIN = Input Capacitance
- VT = Threshold Voltage
- LEAKAGE = Leakage current at the pin due to various junctions
- RIC = Interconnect Resistance
- SS = Sampling Switch
- CHOLD = Sample/Hold Capacitance

Sampling Switch

5V

6V

4V

3V

2V

VDD

VT = 0.6V

VT = 0.6V

± 500 nA

LEAKAGE

Ric ≤ 1k

RSS

VA

5 pF

ANx

VDD

CHOLD = 25 pF

VSS/VREF-
9.1.6 ANALOG CONVERSION RESULT REGISTER

The ADRES register contains the results of the last conversion. These results are present during the sampling period of the next analog conversion process. After the sampling period is over, ADRES is cleared (\(=0\)). A ‘leading one’ is then right shifted into the ADRES to serve as an internal conversion complete bit. As each bit weight, starting with the MSB, is converted, the leading one is shifted right and the converted bit is stuffed into ADRES. After a total of nine right shifts of the ‘leading one’ have taken place, the conversion is complete; the ‘leading one’ has been shifted out and the GO/DONE bit is cleared.

If the GO/DONE bit is cleared in software during a conversion, the conversion stops and the ADIF bit will not be set to a ‘1’. The data in ADRES is the partial conversion result. This data is valid for the bit weights that have been converted. The position of the ‘leading one’ determines the number of bits that have been converted. The bits that were not converted before the GO/DONE was cleared are unrecoverable.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER

<table>
<thead>
<tr>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCS1</td>
<td>ADCS0</td>
<td>CHS3</td>
<td>CHS2</td>
<td>CHS1</td>
<td>CHS0</td>
<td>GO/DONE</td>
</tr>
<tr>
<td>ADON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- \(R\) = Readable bit
- \(W\) = Writable bit
- \(U\) = Unimplemented bit, read as ‘0’
- \(-n\) = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- \(x\) = Bit is unknown

bit 7-6 \(\text{ADCS}_<1:0>:\) ADC Conversion Clock Select bits
00 = Fosc/16
01 = Fosc/8
10 = Fosc/4
11 = INTOSC/4

bit 5-2 \(\text{CHS}_<3:0>:\) ADC Channel Select bits\(^{(1)}\)
0000 = Channel 0 (AN0)
0001 = Channel 1 (AN1)
0010 = Channel 2 (AN2)
0011 = Channel 3 (AN3)
0100 = Channel 4 (AN4)
0101 = Channel 5 (AN5)
0110 = Channel 6 (AN6)
0111 = Channel 7 (AN7)
1xxx = Reserved
1111 = 0.6V Fixed Input Reference (V FIR)

bit 1 \(\text{GO/DONE}:\) ADC Conversion Status bit\(^{(2)}\)
1 = ADC conversion in progress. Setting this bit starts an ADC conversion cycle. This bit is automatically cleared by hardware when the ADC is done converting.
0 = ADC conversion completed/not in progress. Manually clearing this bit while a conversion is in process terminates the current conversion.

bit 0 \(\text{ADON}:\) ADC Enable bit
1 = ADC module is operating
0 = ADC module is shut-off and consumes no power

Note 1: \(\text{CHS}_<3:0>:\) bits default to 1 after any Reset.
2: If the ADON bit is clear, the GO/DONE bit cannot be set.
REGISTER 9-2: ADRES: A/D CONVERSION RESULTS REGISTER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRES7</td>
<td>ADRES6</td>
<td>ADRES5</td>
<td>ADRES4</td>
<td>ADRES3</td>
<td>ADRES2</td>
<td>ADRES1</td>
<td>ADRES0</td>
</tr>
</tbody>
</table>

bit 7-0 ADRES<7:0>: ADC Result Register bits

EXAMPLE 9-1: PERFORMING AN ANALOG-TO-DIGITAL CONVERSION

Sample code operates out of BANK0

```
MOVLW 0xF1 ;configure A/D
MOVWF ADCON0
BSF ADCON0, 1 ;start conversion
loop0 BTFSC ADCON0, 1;wait for 'DONE'
GOTO loop0
MOVF ADRES, W ;read result
MOVF result0 ;save result

BSF ADCON0, 2 ;setup for read of
  ;channel 1
BSF ADCON0, 1 ;start conversion
loop1 BTFSC ADCON0, 1;wait for 'DONE'
GOTO loop1
MOVF ADRES, W ;read result
MOVF result1 ;save result

BSF ADCON0, 3 ;setup for read of
  ;channel 2
BCF ADCON0, 2 ;channel 2
BSF ADCON0, 1 ;start conversion
loop2 BTFSC ADCON0, 1;wait for 'DONE'
GOTO loop2
MOVF ADRES, W ;read result
MOVF result2 ;save result
```

EXAMPLE 9-2: CHANNEL SELECTION CHANGE DURING CONVERSION

```
MOVLW 0xF1 ;configure A/D
MOVWF ADCON0
BSF ADCON0, 1 ;start conversion
BSF ADCON0, 2 ;setup for read of
  ;channel 1
loop0 BTFSC ADCON0, 1;wait for 'DONE'
GOTO loop0
MOVF ADRES, W ;read result
MOVF result0 ;save result

BSF ADCON0, 1 ;start conversion
BSF ADCON0, 3 ;setup for read of
BCF ADCON0, 2 ;channel 2
loop1 BTFSC ADCON0, 1;wait for 'DONE'
GOTO loop1
MOVF ADRES, W ;read result
MOVF result1 ;save result

BSF ADCON0, 1 ;start conversion
BCF ADCON0, 2 ;channel 2
BSF ADCON0, 1 ;start conversion
loop2 BTFSC ADCON0, 1;wait for 'DONE'
GOTO loop2
MOVF ADRES, W ;read result
MOVF result2 ;save result
CLRF ADCON0 ;optional: returns
  ;pins to Digital mode and turns off
  ;the ADC module
```
9.1.7 SLEEP

This ADC does not have a dedicated ADC clock, and therefore, no conversion in Sleep is possible. If a conversion is underway and a Sleep command is executed, the GO/DONE and ADON bits will be cleared. This will stop any conversion in process and power-down the ADC module to conserve power. Due to the nature of the conversion process, the ADRES may contain a partial conversion. At least one bit must have been converted prior to Sleep to have partial conversion data in ADRES. The ADCS and CHS bits are reset to their default condition; ANS<7:0> = 1s and CHS<3:0> = 1s.

For accurate conversions, TAD must meet the following:

- 500 ns < TAD < 50 μs
- TAD = 1/(FOSC/divisor)

Shaded areas indicate TAD out of range for accurate conversions. If analog input is desired at these frequencies, use INTOSC/8 for the ADC clock source.

<table>
<thead>
<tr>
<th>TABLE 9-1: TAD FOR ADCS SETTINGS WITH VARIOUS OSCILLATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>INTOSC</td>
</tr>
<tr>
<td>FOSC</td>
</tr>
<tr>
<td>FOSC</td>
</tr>
<tr>
<td>FOSC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 9-2: EFFECTS OF SLEEP ON ADCON0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Entering Sleep</td>
</tr>
<tr>
<td>Wake or Reset</td>
</tr>
</tbody>
</table>
10.0 COMPARATOR(S)

This device contains two comparators and a comparator voltage reference.

FIGURE 10-1: COMPARATORS BLOCK DIAGRAM
10.1 Comparator Operation

A single comparator is shown in Figure 10-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. The shaded area of the output of the comparator in Figure 10-2 represent the uncertainty due to input offsets and response time. See Table 15-2 for Common Mode Voltage.

FIGURE 10-2: SINGLE COMPARATOR

10.2 Comparator Reference

An internal reference signal may be used depending on the comparator operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (see Figure 10-2). Please see Section 11.0 “Comparator Voltage Reference Module” for internal reference specifications.

10.3 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage or input source before the comparator output is to have a valid level. If the comparator inputs are changed, a delay must be used to allow the comparator to settle to its new state. Please see Table 15-7 for comparator response time specifications.

10.4 Comparator Output

The comparator output is read through the CxOUT bit in the CM1CON0 or CM2CON0 register. This bit is read-only. The comparator output may also be used externally, see Section 10.1 “Comparator Operation”.

Note: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

10.5 Comparator Wake-up Flag

The Comparator Wake-up Flag bit, CWIF, in the INTCON0 register, is set whenever all of the following conditions are met:

- C1WU = 0 (CM1CON0<0>) or C2WU = 0 (CM2CON0<0>)
- CM1CON0 or CM2CON0 has been read to latch the last known state of the C1OUT and C2OUT bit (MOVF CM1CON0, W)
- The output of a comparator has changed state

The wake-up flag may be cleared in software or by another device Reset.

10.6 Comparator Operation During Sleep

When the comparator is enabled it is active. To minimize power consumption while in Sleep mode, turn off the comparator before entering Sleep.

10.7 Effects of Reset

A Power-on Reset (POR) forces the CMxCON0 register to its Reset state. This forces the Comparator input pins to analog Reset mode. Device current is minimized when analog inputs are present at Reset time.

10.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 10-3. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 kΩ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.
FIGURE 10-3: ANALOG INPUT MODE

Legend:

- **CPIN** = Input Capacitance
- **VT** = Threshold Voltage
- **ILEAKAGE** = Leakage Current at the Pin
- **RiC** = Interconnect Resistance
- **RS** = Source Impedance
- **VA** = Analog Voltage
10.9 Register Definitions — Comparator Control

REGISTER 10-1: CM1CON0: COMPARATOR C1 CONTROL REGISTER

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/1</td>
<td>R/W-1</td>
<td>R/W-1</td>
<td>R/W-1</td>
<td>R/W-1</td>
<td>R/W-1</td>
<td>R/W-1</td>
<td>R/W-1</td>
</tr>
<tr>
<td>C1OUT</td>
<td>C1OUTEN</td>
<td>C1POL</td>
<td>C1T0CS</td>
<td>C1ON</td>
<td>C1NREF</td>
<td>C1PREF</td>
<td>C1WU</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
- ‘-1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

- **C1OUT**: Comparator Output bit
 - 1 = \(\text{VIN}^+ > \text{VIN}^- \)
 - 0 = \(\text{VIN}^+ < \text{VIN}^- \)

- **C1OUTEN**: Comparator Output Enable bit\(^{(1)}\)
 - 1 = Output of comparator is NOT placed on the C1OUT pin
 - 0 = Output of comparator is placed in the C1OUT pin

- **C1POL**: Comparator Output Polarity bit
 - 1 = Output of comparator is not inverted
 - 0 = Output of comparator is inverted

- **C1T0CS**: Comparator TMR0 Clock Source bit
 - 1 = TMR0 clock source selected by T0CS control bit
 - 0 = Comparator output used as TMR0 clock source

- **C1ON**: Comparator Enable bit
 - 1 = Comparator is on
 - 0 = Comparator is off

- **C1NREF**: Comparator Negative Reference Select bit\(^{(2)}\)
 - 1 = C1IN- pin
 - 0 = 0.6V Fixed Input Reference (VFIR)

- **C1PREF**: Comparator Positive Reference Select bit\(^{(2)}\)
 - 1 = C1IN+ pin
 - 0 = C1IN- pin

- **C1WU**: Comparator Wake-up On Change Enable bit\(^{(3)}\)
 - 1 = Wake-up On Comparator Change is disabled
 - 0 = Wake-up On Comparator Change is enabled

Note 1: Overrides TRIS control of the port.

Note 2: When this bit selects an I/O pin and the comparator is turned on, this feature will override the TRIS and ANSEL settings to make the respective pin an analog input. The value in the ANSEL register, however, is not overwritten. When the comparator is turned off, the respective pin will revert back to the original TRIS and ANSEL settings.

