INTRODUCTION

The 8-bit microcontroller has been around for close to 40 years. In this age of rapidly advancing technology, when electronic devices seem to become obsolete not long after they get to market, that boggles the mind. To what can we attribute such longevity? There are a variety of reasons.

For starters, today’s 8-bit microcontrollers are not the same as the ones that first appeared in the early 1970s. They are smaller, faster, cheaper, require less power, are easier to program, and offer more features and peripherals. In the early days of 8-bit microcontrollers, 500,000 instructions per second was considered state-of-the-art. Of course, back then, typical clock rates were in the 1-2 MHz range; today’s 8-bit units offer a wide range of performance options up to 64 MHz with 16 million instructions per second.

8-bit microcontrollers are optimized for low power and simple code. They will always be the easiest and most cost-effective solution for basic embedded control. The low-cost tools and fast time to market for developing with 8-bit MCUs make them an ideal choice when engineers need to quickly solve problems. The cost-optimized 8-bit MCUs have smaller code, lower power and offer more robustness to environmental noise.

The amount of integrated memory, too, has increased dramatically over the years. Microchip’s 8-bit portfolio now ranges from 384 bytes of program memory for extremely low cost, simple applications to 128KB Flash and up to 4KB RAM for more sophisticated drivers, stacks and libraries. So, even with a low-cost 8-bit MCU, there is plenty of bandwidth to implement an internet radio or a wireless energy monitor device.

FEATURES AND PERIPHERALS

The fact of the matter is, today’s 8-bit microcontrollers pack a lot of features into a small, cost-effective package. Take Microchip’s PIC10F2XX family, for example, which comes in small 6-pin, 2x3 DFN, or SOT-23 packages. Despite being the smallest microcontrollers in the world, these MCUs are helpful for adding smarts to discrete or analog centric legacy designs where previously no electronics were needed.

Microchip’s PIC® microcontrollers integrate a broad array of peripherals, which greatly increases the number of potential applications in which they can be used. Most embedded applications require some level of connectivity with other ICs or the outside world. Microchip offers 8-bit MCUs with standard integrated communications peripherals such as SPI, USART (RS-232/RS-485), I^2C™, CAN and LIN.
Many applications are also adding Ethernet connectivity to take advantage of the internet for remote monitoring or control of embedded applications. Designers can choose between Microchip’s standalone Ethernet controllers (ENC28J60 or ENC624J600) with on-board MAC and PHY, or their single-chip PIC18F97J60 solution that integrates the 10-BASE-T Ethernet MAC and PHY into the PIC MCU in a single package. Whether you choose the integrated solution or pair the Ethernet controller with a separate PIC MCU, it is easy to add Ethernet connectivity to your 8-bit design using Microchip’s free TCP-IP stack and low-cost tools.

Other integrated peripherals are included to help designers implement stylish and low-cost user interfaces with buttons and displays. For buttons, keys and sliders, Microchip’s mTouch™ sensing solutions provide a stylish alternative to mechanical buttons for lower cost or robustness to weather, with solutions that work with metal and plastic.

![FIGURE 3: INTEGRATED PERIPHERALS FOR HUMAN INTERFACE (DISPLAYS AND TOUCH)](image)

Got an embedded control application that needs to drive a segmented display? No problem. Microchip makes many 8-bit devices with built-in LCD driver controls to directly drive up to 192 pixels. The LCD driver even includes contrast control and boost capability to compensate for various lighting conditions.

In addition to all of the connectivity and user interface peripherals, the 8-bit PIC MCUs include standard control and timing peripherals for capture/compare, pulse-width modulators (PWMs), counters/timers, and watchdog timers. The list of available analog peripherals includes: analog-to-digital converters (ADC) (up to 12-bit), digital-to-analog converters (DAC), comparators and op amps, brown-out and low-voltage detectors, temperature sensors, voltage references and regulators, and, of course, oscillators.

As more electronic applications require low power or battery power, energy conservation becomes critical. Today’s applications must consume little power, and in extreme cases, last for 20 years, while running from a battery. Products featuring Microchip’s XLP technology extend battery life and reduce standby currents to support green initiatives worldwide.

![FIGURE 4: PIC MCUs WITH EXTREME LOW-POWER EXTEND BATTERY LIFE](image)

Many low-power devices include peripherals like USB, LCD and mTouch capacitive sensing, eliminating the need for additional parts in the application, which saves cost, current and complexity. Products with XLP have system supervisory circuits specially designed for battery-powered products to protect against system failure, provide precise timekeeping, and protect as batteries are depleted or changed.

All of the 8-bit XLP, USB, Ethernet, LCD, mTouch sensing and general purpose PIC MCU families are supported by Microchip’s low-cost tools, free software, and hundreds of application notes.

8-BIT VERSUS 16- AND 32-BIT

The expanded capabilities and versatility of 8-bit microcontrollers has created an interesting dichotomy in today’s marketplace. Some manufacturers that abandoned 8-bit microcontrollers in favor of 16- and 32-bit technology now find themselves competing head-to-head with 8-bit devices in many applications. Sixteen and 32-bit devices, they argue, can do anything an 8-bit microcontroller can do. That may be true, but can they do it as efficiently and cost effectively as 8-bit microcontrollers can? The answer, in most cases, is probably not.

Eight-bit microcontrollers are designed to interface with things that have simple inputs like switches, sensors, keyboards, and small displays. These things do not need to manipulate 32-bit data. Let’s say, for example, you want to add intelligence to a simple product like a new toaster so that it can display how long the bread has been toasting. What you need is something simple, something purpose-built, easy-to-use, and relatively inexpensive. That’s the proverbial “sweet spot” for low-end 8-bit microcontrollers.
Code density will be much smaller for an 8-bit device than it will be for a 16- or 32-