Note 3: The C1WU bit must be cleared to enable the CWIF function. See the INTCON0 register (see Register 8-2) for more information.
REGISTER 10-2: CM2CON0: COMPARATOR C2 CONTROL REGISTER

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Register on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2OUT</td>
<td>C2OUTEN</td>
<td>C2POL</td>
<td>C2PREF2</td>
<td>C2ON</td>
<td>C2NREF</td>
<td>C2PREF1</td>
<td>C2WU</td>
<td>63</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7
C2OUT: Comparator Output bit
- 1 = VIN+ > VIN-
- 0 = VIN+ < VIN-

bit 6
C2OUTEN: Comparator Output Enable bit
- 1 = Output of comparator is NOT placed on the C2OUT pin
- 0 = Output of comparator is placed in the C2OUT pin

bit 5
C2POL: Comparator Output Polarity bit
- 1 = Output of comparator not inverted
- 0 = Output of comparator inverted

bit 4
C2PREF2: Comparator Positive Reference Select bit
- 1 = C1IN+ pin
- 0 = C2IN- pin

bit 3
C2ON: Comparator Enable bit
- 1 = Comparator is on
- 0 = Comparator is off

bit 2
C2NREF: Comparator Negative Reference Select bit
- 1 = C2IN- pin
- 0 = CVREF

bit 1
C2PREF1: Comparator Positive Reference Select bit
- 1 = C2IN+ pin
- 0 = C2PREF2 controls analog input selection

bit 0
C2WU: Comparator Wake-up on Change Enable bit
- 1 = Wake-up on Comparator change is disabled
- 0 = Wake-up on Comparator change is enabled.

Note 1:
- Overrides TRIS control of the port.
- When this bit selects an I/O pin and the comparator is turned on, this feature will override the TRIS and ANSEL settings to make the respective pin an analog input. The value in the ANSEL register, however, is not overwritten. When the comparator is turned off, the respective pin will revert back to the original TRIS and ANSEL settings.
- The **C2WU** bit must be cleared to enable the CWIF function. See the INTCON0 register (see Register 8-2) for more information.

TABLE 10-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Register on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>—</td>
<td>—</td>
<td>PA0</td>
<td>TO</td>
<td>PD</td>
<td>Z</td>
<td>DC</td>
<td>C</td>
<td>16</td>
</tr>
<tr>
<td>CM1CON0</td>
<td>C1OUT</td>
<td>C1OUTEN</td>
<td>C1POL</td>
<td>C1T0CS</td>
<td>C1ON</td>
<td>C1NREF</td>
<td>C1PREF</td>
<td>C1WU</td>
<td>62</td>
</tr>
<tr>
<td>CM2CON0</td>
<td>C2OUT</td>
<td>C2OUTEN</td>
<td>C2POL</td>
<td>C2PREF2</td>
<td>C2ON</td>
<td>C2NREF</td>
<td>C2PREF1</td>
<td>C2WU</td>
<td>63</td>
</tr>
<tr>
<td>TRIS</td>
<td>I/O Control Register (TRISA, TRISB, TRISC)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- x = Unknown
- u = Unchanged
- – = Unimplemented, read as ‘0’
- q = Depends on condition.
11.0 COMPARATOR VOLTAGE REFERENCE MODULE

The Comparator Voltage Reference module also allows the selection of an internally generated voltage reference for one of the C2 comparator inputs. The VRCON register (see Register 11-1) controls the voltage reference module shown in Figure 11-1.

11.1 Configuring The Voltage Reference

The voltage reference can output 32 voltage levels; 16 in a high range and 16 in a low range. Equation 11-1 determines the output voltages:

\[
\text{EQUATION 11-1:}
\]

- \(\text{VRR} = 1 \) (low range):
 - \(\text{CVREF} = \left(\frac{\text{VR<3:0>}}{24} \right) \times \text{VDD} \)

- \(\text{VRR} = 0 \) (high range):
 - \(\text{CVREF} = \left(\frac{\text{VDD}}{4} \right) + \left(\frac{\text{VR<3:0>}}{32} \right) \times \text{VDD} \)

REGISTER 11-1: VRCON: VOLTAGE REFERENCE CONTROL REGISTER

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>U-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREN</td>
<td>VROE</td>
<td>VRR</td>
<td>—</td>
<td>VR3</td>
<td>VR2</td>
<td>VR1</td>
<td>VR0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- ‘n’ = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7 VREN: CVREF Enable bit
- 1 = CVREF is powered on
- 0 = CVREF is powered down, no current is drawn

bit 6 VROE: CVREF Output Enable bit\(^{(1)}\)
- 1 = CVREF output is enabled
- 0 = CVREF output is disabled

bit 5 VRR: CVREF Range Selection bit
- 1 = Low range
- 0 = High range

bit 4 Unimplemented: Read as ‘0’

bit 3-0 VR<3:0>: CVREF Value Selection bits
- When VRR = 1: CVREF = \(\left(\frac{\text{VR<3:0>}}{24} \right) \times \text{VDD} \)
- When VRR = 0: CVREF = \(\frac{\text{VDD}}{4} + \left(\frac{\text{VR<3:0>}}{32} \right) \times \text{VDD} \)

Note 1: When this bit is set, the TRIS for the CVREF pin is overridden and the analog voltage is placed on the CVREF pin.

11.2 Voltage Reference Accuracy

The full range of VSS to VDD cannot be realized due to construction of the module. The transistors on the top and bottom of the resistor ladder network (see Figure 11-1) keep CVREF from approaching VSS or VDD. The exception is when the module is disabled by clearing the VREN bit of the VRCON register. When disabled, the reference voltage is VSS when VR<3:0> is ‘0000’ and the VRR bit of the VRCON register is set. This allows the comparator to detect a zero crossing and not consume the CVREF module current.

The voltage reference is VDD derived and, therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the comparator voltage reference can be found in Section 15.0 “Electrical Characteristics”.

\[
\text{EQUATION 11-1:}
\]
FIGURE 11-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 11-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Register on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRCON</td>
<td>VREN</td>
<td>VROE</td>
<td>VRR</td>
<td>–</td>
<td>VR3</td>
<td>VR2</td>
<td>VR1</td>
<td>VR0</td>
<td>64</td>
</tr>
<tr>
<td>CM1CON0</td>
<td>C1OUT</td>
<td>C1OUTEN</td>
<td>C1POL</td>
<td>C1T0CS</td>
<td>C1ON</td>
<td>C1NREF</td>
<td>C1PREF</td>
<td>C1WU</td>
<td>62</td>
</tr>
<tr>
<td>CM2CON0</td>
<td>C2OUT</td>
<td>C2OUTEN</td>
<td>C2POL</td>
<td>C2PREF2</td>
<td>C2ON</td>
<td>C2NREF</td>
<td>C2PREF1</td>
<td>C2WU</td>
<td>63</td>
</tr>
</tbody>
</table>

Legend: x = unknown, u = unchanged, – = unimplemented, read as '0', q = value depends on condition.
12.0 OPERATIONAL AMPLIFIER (OPA) MODULE

The OPA module has the following features:

- Two independent Operational Amplifiers
- External connections to all ports
- 3 MHz Gain Bandwidth Product (GBWP)

12.1 OPACON Register

The OPA module is enabled by setting the OPAxON bit of the OPACON Register.

Note: When OPA1 or OPA2 is enabled, the OP1 pin or OP2 pin, respectively, is driven by the op amp output, not by the port driver. Refer to Table 15-5 for the electrical specifications for the op amp output drive capability.

FIGURE 12-1: OPA MODULE BLOCK DIAGRAM
PIC16F527

REGISTER 12-1: OPACON: OP AMP CONTROL REGISTER

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Register on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>OPA2ON</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-2 Unimplemented: Read as ‘0’
bit 1 OPA2ON: Op Amp Enable bit
1 = Op amp 2 is enabled
0 = Op amp 2 is disabled
bit 0 OPA1ON: Op Amp Enable bit
1 = Op amp 1 is enabled
0 = Op amp 1 is disabled

12.2 Effects of a Reset
A device Reset forces all registers to their Reset state. This disables both op amps.

12.3 OPA Module Performance
Common AC and DC performance specifications for the OPA module:
• Common Mode Voltage Range
• Leakage Current
• Input Offset Voltage
• Open Loop Gain
• Gain Bandwidth Product (GBWP)

Common mode voltage range is the specified voltage range for the OP+ and OP- inputs, for which the OPA module will perform to within its specifications. The OPA module is designed to operate with input voltages between 0 and VDD-1.5V. Behavior for common mode voltages greater than VDD-1.5V, or below 0V, are beyond the normal operating range.

Leakage current is a measure of the small source or sink currents on the OP+ and OP- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OP+ and OP- inputs should be kept as small as possible and equal.

Input offset voltage is a measure of the voltage difference between the OP+ and OP- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit. The input offset voltage is also affected by the common mode voltage.

Open loop gain is the ratio of the output voltage to the differential input voltage, (OP+) - (OP-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB.

12.4 Effects of Sleep
When enabled, the op amps continue to operate and consume current while the processor is in Sleep mode.

TABLE 12-1: REGISTERS ASSOCIATED WITH THE OPA MODULE

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Register on page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSEL</td>
<td>ANS7</td>
<td>ANS6</td>
<td>ANS5</td>
<td>ANS4</td>
<td>ANS3</td>
<td>ANS2</td>
<td>ANS1</td>
<td>ANS0</td>
<td>29</td>
</tr>
<tr>
<td>OPACON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIS</td>
<td>I/O Control Registers (TRISA, TRISB, TRISC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used for the OPA module.
13.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories.

- **Byte-oriented** operations
- **Bit-oriented** operations
- **Literal and control** operations

Each PIC16 instruction is a 12-bit word divided into an opcode, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1.

For **byte-oriented** instructions, ‘f’ represents a file register designator and ‘d’ represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, ‘b’ represents a bit field designator which selects the number of the bit affected by the operation, while ‘f’ represents the number of the file in which the bit is located.

For **literal and control** operations, ‘k’ represents an 8 or 9-bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Register file address (0x00 to 0x7F)</td>
</tr>
<tr>
<td>W</td>
<td>Working register (accumulator)</td>
</tr>
<tr>
<td>b</td>
<td>Bit address within an 8-bit file register</td>
</tr>
<tr>
<td>k</td>
<td>Literal field, constant data or label</td>
</tr>
<tr>
<td>x</td>
<td>Don’t care location (= 0 or 1)</td>
</tr>
<tr>
<td>d</td>
<td>Destination select;</td>
</tr>
<tr>
<td></td>
<td>d = 0 (store result in W)</td>
</tr>
<tr>
<td></td>
<td>d = 1 (store result in file register ‘f’)</td>
</tr>
<tr>
<td></td>
<td>Default is d = 1</td>
</tr>
</tbody>
</table>

- **label** Label name
- **TOS** Top-of-Stack
- **PC** Program Counter
- **WDT** Watchdog Timer counter
- **TO** Time-out bit
- **PD** Power-down bit
- **dest** Destination, either the W register or the specified register file location
- **[]** Options
- **()** Contents
- **À** Assigned to
- **< >** Register bit field
- **È** In the set of
- **italics** User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 µs. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 µs.

Figure 13-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhthh

where ‘h’ signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations

<table>
<thead>
<tr>
<th>11 6 5 4 0</th>
<th>OPCODE</th>
<th>d</th>
<th>f (FILE #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d = 0 for destination W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d = 1 for destination f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f = 5-bit file register address</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit-oriented file register operations

<table>
<thead>
<tr>
<th>11 8 7 5 4 0</th>
<th>OPCODE</th>
<th>b (BIT #)</th>
<th>f (FILE #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b = 3-bit bit address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f = 5-bit file register address</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literal and control operations (except GOTO)

<table>
<thead>
<tr>
<th>11 8 7 0</th>
<th>OPCODE</th>
<th>k (literal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 8-bit immediate value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literal and control operations – GOTO instruction

<table>
<thead>
<tr>
<th>11 9 8 0</th>
<th>OPCODE</th>
<th>k (literal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 9-bit immediate value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 13-2: INSTRUCTION SET SUMMARY

<table>
<thead>
<tr>
<th>Mnemonic, Operands</th>
<th>Description</th>
<th>Cycles</th>
<th>12-Bit Opcode</th>
<th>Status Affected</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDWF f, d</td>
<td>Add W and f</td>
<td>1</td>
<td>0001 11df ffff</td>
<td>C, DC, Z</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>ANDWF f, d</td>
<td>AND W with f</td>
<td>1</td>
<td>0001 01df ffff</td>
<td>Z</td>
<td>2, 4</td>
</tr>
<tr>
<td>CLRF f</td>
<td>Clear f</td>
<td>1</td>
<td>0000 011f ffff</td>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>CLRW —</td>
<td>Clear W</td>
<td>1</td>
<td>0000 0100 0000</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>COMF f, d</td>
<td>Complement f</td>
<td>1</td>
<td>0010 01df ffff</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>DECF f, d</td>
<td>Decrement f</td>
<td>1(2)</td>
<td>0010 11df ffff</td>
<td>Z</td>
<td>2, 4</td>
</tr>
<tr>
<td>DECFSZ f, d</td>
<td>Decrement f, Skip if 0</td>
<td>1(2)</td>
<td>0010 11df ffff</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>INCF f, d</td>
<td>Increment f</td>
<td>1</td>
<td>0010 10df ffff</td>
<td>Z</td>
<td>2, 4</td>
</tr>
<tr>
<td>INCFSZ f, d</td>
<td>Increment f, Skip if 0</td>
<td>1(2)</td>
<td>0011 11df ffff</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>IORWF f, d</td>
<td>Inclusive OR W with f</td>
<td>1</td>
<td>0001 00df ffff</td>
<td>Z</td>
<td>2, 4</td>
</tr>
<tr>
<td>MOVF f, d</td>
<td>Move f</td>
<td>1</td>
<td>0010 00df ffff</td>
<td>Z</td>
<td>2, 4</td>
</tr>
<tr>
<td>MOVWF f</td>
<td>Move W to f</td>
<td>1</td>
<td>0000 001f ffff</td>
<td>None</td>
<td>1, 4</td>
</tr>
<tr>
<td>NOP —</td>
<td>No Operation</td>
<td>1</td>
<td>0000 0000 0000</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RLF f, d</td>
<td>Rotate left f through Carry</td>
<td>1</td>
<td>0011 01df ffff</td>
<td>C</td>
<td>2, 4</td>
</tr>
<tr>
<td>RRF f, d</td>
<td>Rotate right f through Carry</td>
<td>1</td>
<td>0011 00df ffff</td>
<td>C</td>
<td>2, 4</td>
</tr>
<tr>
<td>SUBWF f, d</td>
<td>Subtract W from f</td>
<td>1</td>
<td>0000 10df ffff</td>
<td>C, DC, Z</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>SWAPF f, d</td>
<td>Swap f</td>
<td>1</td>
<td>0011 10df ffff</td>
<td>None</td>
<td>2, 4</td>
</tr>
<tr>
<td>XORWF f, d</td>
<td>Exclusive OR W with f</td>
<td>1</td>
<td>0001 10df ffff</td>
<td>Z</td>
<td>2, 4</td>
</tr>
</tbody>
</table>

BIT-ORIENTED FILE REGISTER OPERATIONS

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th>Cycles</th>
<th>12-Bit Opcode</th>
<th>Status Affected</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF f, b</td>
<td>Bit Clear f</td>
<td>1</td>
<td>0100 bbbf ffff</td>
<td>None</td>
<td>2, 4</td>
</tr>
<tr>
<td>BSF f, b</td>
<td>Bit Set f</td>
<td>1</td>
<td>0101 bbbf ffff</td>
<td>None</td>
<td>2, 4</td>
</tr>
<tr>
<td>BTFSC f, b</td>
<td>Bit Test f, Skip if Clear</td>
<td>1(2)</td>
<td>0110 bbbf ffff</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>BTFSS f, b</td>
<td>Bit Test f, Skip if Set</td>
<td>1(2)</td>
<td>0111 bbbf ffff</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

LITERAL AND CONTROL OPERATIONS

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th>Cycles</th>
<th>12-Bit Opcode</th>
<th>Status Affected</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDLW k</td>
<td>AND literal with W</td>
<td>1</td>
<td>1110 kkkk kkkk</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>CALL k</td>
<td>Call Subroutine</td>
<td>2</td>
<td>1001 kkkk kkkk</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>CLRWDT —</td>
<td>Clear Watchdog Timer</td>
<td>1</td>
<td>0000 0000 0100</td>
<td>TO, PD</td>
<td></td>
</tr>
<tr>
<td>GOTO k</td>
<td>Unconditional branch</td>
<td>2</td>
<td>101k kkkk kkkk</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>IORLW k</td>
<td>Inclusive OR literal with W</td>
<td>1</td>
<td>1101 kkkk kkkk</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>MOVLB k</td>
<td>Move Literal to BSR Register</td>
<td>1</td>
<td>0000 0001 0kkk</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>MOVLW k</td>
<td>Move literal to W</td>
<td>1</td>
<td>1100 kkkk kkkk</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>OPTION —</td>
<td>Load OPTION register</td>
<td>1</td>
<td>0000 0000 0010</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RETFIE —</td>
<td>Return from Interrupt</td>
<td>2</td>
<td>0000 0001 1111</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RETLW k</td>
<td>Return, place literal in W</td>
<td>2</td>
<td>1000 kkkk kkkk</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RETURN —</td>
<td>Return, maintain W</td>
<td>2</td>
<td>0000 0001 1110</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>SLEEP —</td>
<td>Go into Standby mode</td>
<td>1</td>
<td>0000 0000 0011</td>
<td>TO, PD</td>
<td></td>
</tr>
<tr>
<td>TRIS f</td>
<td>Load TRIS register</td>
<td>1</td>
<td>0000 0000 0fff</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>XORLW k</td>
<td>Exclusive OR literal to W</td>
<td>1</td>
<td>1111 kkkk kkkk</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The 9th bit of the program counter will be forced to a ‘0’ by any instruction that writes to the PC except for GOTO. See Section 4.6 “Program Counter”.

Note 2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external device, the data will be written back with a ‘0’.

Note 3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state latches of PORTA. A ‘1’ forces the pin to a high-impedance state and disables the output buffers.

Note 4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).
ADDWF
Add W and f

Syntax: \[\text{label} \] ADDWF \ f,d

Operands:
- \(0 \leq f \leq 31\)
- \(d \in [0,1]\)

Operation: \((W) + (f) \rightarrow (\text{dest})\)

Status Affected: C, DC, Z

Description: Add the contents of the W register and register \(f\). If \(d\) is '0', the result is stored in the W register. If \(d\) is '1', the result is stored back in register \(f\).

BCF
Bit Clear f

Syntax: \[\text{label} \] BCF \ f,b

Operands:
- \(0 \leq f \leq 31\)
- \(0 \leq b \leq 7\)

Operation: \(0 \rightarrow (f<\text{b}>)\)

Status Affected: None

Description: Bit 'b' in register 'f' is cleared.

ANDLW
AND literal with W

Syntax: \[\text{label} \] ANDLW \ k

Operands:
- \(0 \leq k \leq 255\)

Operation: \((W).\text{AND.} (k) \rightarrow (W)\)

Status Affected: Z

Description: The contents of the W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

BSF
Bit Set f

Syntax: \[\text{label} \] BSF \ f,b

Operands:
- \(0 \leq f \leq 31\)
- \(0 \leq b \leq 7\)

Operation: \(1 \rightarrow (f<\text{b}>)\)

Status Affected: None

Description: Bit 'b' in register 'f' is set.

ANDWF
AND W with f

Syntax: \[\text{label} \] ANDWF \ f,d

Operands:
- \(0 \leq f \leq 31\)
- \(d \in [0,1]\)

Operation: \((W) .\text{AND.} (f) \rightarrow (\text{dest})\)

Status Affected: Z

Description: The contents of the W register are AND'ed with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BTFSC
Bit Test f, Skip if Clear

Syntax: \[\text{label} \] BTFSC \ f,b

Operands:
- \(0 \leq f \leq 31\)
- \(0 \leq b \leq 7\)

Operation: skip if \((f<\text{b}>) = 0\)

Status Affected: None

Description: If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2-cycle instruction.
BTFSS
- **Bit Test f, Skip if Set**
- **Syntax:** `[label] BTFSS f,b
- **Operands:** $0 \leq f \leq 31$
 $0 \leq b < 7$
- **Operation:** Skip if $(f<b) = 1$
- **Status Affected:** None
- **Description:** If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a **NOP** is executed instead, making this a 2-cycle instruction.

CALL
- **Subroutine Call**
- **Syntax:** `[label] CALL k
- **Operands:** $0 \leq k \leq 255$
- **Operation:**
 - $(PC) + 1 \rightarrow \text{Top-of-Stack}$
 - $k \rightarrow \text{PC}<7:0>$
 - $(\text{STATUS}<6:5>) \rightarrow \text{PC}<10:9>$
 - $0 \rightarrow \text{PC}<8>$
- **Status Affected:** None
- **Description:** Subroutine call. First, return address $(PC + 1)$ is PUSHed onto the stack. The 8-bit immediate address is loaded into PC bits $<7:0>$. The upper bits PC$<10:9>$ are loaded from STATUS$<6:5>$, PC$<8>$ is cleared. **CALL** is a 2-cycle instruction.

CLRF
- **Clear f**
- **Syntax:** `[label] CLRF f
- **Operands:** $0 \leq f \leq 31$
- **Operation:**
 - $00h \rightarrow (f)$
 - $1 \rightarrow Z$
- **Status Affected:** Z
- **Description:** The contents of register 'f' are cleared and the Z bit is set.

CLRW
- **Clear W**
- **Syntax:** `[label] CLRW
- **Operands:** None
- **Operation:**
 - $00h \rightarrow (W)$
 - $1 \rightarrow Z$
- **Status Affected:** Z
- **Description:** The W register is cleared. Zero bit (Z) is set.

CLRWDT
- **Clear Watchdog Timer**
- **Syntax:** `[label] CLRWDT
- **Operands:** None
- **Operation:**
 - $00h \rightarrow \text{WDT}$
 - $0 \rightarrow \text{WDT prescaler (if assigned)}$
 - $1 \rightarrow \text{TO}$
 - $1 \rightarrow \text{PD}$
- **Status Affected:** TO, PD
- **Description:** The **CLRWDT** instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set.

COMF
- **Complement f**
- **Syntax:** `[label] COMF f,d
- **Operands:** $0 \leq f \leq 31$
 $d \in [0,1]$
- **Operation:**
 - $(\bar{f}) \rightarrow (\text{dest})$
- **Status Affected:** Z
- **Description:** The contents of register 'f' are complemented. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
DECF

Syntax:
\[
[\text{label}] \quad \text{DECF} \; f,d
\]

Operands:
\[
0 \leq f \leq 31 \\
d \in [0,1]
\]

Operation:
\[
(f) - 1 \rightarrow \text{(dest)}
\]

Status Affected:
\[
Z
\]

Description:
Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

INCF

Syntax:
\[
[\text{label}] \quad \text{INCF} \; f,d
\]

Operands:
\[
0 \leq f \leq 31 \\
d \in [0,1]
\]

Operation:
\[
(f) + 1 \rightarrow \text{(dest)}
\]

Status Affected:
\[
Z
\]

Description:
The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

DECFSZ

Syntax:
\[
[\text{label}] \quad \text{DECFSZ} \; f,d
\]

Operands:
\[
0 \leq f \leq 31 \\
d \in [0,1]
\]

Operation:
\[
(f) - 1 \rightarrow \text{d}; \quad \text{skip if result} = 0
\]

Status Affected:
None

Description:
The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a 2-cycle instruction.

INCFSZ

Syntax:
\[
[\text{label}] \quad \text{INCFSZ} \; f,d
\]

Operands:
\[
0 \leq f \leq 31 \\
d \in [0,1]
\]

Operation:
\[
(f) + 1 \rightarrow \text{(dest)}, \text{skip if result} = 0
\]

Status Affected:
None

Description:
The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a 2-cycle instruction.

GOTO

Syntax:
\[
[\text{label}] \quad \text{GOTO} \; k
\]

Operands:
\[
0 \leq k \leq 511
\]

Operation:
\[
k \rightarrow \text{PC<8:0>}; \\
\text{STATUS<6:5>} \rightarrow \text{PC<10:9>}
\]

Status Affected:
None

Description:
GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a 2-cycle instruction.

IORLW

Syntax:
\[
[\text{label}] \quad \text{IORLW} \; k
\]

Operands:
\[
0 \leq k \leq 255
\]

Operation:
\[
(W) .OR. (k) \rightarrow (W)
\]

Status Affected:
Z

Description:
The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.
IORWF
Inclusive OR W with f

Syntax: \([label \] \) IORWF f,d

Operands:
- \(0 \leq f \leq 31\)
- \(d \in [0,1]\)

Operation: \((W).OR. (f) \rightarrow (dest)\)

Status Affected: Z

Description: Inclusive OR the W register with register ‘f’. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’.

MOVWF
Move W to f

Syntax: \([label \] \) MOVWF f

Operands: 0 ≤ f ≤ 31

Operation: \((W) \rightarrow (f)\)

Status Affected: None

Description: Move data from the W register to register ‘f’.

MOVF
Move f

Syntax: \([label \] \) MOVF f,d

Operands:
- \(0 \leq f \leq 31\)
- \(d \in [0,1]\)

Operation: \((f) \rightarrow (dest)\)

Status Affected: Z

Description: The contents of register ‘f’ are moved to destination ‘d’. If ‘d’ is ‘0’, destination is the W register. If ‘d’ is ‘1’, the destination is file register ‘f’. ‘d’ = 1 is useful as a test of a file register, since status flag Z is affected.

MOVLB
Move Literal to BSR

Syntax: \([label \] \) MOVLB k

Operands: 0 ≤ k ≤ 7

Operation: \(k \rightarrow (BSR)\)

Status Affected: None

Description: The 3-bit literal ‘k’ is loaded into the BSR register.

MOVLW
Move Literal to W

Syntax: \([label \] \) MOVLW k

Operands: 0 ≤ k ≤ 255

Operation: \(k \rightarrow (W)\)

Status Affected: None

Description: The 8-bit literal ‘k’ is loaded into the W register. The “don’t cares” will assembled as ‘0’s.

OPTION
Load OPTION Register

Syntax: \([label \] \) OPTION

Operands: None

Operation: \((W) \rightarrow \text{OPTION}\)

Status Affected: None

Description: The content of the W register is loaded into the OPTION register.

RETFIE
Return From Interrupt

Syntax: \([label \] \) RETFIE

Operands: None

Operation: \(\text{TOS} \rightarrow \text{PC}\)
- \(1 \rightarrow \text{GIE}\)

Status Affected: None

Description: The program counter is loaded from the top of the stack (the return address). GIE bit of INTCON0 is set. This is a 2-cycle instruction.
RETLW
Return with Literal in W

Syntax:

\[
\text{[label] RETLW \; k}
\]

Operands:

\(0 \leq k \leq 255\)

Operation:

\(k \rightarrow (W);\)

\(\text{TOS} \rightarrow \text{PC}\)

Status Affected: None

Description:

The W register is loaded with the 8-bit literal ‘k’. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.

RETURN
Return

Syntax:

\[
\text{[label] RETURN}
\]

Operands: None

Operation:

\(\text{TOS} \rightarrow \text{PC}\)

Status Affected: None

Description:

The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.

RLF
Rotate Left f through Carry

Syntax:

\[
\text{[label] RLF \; f,d}
\]

Operands:

\(0 \leq f \leq 31\)

\(d \in [0,1]\)

Operation:

See description below

Status Affected: C

Description:

The contents of register ‘f’ are rotated one bit to the left through the Carry flag. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’.

RRF
Rotate Right f through Carry

Syntax:

\[
\text{[label] RRF \; f,d}
\]

Operands:

\(0 \leq f \leq 31\)

\(d \in [0,1]\)

Operation:

See description below

Status Affected: C

Description:

The contents of register ‘f’ are rotated one bit to the right through the Carry flag. If ‘d’ is ‘0’, the result is placed in the W register. If ‘d’ is ‘1’, the result is placed back in register ‘f’.

SLEEP
Enter SLEEP Mode

Syntax:

\[
\text{[label] SLEEP}
\]

Operands: None

Operation:

\(00h \rightarrow \text{WDT};\)

\(0 \rightarrow \text{WDT prescaler}\)

\(1 \rightarrow T0\)

\(0 \rightarrow PD\)

Status Affected: T0, PD

Description:

Time-out Status bit (TO) is set. The Power-down Status bit (PD) is cleared.

The WDT and its prescaler are cleared.

The processor is put into Sleep mode with the oscillator stopped.

See Section 8.10 “Power-down Mode (Sleep)” on Sleep for more details.

SUBWF
Subtract W from f

Syntax:

\[
\text{[label] SUBWF \; f,d}
\]

Operands:

\(0 \leq f \leq 31\)

\(d \in [0,1]\)

Operation:

\((f) – (W) \rightarrow (\text{dest})\)

Status Affected: C, DC, Z

Description:

Subtract (2’s complement method) the W register from register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’.
SWAPF (Swap Nibbles in f)

Syntax:

\[\text{label} \] SWAPF f,d

Operands:

- \(0 \leq f \leq 31 \)
- \(d \in [0,1] \)

Operation:

\((f<3:0>) \rightarrow (\text{dest}<7:4>); \)
\((f<7:4>) \rightarrow (\text{dest}<3:0>) \)

Status Affected: None

Description:

The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.

XORWF (Exclusive OR with f)

Syntax:

\[\text{label} \] XORWF f,d

Operands:

- \(0 \leq f \leq 31 \)
- \(d \in [0,1] \)

Operation:

\((W) \oplus (f) \rightarrow (\text{dest}) \)

Status Affected: Z

Description:

Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

TRIS (Load TRIS Register)

Syntax:

\[\text{label} \] TRIS f

Operands:

- \(f = 6 \)

Operation:

\((W) \rightarrow \text{TRIS register } f \)

Status Affected: None

Description:

TRIS register 'f' (\(f = 6, 7 \) or \(8 \)) is loaded with the contents of the W register.

XORLW (Exclusive OR literal with W)

Syntax:

\[\text{label} \] XORLW k

Operands:

- \(0 \leq k \leq 255 \)

Operation:

\((W) \oplus k \rightarrow (W) \)

Status Affected: Z

Description:

The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.
14.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers (MCU) and dsPIC® digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

• Integrated Development Environment
 - MPLAB® X IDE Software
• Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM™ Assembler
 - MPLINK™ Object Linker/
 MPLIB™ Object Librarian
 - MPLAB Assembler/Linker/Librarian for
 Various Device Families
• Simulators
 - MPLAB X SIM Software Simulator
• Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
• In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
• Device Programmers
 - MPLAB PM3 Device Programmer
• Low-Cost Demonstration/Development Boards,
 Evaluation Kits and Starter Kits
• Third-party development tools

14.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows®, Linux and Mac OS® X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:
• Color syntax highlighting
• Smart code completion makes suggestions and
 provides hints as you type
• Automatic code formatting based on user-defined
 rules
• Live parsing

User-Friendly, Customizable Interface:
• Fully customizable interface: toolbars, toolbar
 buttons, windows, window placement, etc.
• Call graph window

Project-Based Workspaces:
• Multiple projects
• Multiple tools
• Multiple configurations
• Simultaneous debugging sessions

File History and Bug Tracking:
• Local file history feature
• Built-in support for Bugzilla issue tracker
14.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip’s 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

• Support for the entire device instruction set
• Support for fixed-point and floating-point data
• Command-line interface
• Rich directive set
• Flexible macro language
• MPLAB X IDE compatibility

14.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects
• User-defined macros to streamline assembly code
• Conditional assembly for multipurpose source files
• Directives that allow complete control over the assembly process

14.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many smaller files
• Enhanced code maintainability by grouping related modules together
• Flexible creation of libraries with easy module listing, replacement, deletion and extraction

14.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

• Support for the entire device instruction set
• Support for fixed-point and floating-point data
• Command-line interface
• Rich directive set
• Flexible macro language
• MPLAB X IDE compatibility
14.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

14.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

14.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip’s most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

14.9 PICkit 3 In-Circuit Debugger/Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer’s PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector compatible with MPLAB ICD 3 and MPLAB REAL ICE. The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™).

14.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at V_{DDMIN} and V_{DDMAX} for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.
14.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

14.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent® and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika®
15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings\(^\dagger\)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature under bias</td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Voltage on VDD with respect to Vss</td>
<td>0 to +6.5V</td>
</tr>
<tr>
<td>Voltage on MCLR with respect to Vss</td>
<td>0 to +13.5V</td>
</tr>
<tr>
<td>Voltage on all other pins with respect to Vss</td>
<td>-0.3V to (VDD + 0.3V)</td>
</tr>
<tr>
<td>Total power dissipation(^\dagger)</td>
<td>700 mW</td>
</tr>
<tr>
<td>Max. current out of Vss pin</td>
<td>200 mA</td>
</tr>
<tr>
<td>Max. current into VDD pin</td>
<td>150 mA</td>
</tr>
<tr>
<td>Input clamp current, I(I)K ((V_i < 0 \text{ or } V_i > VDD))</td>
<td>±20 mA</td>
</tr>
<tr>
<td>Output clamp current, I(O)K ((V_o < 0 \text{ or } V_o > VDD))</td>
<td>±20 mA</td>
</tr>
<tr>
<td>Max. output current sunk by any I/O pin</td>
<td>25 mA</td>
</tr>
<tr>
<td>Max. output current sourced by any I/O pin</td>
<td>25 mA</td>
</tr>
<tr>
<td>Max. output current sunk by I/O port</td>
<td>75 mA</td>
</tr>
<tr>
<td>Max. output current sunk by I/O port</td>
<td>75 mA</td>
</tr>
</tbody>
</table>

\(^\dagger\)NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

\(^1\)NOTICE: Power dissipation is calculated as follows: \(P_{\text{DIS}} = V_{DD} \times (I_{DD} - \sum I_{OH}) + \sum (V_{DD} - V_{OH}) \times I_{OH} + \sum (V_{OL} \times I_{OL})\)
FIGURE 15-1: PIC16F527 VOLTAGE-FREQUENCY GRAPH, \(-40^\circ C \leq T_A \leq +125^\circ C\)

![VDD vs Frequency Graph](image)

FIGURE 15-2: MAXIMUM OSCILLATOR FREQUENCY TABLE

<table>
<thead>
<tr>
<th>Oscillator Mode</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>200 kHz</td>
</tr>
<tr>
<td>XT</td>
<td>4 MHz</td>
</tr>
<tr>
<td>XTRC</td>
<td>8 MHz</td>
</tr>
<tr>
<td>INTOSC</td>
<td>16 MHz</td>
</tr>
<tr>
<td>EC</td>
<td>20 MHz</td>
</tr>
<tr>
<td>HS</td>
<td>20 MHz</td>
</tr>
</tbody>
</table>
15.1 DC Characteristics: PIC16F527 (Industrial)

DC Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>VDD</td>
<td>Supply Voltage</td>
<td>2.0</td>
<td>5.5 V</td>
<td></td>
<td>V</td>
<td>See Figure 15-1</td>
</tr>
<tr>
<td>D002</td>
<td>VDR</td>
<td>RAM Data Retention Voltage (2)</td>
<td>—</td>
<td>1.5*</td>
<td>—</td>
<td>V</td>
<td>Device in Sleep mode</td>
</tr>
<tr>
<td>D003</td>
<td>VPOR</td>
<td>VDD Start Voltage to ensure Power-on Reset</td>
<td>—</td>
<td>Vss</td>
<td>—</td>
<td>V</td>
<td>See Section 8.5 “Power-on Reset (POR)” for details</td>
</tr>
<tr>
<td>D004</td>
<td>SVDD</td>
<td>VDD Rise Rate to ensure Power-on Reset</td>
<td>0.05*</td>
<td>—</td>
<td>—</td>
<td>V/ms</td>
<td>See Section 8.5 “Power-on Reset (POR)” for details</td>
</tr>
<tr>
<td>D005</td>
<td>IDD</td>
<td>Supply Current During Prog/Erase</td>
<td>—</td>
<td>1.0*</td>
<td>—</td>
<td>mA</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>D010</td>
<td>IDD</td>
<td>Supply Current (3,4,6)</td>
<td>—</td>
<td>175</td>
<td>300</td>
<td>µA</td>
<td>Fosc = 4 MHz, VDD = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>490</td>
<td>750</td>
<td>µA</td>
<td>Fosc = 4 MHz, VDD = 5.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>350</td>
<td>500</td>
<td>µA</td>
<td>Fosc = 8 MHz, VDD = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>850</td>
<td>1300</td>
<td>µA</td>
<td>Fosc = 8 MHz, VDD = 5.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>1800</td>
<td>2500</td>
<td>µA</td>
<td>Fosc = 20 MHz, VDD = 5.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>13</td>
<td>22</td>
<td>µA</td>
<td>Fosc = 32 kHz, VDD = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>30</td>
<td>55</td>
<td>µA</td>
<td>Fosc = 32 kHz, VDD = 5.0V</td>
</tr>
<tr>
<td>D020</td>
<td>IPD</td>
<td>Power-down Current (5)</td>
<td>—</td>
<td>0.05</td>
<td>1.2</td>
<td>µA</td>
<td>VDD = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>0.35</td>
<td>3.0</td>
<td>µA</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>D021</td>
<td>IBOR</td>
<td>BOR Current (5)</td>
<td>—</td>
<td>3.5</td>
<td>7.0</td>
<td>µA</td>
<td>VDD = 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>4.0</td>
<td>9.0</td>
<td>µA</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>D022</td>
<td>IWDT</td>
<td>WDT Current (5)</td>
<td>—</td>
<td>0.5</td>
<td>3.0</td>
<td>µA</td>
<td>VDD = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>8.0</td>
<td>16.0</td>
<td>µA</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>D023</td>
<td>ICMP</td>
<td>Comparator Current (5)</td>
<td>—</td>
<td>15</td>
<td>26</td>
<td>µA</td>
<td>VDD = 2.0V (per comparator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>60</td>
<td>85</td>
<td>µA</td>
<td>VDD = 5.0V (per comparator)</td>
</tr>
<tr>
<td>D024</td>
<td>ICREF</td>
<td>CVREF Current (5)</td>
<td>—</td>
<td>30</td>
<td>70</td>
<td>µA</td>
<td>VDD = 2.0V (high range)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>75</td>
<td>125</td>
<td>µA</td>
<td>VDD = 5.0V (high range)</td>
</tr>
<tr>
<td>D025</td>
<td>IWFIR</td>
<td>Internal 0.6V Fixed Voltage Reference Current (5)</td>
<td>—</td>
<td>100</td>
<td>130</td>
<td>µA</td>
<td>VDD = 2.0V (reference and 1 comparator enabled)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>175</td>
<td>220</td>
<td>µA</td>
<td>VDD = 5.0V (reference and 1 comparator enabled)</td>
</tr>
<tr>
<td>D026</td>
<td>IAD2</td>
<td>A/D Current</td>
<td>—</td>
<td>0.5</td>
<td>2.0</td>
<td>µA</td>
<td>2.0V, No conversion in progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>0.8</td>
<td>3.2</td>
<td>µA</td>
<td>5.0V, No conversion in progress</td>
</tr>
<tr>
<td>D027</td>
<td>IOPA</td>
<td>Op Amp Current (5)</td>
<td>—</td>
<td>330</td>
<td>415</td>
<td>µA</td>
<td>VDD = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>360</td>
<td>465</td>
<td>µA</td>
<td>VDD = 5.0V</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

4: The test conditions for all I/0 measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = Vdd, MCLR = Vdd; WDT enabled/disabled as specified.

5: For standby current measurements, the conditions are the same as I/0, except that the device is in Sleep mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.

6: Does not include current through REXT. The current through the resistor can be estimated by the formula: I = VDD/2REXT (mA) with REXT in kΩ.
15.2 DC Characteristics: PIC16F527 (Extended)

DC Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>VDD</td>
<td>Supply Voltage</td>
<td>2.0</td>
<td>5.5</td>
<td>—</td>
<td>V</td>
<td>See Figure 15-1</td>
</tr>
<tr>
<td>D002</td>
<td>VDR</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Device in Sleep mode</td>
</tr>
<tr>
<td>D003</td>
<td>VPOR</td>
<td>VDD Start Voltage to ensure Power-on Reset</td>
<td>—</td>
<td>Vss</td>
<td>—</td>
<td>V</td>
<td>See Section 8.5 “Power-on Reset (POR)” for details.</td>
</tr>
<tr>
<td>D004</td>
<td>SVDD</td>
<td>VDD Rise Rate to ensure Power-on Reset</td>
<td>0.05*</td>
<td>—</td>
<td>—</td>
<td>V/µs</td>
<td>See Section 8.5 “Power-on Reset (POR)” for details.</td>
</tr>
<tr>
<td>D005</td>
<td>I DD</td>
<td>Supply Current During Prog/Erase</td>
<td>—</td>
<td>1.0*</td>
<td>—</td>
<td>mA</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>D010</td>
<td>I DD</td>
<td>Supply Current</td>
<td>—</td>
<td>1.0*</td>
<td>—</td>
<td>mA</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>D011</td>
<td>I DD</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D020</td>
<td>I PD</td>
<td>Power-down Current</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
<td>µA</td>
<td>VDD = 2.0V</td>
</tr>
<tr>
<td>D021</td>
<td>I BOR</td>
<td>BOR Current</td>
<td>—</td>
<td>3.5</td>
<td>—</td>
<td>µA</td>
<td>VDD = 3.0V</td>
</tr>
<tr>
<td>D022</td>
<td>I WDT</td>
<td>WDT Current</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>µA</td>
<td>VDD = 2.0V</td>
</tr>
<tr>
<td>D023</td>
<td>I CMP</td>
<td>Comparator Current</td>
<td>—</td>
<td>15</td>
<td>—</td>
<td>µA</td>
<td>VDD = 2.0V (per comparator)</td>
</tr>
<tr>
<td>D024</td>
<td>I CVREF</td>
<td>CVREF Current</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>µA</td>
<td>VDD = 2.0V (high range)</td>
</tr>
<tr>
<td>D025</td>
<td>I VFIR</td>
<td>Internal 0.6V Fixed Voltage Reference Current</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>µA</td>
<td>VDD = 2.0V (reference and 1 comparator enabled)</td>
</tr>
<tr>
<td>D026</td>
<td>I AD2</td>
<td>A/D Current</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>µA</td>
<td>VDD = 2.0V, No conversion in progress</td>
</tr>
<tr>
<td>D027</td>
<td>I OPA</td>
<td>Op Amp Current</td>
<td>—</td>
<td>330</td>
<td>—</td>
<td>µA</td>
<td>VDD = 2.0V</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

4: The test conditions for all I DD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

5: For standby current measurements, the conditions are the same as I DD, except that the device is in Sleep mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.

6: Does not include current through R EXT. The current through the resistor can be estimated by the formula: I = VDD/2REXT (mA) with R EXT in kΩ.
TABLE 15-1: DC CHARACTERISTICS: PIC16F527 (INDUSTRIAL, EXTENDED)

<table>
<thead>
<tr>
<th>DC CHARACTERISTICS</th>
<th>Standard Operating Conditions (unless otherwise specified)</th>
<th>Operating temperature</th>
<th>-40°C ≤ TA ≤ +85°C (industrial)</th>
<th>-40°C ≤ TA ≤ +125°C (extended)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.†</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIL</td>
<td></td>
<td>I/O ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D030</td>
<td></td>
<td>with TTL buffer</td>
<td>Vss</td>
<td>—</td>
<td>0.8V</td>
<td>V</td>
<td>For all 4.5 ≤ VDD ≤ 5.5V</td>
</tr>
<tr>
<td>D030A</td>
<td></td>
<td></td>
<td>Vss</td>
<td>—</td>
<td>0.15VDD</td>
<td>V</td>
<td>Otherwise</td>
</tr>
<tr>
<td>D031</td>
<td></td>
<td>with Schmitt Trigger buffer</td>
<td>Vss</td>
<td>—</td>
<td>0.15VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D032</td>
<td></td>
<td>MCLR, T0CKI</td>
<td>Vss</td>
<td>—</td>
<td>0.15VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D033</td>
<td></td>
<td>OSC1 (EXTRC mode), (EC mode)</td>
<td>Vss</td>
<td>—</td>
<td>0.15VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D033</td>
<td></td>
<td>OSC1 (HS mode)</td>
<td>Vss</td>
<td>—</td>
<td>0.3VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D033</td>
<td></td>
<td>OSC1 (XT and LP modes)</td>
<td>Vss</td>
<td>—</td>
<td>0.3VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VIH</td>
<td></td>
<td>I/O ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D040</td>
<td></td>
<td>with TTL buffer</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td>4.5 ≤ VDD ≤ 5.5V</td>
</tr>
<tr>
<td>D040A</td>
<td></td>
<td></td>
<td>0.25VDD</td>
<td>+ 0.8VDD</td>
<td>—</td>
<td>VDD</td>
<td>Otherwise</td>
</tr>
<tr>
<td>D041</td>
<td></td>
<td>with Schmitt Trigger buffer</td>
<td>0.85VDD</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>D042</td>
<td></td>
<td>MCLR, T0CKI</td>
<td>0.85VDD</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>D042A</td>
<td></td>
<td>OSC1 (EXTRC mode), (EC mode)</td>
<td>0.85VDD</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>D042A</td>
<td></td>
<td>OSC1 (HS mode)</td>
<td>0.7VDD</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>D043</td>
<td></td>
<td>OSC1 (XT and LP modes)</td>
<td>1.6</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>IPUR</td>
<td></td>
<td>PORTA and MCLR weak pull-up current(4)</td>
<td>50</td>
<td>250</td>
<td>400</td>
<td>μA</td>
<td>VDD = 5V, VPIN = VSS</td>
</tr>
<tr>
<td>IIL</td>
<td></td>
<td>I/O ports</td>
<td></td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>D060</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>D061</td>
<td></td>
<td>MCLR</td>
<td></td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>D063</td>
<td></td>
<td>OSC1</td>
<td></td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td></td>
<td>I/O ports/CLKOUT</td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>D080</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>D080A</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>D083</td>
<td></td>
<td>OSC2</td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>D083A</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
</tr>
</tbody>
</table>

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F527 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: This spec applies to all weak pull-up devices, including the weak pull-up found on MCLR.
TABLE 15-1: DC CHARACTERISTICS: PIC16F527 (INDUSTRIAL, EXTENDED) (CONTINUED)

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.†</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D090</td>
<td>VOH</td>
<td>Output High Voltage</td>
<td>VDD – 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C</td>
</tr>
<tr>
<td>D090A</td>
<td></td>
<td>I/O ports/CLKOUT</td>
<td>VDD – 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C</td>
</tr>
<tr>
<td>D092</td>
<td>OSC2</td>
<td></td>
<td>VDD – 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C</td>
</tr>
<tr>
<td>D092A</td>
<td></td>
<td></td>
<td>VDD – 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C</td>
</tr>
</tbody>
</table>

† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F527 be driven with external clock in RC mode.

Note 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

Note 3: Negative current is defined as coming out of the pin.

Note 4: This spec applies to all weak pull-up devices, including the weak pull-up found on MCLR.
<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.†</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D100</td>
<td>COSC2</td>
<td>OSC2 pin</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>pF</td>
<td>In XT, HS and LP modes when external clock is used to drive OSC1.</td>
</tr>
<tr>
<td>D101</td>
<td>CIO</td>
<td>All I/O pins and OSC2</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>D120</td>
<td>E0</td>
<td>Byte endurance</td>
<td>100K</td>
<td>1M</td>
<td>—</td>
<td>E/W</td>
<td>-40°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td>D120A</td>
<td>E0</td>
<td>Byte endurance</td>
<td>10K</td>
<td>100K</td>
<td>—</td>
<td>E/W</td>
<td>+85°C ≤ TA ≤ +125°C</td>
</tr>
<tr>
<td>D121</td>
<td>VDRW</td>
<td>VDD for read/write</td>
<td>VMIN</td>
<td>5.5</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F527 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: This spec applies to all weak pull-up devices, including the weak pull-up found on MCLR.
TABLE 15-2: COMPARATOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input offset voltage VOS</td>
<td>—</td>
<td>—</td>
<td>± 5.0</td>
<td>±10.0</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Input common mode voltage* VCM</td>
<td>0</td>
<td>—</td>
<td>VDD – 1.5</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>CMRR* CMRR</td>
<td>55</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>db</td>
<td></td>
</tr>
<tr>
<td>Response Time (1)* TRT</td>
<td>—</td>
<td>150</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Comparator Mode Change to Output Valid*</td>
<td>TMC2COV</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from VSS to VDD – 1.5V.

TABLE 15-3: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Characteristics</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVRES</td>
<td>Resolution</td>
<td>—</td>
<td>VDD/24*</td>
<td>—</td>
<td>LSb</td>
<td>Low Range (VRR = 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>VDD/32</td>
<td>—</td>
<td>LSb</td>
<td>High Range (VRR = 0)</td>
</tr>
<tr>
<td></td>
<td>Absolute Accuracy(2)</td>
<td>—</td>
<td>—</td>
<td>±1/2*</td>
<td>LSb</td>
<td>Low Range (VRR = 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>±1/2*</td>
<td>LSb</td>
<td>High Range (VRR = 0)</td>
</tr>
<tr>
<td></td>
<td>Unit Resistor Value (R)</td>
<td>—</td>
<td>2K*</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settling Time(1)</td>
<td>—</td>
<td>10*</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and V<3:0> transitions from 0000 to 1111.

Note 2: Do not use reference externally when VDD < 2.7V. Under this condition, reference should only be used with comparator Voltage Common mode observed.

TABLE 15-4: FIXED INPUT REFERENCE SPECIFICATION

<table>
<thead>
<tr>
<th>Input Reference Specifications</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Accuracy</td>
<td>VFR</td>
<td>0.5</td>
<td>0.60</td>
<td>0.7</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 15-5: A/D CONVERTER CHARACTERISTICS

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.†</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>NR</td>
<td>Resolution</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>bit</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>A03</td>
<td>EINL</td>
<td>Integral Error</td>
<td>—</td>
<td>—</td>
<td>±1.5</td>
<td>LSb</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>A04</td>
<td>EDNL</td>
<td>Differential Error</td>
<td>—</td>
<td>—</td>
<td>–1 < EDNL ≤ 1.7</td>
<td>LSb</td>
<td>No missing codes</td>
</tr>
<tr>
<td>A05</td>
<td>EFS</td>
<td>Full Scale Range</td>
<td>2.0*</td>
<td>—</td>
<td>5.5*</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A06</td>
<td>EOF F</td>
<td>Offset Error</td>
<td>—</td>
<td>—</td>
<td>±1.5</td>
<td>LSb</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>A07</td>
<td>EGN</td>
<td>Gain Error</td>
<td>-0.7</td>
<td>—</td>
<td>±2.2</td>
<td>LSb</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>A10</td>
<td>—</td>
<td>Monotonicity</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>VSS ≤ VAIN ≤ VDD</td>
</tr>
<tr>
<td>A25*</td>
<td>VAIN</td>
<td>Analog Input Voltage</td>
<td>VSS</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A30*</td>
<td>ZAIN</td>
<td>Recommended Impedance of Analog Voltage Source</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>KΩ</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
15.3 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS
2. TppS

<table>
<thead>
<tr>
<th>T</th>
<th>F</th>
<th>Frequency</th>
<th>T</th>
<th>Time</th>
</tr>
</thead>
</table>

Lowercase subscripts (pp) and their meanings:

<table>
<thead>
<tr>
<th>pp</th>
<th>to</th>
<th>mc</th>
<th>MCLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ck</td>
<td>CLKOUT</td>
<td>osc</td>
<td>Oscillator</td>
</tr>
<tr>
<td>cy</td>
<td>Cycle time</td>
<td>os</td>
<td>OSC1</td>
</tr>
<tr>
<td>drt</td>
<td>Device Reset Timer</td>
<td>t0</td>
<td>T0CKI</td>
</tr>
<tr>
<td>io</td>
<td>I/O port</td>
<td>wdt</td>
<td>Watchdog Timer</td>
</tr>
</tbody>
</table>

Uppercase letters and their meanings:

<table>
<thead>
<tr>
<th>S</th>
<th>F</th>
<th>Fall</th>
<th>P</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>High</td>
<td>R</td>
<td>Rise</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Invalid (high-impedance)</td>
<td>V</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>Low</td>
<td>Z</td>
<td>High-impedance</td>
</tr>
</tbody>
</table>

FIGURE 15-3: LOAD CONDITIONS

Legends:

- CL = 50 pF for all pins except OSC2
- 15 pF for OSC2 in XT, HS or LP modes when external clock is used to drive OSC1

FIGURE 15-4: EXTERNAL CLOCK TIMING
TABLE 15-6: EXTERNAL CLOCK TIMING REQUIREMENTS

AC Characteristics

Standard Operating Conditions (unless otherwise specified)
- Operating Temperature: -40°C ≤ Ta ≤ +85°C (industrial), -40°C ≤ Ta ≤ +125°C (extended)
- Operating voltage VDD range is described in Section 15.1 “DC Characteristics: PIC16F527 (Industrial)”.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Fosc</td>
<td>External CLKin Frequency (2)</td>
<td>DC</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>XT Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>20</td>
<td>MHz</td>
<td>HS/EC Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>200</td>
<td>kHz</td>
<td>LP Oscillator</td>
</tr>
<tr>
<td></td>
<td>Oscillator Frequency (2)</td>
<td>DC</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>EXTRC Oscillator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>XT Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>—</td>
<td>20</td>
<td>MHz</td>
<td>HS/EC Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>200</td>
<td>kHz</td>
<td>LP Oscillator</td>
</tr>
<tr>
<td>1</td>
<td>Tosc</td>
<td>External CLKin Period (2)</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>HS/EC Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td>LP Oscillator</td>
</tr>
<tr>
<td></td>
<td>Oscillator Period (2)</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>EXTRC Oscillator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>—</td>
<td>10,000</td>
<td>ns</td>
<td>XT Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>—</td>
<td>250</td>
<td>ns</td>
<td>HS/EC Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td>LP Oscillator</td>
</tr>
<tr>
<td>2</td>
<td>Tcy</td>
<td>Instruction Cycle Time</td>
<td>200</td>
<td>4/Fosc</td>
<td>DC</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TosL, TosH</td>
<td>Clock in (OSC1) Low or High Time</td>
<td>50*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2*</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td>LP Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>HS/EC Oscillator</td>
</tr>
<tr>
<td>4</td>
<td>TosR, TosF</td>
<td>Clock in (OSC1) Rise or Fall Time</td>
<td>—</td>
<td>—</td>
<td>25*</td>
<td>ns</td>
<td>XT Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>50*</td>
<td>ns</td>
<td>LP Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>15*</td>
<td>ns</td>
<td>HS/EC Oscillator</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 2: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.
TABLE 15-7: CALIBRATED INTERNAL RC FREQUENCIES

<table>
<thead>
<tr>
<th>AC Characteristics</th>
<th>Standard Operating Conditions (unless otherwise specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating Temperature -40°C ≤ TA ≤ +85°C (industrial),</td>
</tr>
<tr>
<td></td>
<td>-40°C ≤ TA ≤ +125°C (extended)</td>
</tr>
<tr>
<td></td>
<td>Operating voltage VDD range is described in Section 15.1 “DC Characteristics: PIC16F527 (Industrial)”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F10</td>
<td>FOSC</td>
<td>Internal Calibrated INTOSC Frequency(^{(1)})</td>
<td>±1%</td>
<td>7.92</td>
<td>8.00</td>
<td>8.08</td>
<td>MHz</td>
<td>3.5V, 25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±2%</td>
<td>7.84</td>
<td>8.00</td>
<td>8.16</td>
<td>MHz</td>
<td>2.5V ≤ VDD ≤ 5.5V, 0°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±5%</td>
<td>7.60</td>
<td>8.00</td>
<td>8.40</td>
<td>MHz</td>
<td>2.0V ≤ VDD ≤ 5.5V, -40°C ≤ TA ≤ +85°C (Ind.)</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 uF and 0.01 uF values in parallel are recommended.
FIGURE 15-5: I/O TIMING

![I/O Timing Diagram](image)

Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.

TABLE 15-8: TIMING REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Tosh2ioV</td>
<td>OSC1↑ (Q1 cycle) to Port Out Valid (2,3)</td>
<td>—</td>
<td>—</td>
<td>100*</td>
<td>ns</td>
</tr>
<tr>
<td>18</td>
<td>Tosh2ioI</td>
<td>OSC1↑ (Q2 cycle) to Port Input Invalid (I/O in hold time) (2)</td>
<td>50*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>19</td>
<td>TioV2osH</td>
<td>Port Input Valid to OSC1↑ (I/O in setup time)</td>
<td>20*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>20</td>
<td>TioR</td>
<td>Port Output Rise Time (3)</td>
<td>—</td>
<td>10</td>
<td>50**</td>
<td>ns</td>
</tr>
<tr>
<td>21</td>
<td>TioF</td>
<td>Port Output Fall Time (3)</td>
<td>—</td>
<td>10</td>
<td>50**</td>
<td>ns</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
** These parameters are design targets and are not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: Measurements are taken in EXTRC mode.
3: See Figure 15-3 for loading conditions.
FIGURE 15-6: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING

Note 1: I/O pins must be taken out of High-Impedance mode by enabling the output drivers in software.
2: Runs in MCLR or WDT Reset only in XT, LP and HS modes.

FIGURE 15-7: BROWN-OUT RESET TIMING AND CHARACTERISTICS
TABLE 15-9: BOR, POR, WATCHDOG TIMER AND DEVICE RESET TIMER

AC Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>TMCCL</td>
<td>MCLR Pulse Width (low)</td>
<td>2000*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>31</td>
<td>TWDT</td>
<td>Watchdog Timer Time-out Period (no prescaler)</td>
<td>9*</td>
<td>18*</td>
<td>30*</td>
<td>ms</td>
<td>VDD = 5.0V (Industrial)</td>
</tr>
<tr>
<td>32</td>
<td>TDRT</td>
<td>Device Reset Timer Period</td>
<td>9*</td>
<td>18*</td>
<td>30*</td>
<td>ms</td>
<td>VDD = 5.0V (Industrial)</td>
</tr>
<tr>
<td>34</td>
<td>TIOZ</td>
<td>I/O High-impedance from MCLR low</td>
<td>—</td>
<td>—</td>
<td>2000*</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>VBOR</td>
<td>Brown-out Reset Voltage</td>
<td>1.95</td>
<td>—</td>
<td>2.25</td>
<td>V</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>36*</td>
<td>VHYST</td>
<td>Brown-out Reset Hysteresis</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>37*</td>
<td>TBOR</td>
<td>Brown-out Reset Minimum Detection Period</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>VDD ≤ VBOR</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 2: To ensure these voltage tolerances, Vdd and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

TABLE 15-10: DRT (DEVICE RESET TIMER PERIOD)

<table>
<thead>
<tr>
<th>Oscillator Configuration</th>
<th>POR Reset</th>
<th>Subsequent Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntRC, ExtRC, and EC</td>
<td>10 µs (typical) + 18 ms (DRTEN = 1)</td>
<td>10 µs (typical) + 18 ms (DRTEN = 1)</td>
</tr>
<tr>
<td>XT, HS and LP</td>
<td>18 ms (typical)</td>
<td>18 ms (typical)</td>
</tr>
</tbody>
</table>

TABLE 15-11: PULL-UP RESISTOR RANGES

<table>
<thead>
<tr>
<th>VDD (Volts)</th>
<th>Temperature (°C)</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB0-RB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>-40</td>
<td>73K</td>
<td>105K</td>
<td>186K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>73K</td>
<td>113K</td>
<td>187K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>82K</td>
<td>123K</td>
<td>190K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>86K</td>
<td>132k</td>
<td>190K</td>
<td>Ω</td>
</tr>
<tr>
<td>5.5</td>
<td>-40</td>
<td>15K</td>
<td>21K</td>
<td>33K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>15K</td>
<td>22K</td>
<td>34K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>19K</td>
<td>26k</td>
<td>35K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>23K</td>
<td>29K</td>
<td>35K</td>
<td>Ω</td>
</tr>
<tr>
<td>MCLR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>-40</td>
<td>63K</td>
<td>81K</td>
<td>96K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>77K</td>
<td>93K</td>
<td>116K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>82K</td>
<td>96k</td>
<td>116K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>86K</td>
<td>100K</td>
<td>119K</td>
<td>Ω</td>
</tr>
<tr>
<td>5.5</td>
<td>-40</td>
<td>16k</td>
<td>20k</td>
<td>22k</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>16k</td>
<td>21K</td>
<td>23k</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>24K</td>
<td>25k</td>
<td>28K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>26K</td>
<td>27K</td>
<td>29K</td>
<td>Ω</td>
</tr>
</tbody>
</table>
FIGURE 15-8: TIMER0 CLOCK TIMINGS

TABLE 15-12: TIMER0 CLOCK REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Tt0H</td>
<td>T0CKI High Pulse Width</td>
<td>No Prescaler</td>
<td>0.5 T CY + 20*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With Prescaler</td>
<td>10*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>41</td>
<td>Tt0L</td>
<td>T0CKI Low Pulse Width</td>
<td>No Prescaler</td>
<td>0.5 T CY + 20*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With Prescaler</td>
<td>10*</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>42</td>
<td>Tt0P</td>
<td>T0CKI Period</td>
<td>20 or T CY + 40° N</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Whichever is greater. N = Prescale Value (1, 2, 4, ..., 256)</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
15.4 Operational Amplifiers

TABLE 15-13: OPERATIONAL AMPLIFIER (OPA) MODULE DC SPECIFICATIONS

<table>
<thead>
<tr>
<th>OPA DC CHARACTERISTICS</th>
<th>Standard Operating Conditions (unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td></td>
<td>Operating temperature: 25°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA01</td>
<td>VOS</td>
<td>Input Offset Voltage</td>
<td>—</td>
<td>±5</td>
<td>±13</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>OPA02*</td>
<td>Ib</td>
<td>Input current and impedance</td>
<td>—</td>
<td>±2*</td>
<td>—</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>OPA03*</td>
<td>Ios</td>
<td>Input bias current</td>
<td>—</td>
<td>±1*</td>
<td>—</td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>OPA04*</td>
<td>VCM</td>
<td>Common Mode</td>
<td>Vss</td>
<td>—</td>
<td>VDD – 1.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>OPA05*</td>
<td>CMR</td>
<td>Common mode rejection</td>
<td>55</td>
<td>65</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>OPA06A*</td>
<td>A0L</td>
<td>Open Loop Gain DC open loop gain</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>dB</td>
<td>Standard load</td>
</tr>
<tr>
<td>OPA07*</td>
<td>VOUT</td>
<td>Output</td>
<td>VSS + 50</td>
<td>—</td>
<td>VDD – 50</td>
<td>mV</td>
<td>To VDD/2 (10 kΩ connected to VDD, 10 kΩ + 20 pF to Vss)</td>
</tr>
<tr>
<td>OPA08*</td>
<td>ISC</td>
<td>Output short circuit current</td>
<td>—</td>
<td>25</td>
<td>28</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>OPA10*</td>
<td>PSR</td>
<td>Power Supply Power supply rejection</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

TABLE 15-14: AC CHARACTERISTICS: OPERATIONAL AMPLIFIER (OPA)

<table>
<thead>
<tr>
<th>AC CHARACTERISTICS</th>
<th>Standard Operating Conditions (unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating Temperature: 25°C</td>
</tr>
<tr>
<td></td>
<td>VDD = 5.0V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA12*</td>
<td>Gain Bandwidth Product</td>
<td>GBWP</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>MHz</td>
<td>VDD = 5V</td>
</tr>
<tr>
<td>OPA13*</td>
<td>Turn on Time</td>
<td>TON</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>μs</td>
<td>VDD = 5V</td>
</tr>
<tr>
<td>OPA14*</td>
<td>Phase Margin</td>
<td>ΘM</td>
<td>—</td>
<td>55</td>
<td>—</td>
<td>degrees</td>
<td>VDD = 5V</td>
</tr>
<tr>
<td>OPA15*</td>
<td>Slew Rate</td>
<td>SR</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>V/μs</td>
<td>VDD = 5V</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
TABLE 15-15: FLASH DATA MEMORY WRITE/ERASE TIME

AC CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>TDW</td>
<td>Flash Data Memory Write Cycle Time</td>
<td>2</td>
<td>3.5</td>
<td>5</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>TDE</td>
<td>Flash Data Memory Erase Cycle Time</td>
<td>2</td>
<td>3.5</td>
<td>5</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-16: THERMAL CONSIDERATIONS

Standard Operating Conditions (unless otherwise stated)

- **VDD = 5.0V**
- **Operating temperature: 25°C**

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Typ.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH01</td>
<td>QJA</td>
<td>Thermal Resistance Junction to Ambient</td>
<td>62.2</td>
<td>°C/W</td>
<td>20-pin PDIP package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77.7</td>
<td>°C/W</td>
<td>20-pin SOIC package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87.3</td>
<td>°C/W</td>
<td>20-pin SSOP package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>°C/W</td>
<td>20-pin QFN 4x4mm package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32.8</td>
<td>°C/W</td>
<td>20-pin UQFN 4x4mm package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>°C/W</td>
<td>20-pin UQFN 3x3mm package</td>
</tr>
<tr>
<td>TH02</td>
<td>QJC</td>
<td>Thermal Resistance Junction to Case</td>
<td>27.5</td>
<td>°C/W</td>
<td>20-pin PDIP package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.1</td>
<td>°C/W</td>
<td>20-pin SOIC package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31.1</td>
<td>°C/W</td>
<td>20-pin SSOP package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.3</td>
<td>°C/W</td>
<td>20-pin QFN 4x4mm package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.4</td>
<td>°C/W</td>
<td>20-pin UQFN 4x4mm package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>°C/W</td>
<td>20-pin UQFN 3x3mm package</td>
</tr>
<tr>
<td>TH03</td>
<td>TMAX</td>
<td>Maximum Junction Temperature</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>TH04</td>
<td>PD</td>
<td>Power Dissipation</td>
<td>—</td>
<td>W</td>
<td>PD = PINTERNAL + PI/O</td>
</tr>
<tr>
<td>TH05</td>
<td>PINTERNAL</td>
<td>Internal Power Dissipation</td>
<td>—</td>
<td>W</td>
<td>PINTERNAL = IDD x VDD(1)</td>
</tr>
<tr>
<td>TH06</td>
<td>PI/O</td>
<td>I/O Power Dissipation</td>
<td>—</td>
<td>W</td>
<td>PI/O = ∑ (IOL * VOL) + ∑ (IOH * (VDD - VOH))</td>
</tr>
<tr>
<td>TH07</td>
<td>PDER</td>
<td>Derated Power</td>
<td>—</td>
<td>W</td>
<td>PDER = PDMAX (TJ - TA)/UA(2)</td>
</tr>
</tbody>
</table>

Note 1: Idd is current to run the chip alone without driving any load on the output pins.

Note 2: TA = Ambient Temperature. TJ = Junction Temperature.
16.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for design guidance and are not tested.
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

“Typical” represents the mean of the distribution at 25°C. “MAXIMUM”, “Max.”, “MINIMUM” or “Min.” represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.
FIGURE 16-1: I_{DD}, LP OSCILLATOR, $F_{OSC} = 32$ kHz

- **Typical**: Mean (25°C)
- **Max**: Mean + 3σ (85°C)
FIGURE 16-2: I_{DD} TYPICAL, XT AND EXTRC OSCILLATOR

Typical: Mean (25°C)

4 MHz XT
4 MHz EXTRC
1 MHz XT

$V_{DD} (V)$ vs $I_{DD} (\mu A)$

FIGURE 16-3: I_{DD} MAXIMUM, XT AND EXTRC OSCILLATOR

Max: Mean + 3σ (-40°C to 125°C)

4 MHz XT
4 MHz EXTRC
1 MHz XT

$V_{DD} (V)$ vs $I_{DD} (\mu A)$
FIGURE 16-4: I_{DD} TYPICAL, EXTERNAL CLOCK MODE

Typical: Mean (25°C)

4 MHz

1 MHz

V_{DD} (V)

IDD (µA)

FIGURE 16-5: I_{DD} MAXIMUM, EXTERNAL CLOCK MODE

Max: Mean $+ 3\sigma$ (-40°C to 125°C)

4 MHz

1 MHz

V_{DD} (V)

IDD (µA)
FIGURE 16-6: I_{DD} TYPICAL, INTOSC

![Typical: Mean (25°C)]

FIGURE 16-7: I_{DD} MAXIMUM, INTOSC

![Max: Mean + 3σ (-40°C to 125°C)]
FIGURE 16-8: I_{DD} TYPICAL, HS OSCILLATOR

![Typical: Mean (25°C)](image)

V_{DD} (V) vs. I_{DD} (mA) for different oscillators:
- 20 MHz
- 8 MHz
- 4 MHz

FIGURE 16-9: I_{DD} MAXIMUM, HS OSCILLATOR

![Max: Mean + 3σ (-40°C to 125°C)](image)

V_{DD} (V) vs. I_{DD} (mA) for different oscillators:
- 20 MHz
- 8 MHz
- 4 MHz
FIGURE 16-10: IPD BASE, LOW-POWER SLEEP MODE

FIGURE 16-11: IPD, WATCHDOG TIMER (WDT)
FIGURE 16-12: IPD, FIXED VOLTAGE REFERENCE (FVR)

![Graph showing IPD vs. VDD for PIC16F527](image)

Typical: Mean (25°C)

Max: Mean + 3σ (-40°C to 85°C)

FIGURE 16-13: IPD, BROWN-OUT RESET (BOR)

![Graph showing IPD vs. VDD for PIC16F527](image)

Typical: Mean (25°C)

Max: Mean + 3σ (-40°C to 85°C)
FIGURE 16-14: \(I_{PD} \), SINGLE COMPARATOR

![Typical: Mean (25°C)]

Max: Mean + 3\(\sigma \) (-40°C to 85°C)

FIGURE 16-15: \(I_{PD} \), CVREF

![Typical: Mean (25°C)]

Max: Mean + 3\(\sigma \) (-40°C to 85°C)
FIGURE 16-16: I\textsubscript{PD}, SINGLE OPERATIONAL AMPLIFIER (OPA) – UNITY GAIN MODE

Typical: Mean (25°C)
Max: Mean + 3\sigma (-40°C to 85°C)
FIGURE 16-17: V_{OH} vs. I_{OH} OVER TEMPERATURE, $V_{DD} = 5.0$V

V_{OH} (V) vs. I_{OH} (mA)

Max. $\pm 3\sigma$ (-40°C)
Typical: Mean (25°C)
Min: Mean $\pm 3\sigma$ (125°C)

FIGURE 16-18: V_{OL} vs. I_{OL} OVER TEMPERATURE, $V_{DD} = 5.0$V

V_{OL} (V) vs. I_{OL} (mA)

Max: Mean $\pm 3\sigma$ (125°C)
Typical: Mean (25°C)
Min: Mean $\pm 3\sigma$ (-40°C)
FIGURE 16-19: \(V_{OH} \) vs. \(I_{OH} \) OVER TEMPERATURE, \(V_{DD} = 3.0 \) V

![Graph showing \(V_{OH} \) vs. \(I_{OH} \) over temperature with max, typical, and min values indicated.]

FIGURE 16-20: \(V_{OL} \) vs. \(I_{OL} \) OVER TEMPERATURE, \(V_{DD} = 3.0V \)

![Graph showing \(V_{OL} \) vs. \(I_{OL} \) over temperature with max, typical, and min values indicated.]
FIGURE 16-21: TTL INPUT THRESHOLD VIN vs. VDD

Max: Mean + 3σ (-40°C)
Typical: Mean (25°C)
Min: Mean - 3σ (125°C)

FIGURE 16-22: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD

Max: Mean + 3σ (at Temp.)
Min: Mean - 3σ (at Temp.)
FIGURE 16-23: BROWN-OUT RESET VOLTAGE

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature (°C)

FIGURE 16-24: WDT TIME-OUT PERIOD

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>VDD (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>15</td>
<td>3.0</td>
</tr>
<tr>
<td>20</td>
<td>3.5</td>
</tr>
<tr>
<td>25</td>
<td>4.0</td>
</tr>
<tr>
<td>30</td>
<td>4.5</td>
</tr>
<tr>
<td>35</td>
<td>5.0</td>
</tr>
<tr>
<td>40</td>
<td>5.5</td>
</tr>
<tr>
<td>45</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Max: Mean Typical + 3σ
Min: Mean Typical - 3σ

Max: Mean + 3σ (at Temp.)
Typical: Mean (25°C)
Min: Mean - 3σ (-40°C)
17.0 PACKAGING INFORMATION

17.1 Package Marking Information

Legend:

- **XX...X** Customer-specific information
- **Y** Year code (last digit of calendar year)
- **YY** Year code (last 2 digits of calendar year)
- **WW** Week code (week of January 1 is week '01')
- **NNN** Alphanumeric traceability code
- **(e3)** Pb-free JEDEC® designator for Matte Tin (Sn)
- ***** This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

* Standard PICmicro® device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.
20-Lead SSOP (5.30 mm)

Example

20-Lead QFN (4x4x0.9 mm)
20-Lead UQFN (4x4x0.5mm)

Example

Legend:
XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
@3 Pb-free JEDEC® designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

* Standard PICmicro® device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.
Package Marking Information (Continued)

20-Lead UQFN (3x3x0.5 mm)

<table>
<thead>
<tr>
<th>TOP MARKING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXYYWWWNNN</td>
<td>DAF1307123</td>
</tr>
</tbody>
</table>

TABLE 17-1: 20-LEAD 3x3x0.5 UQFN (JP) TOP MARKING

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F527T-E/JP</td>
<td>DAF</td>
</tr>
<tr>
<td>PIC16F527T-I/JP</td>
<td>DAE</td>
</tr>
</tbody>
</table>
20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Overall Row Spacing §</td>
<td>eB</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
PIC16F527

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Diagram](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (Optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Lead Angle</td>
<td>θ</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch E</td>
<td>1.27 BSC</td>
</tr>
<tr>
<td>Contact Pad Spacing C</td>
<td>9.40</td>
</tr>
<tr>
<td>Contact Pad Width (X20) X</td>
<td>0.60</td>
</tr>
<tr>
<td>Contact Pad Length (X20) Y</td>
<td>1.95</td>
</tr>
<tr>
<td>Distance Between Pads Gx</td>
<td>0.67</td>
</tr>
<tr>
<td>Distance Between Pads G</td>
<td>7.45</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A
20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X20)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X20)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A
20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.50 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
<td>0.20 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>4.00 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>2.60</td>
<td>2.70</td>
<td>2.80</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>4.00 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>2.60</td>
<td>2.70</td>
<td>2.80</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
<td>0.18</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
<td>0.20</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B
20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN]
With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Diagram of 20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN]]

Recommended Land Pattern

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>W2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>T2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C2</td>
</tr>
<tr>
<td>Contact Pad Width</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A
20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Terminal Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
</tr>
<tr>
<td>Terminal-to-Exposed-Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
PIC16F527

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C2</td>
</tr>
<tr>
<td>Contact Pad Width (X20)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X20)</td>
<td>Y1</td>
</tr>
<tr>
<td>Contact Pad to Center Pad (X20)</td>
<td>G1</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2255A
20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JP) - 3x3x0.50 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-256A Sheet 1 of 2
20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JP) - 3x3x0.50 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Terminals</td>
<td>N 20</td>
</tr>
<tr>
<td>Pitch</td>
<td>e 0.40</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A 0.45 0.50</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1 0.00 0.02</td>
</tr>
<tr>
<td>Terminal Thickness</td>
<td>A3 0.127 REF</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E 3.00 BSC</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2 1.65 1.75</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D 3.00 BSC</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2 1.65 1.75</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b 0.15 0.20</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L 0.30 0.40</td>
</tr>
<tr>
<td>Terminal-to-Exposed-Pad</td>
<td>K 0.20 -</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JP) - 3x3x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C2</td>
</tr>
<tr>
<td>Contact Pad Width (X20)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X20)</td>
<td>Y1</td>
</tr>
<tr>
<td>Contact Pad to Center Pad (X20)</td>
<td>G1</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2256A
APPENDIX A: DATA SHEET

REVISION HISTORY

Revision A (09/2012)
Initial release of this document.

Revision B (12/2013)
Updated Table 1 and Table 1-1; Updated Figure 3-1; Updated Register 4-1; Updated section 5, Self-Writable Flash Data Memory Control; Updated Note 1 in Register 6-4; Updated section 8, Special Features of the CPU; Updated section 9, Analog-to-Digital (A/D) Converter; Updated section 10, Comparators; Updated section 12.1, OPACON Register; Updated section 15, Electrical Characteristics; Updated section 16, DC and AC Characteristics Graphs and Charts; Other minor corrections.

Revision C (5/2014)
Updated with new 20-lead UQFN 3x3x0.5mm package.
Updated Product Identification System page and added new specifications for new packages.
Added Table 15-16: Thermal Considerations.

Revision D (01/2016)
Added ‘eXtreme Low-Power (XLP) Features’ section and updated ‘PIC16F527 and PIC16F570 Family Types’ table; Other minor corrections.
THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Tape and Reel Option</th>
<th>Temperature Range</th>
<th>Package</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>PIC16F527</td>
<td>Blank = Standard packaging (tube or tray)</td>
<td>T = Tape and Reel(1)</td>
<td>GZ = Micro Lead Frame (4x4x0.5) (UQFN)</td>
<td>QTP, SQTP, Code or Special Requirements (blank otherwise)</td>
</tr>
<tr>
<td>X</td>
<td>PIC16F527</td>
<td>Blank = Standard packaging (tube or tray)</td>
<td>T = Tape and Reel(1)</td>
<td>JP = Micro Lead Frame (3x3x0.5) (UQFN)</td>
<td>QTP, SQTP, Code or Special Requirements (blank otherwise)</td>
</tr>
<tr>
<td>XX</td>
<td>PIC16F527</td>
<td>Blank = Standard packaging (tube or tray)</td>
<td>T = Tape and Reel(1)</td>
<td>ML = Micro Lead Frame (4x4x0.9) (QFN)</td>
<td>QTP, SQTP, Code or Special Requirements (blank otherwise)</td>
</tr>
<tr>
<td>XXX</td>
<td>PIC16F527</td>
<td>Blank = Standard packaging (tube or tray)</td>
<td>T = Tape and Reel(1)</td>
<td>P = Plastic DIP (PDIP)</td>
<td>QTP, SQTP, Code or Special Requirements (blank otherwise)</td>
</tr>
<tr>
<td>X</td>
<td>PIC16F527</td>
<td>Blank = Standard packaging (tube or tray)</td>
<td>T = Tape and Reel(1)</td>
<td>SO = Small Outline (7.50 mm) (SOIC)</td>
<td>QTP, SQTP, Code or Special Requirements (blank otherwise)</td>
</tr>
<tr>
<td>XX</td>
<td>PIC16F527</td>
<td>Blank = Standard packaging (tube or tray)</td>
<td>T = Tape and Reel(1)</td>
<td>SS = Shrink Small Outline (5.30 mm) (SSOP)</td>
<td>QTP, SQTP, Code or Special Requirements (blank otherwise)</td>
</tr>
</tbody>
</table>

Examples:

- PIC16F527-E/P 301 = Extended Temp., PDIP package, QTP pattern #301
- PIC16F527-I/SO = Industrial Temp., SOIC package
- PIC16F527T-E/SS = Extended Temp., SSOP package, Tape and Reel
- PIC16F527T-I/ML = Industrial Temp., QFN Package, Tape and Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANcheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC18 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscent Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, Varisense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV
═ ISO/TS 16949 ═

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Americas Office

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-11-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8702-9880

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4432

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2826
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-667681

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2012-2016 Microchip Technology Inc.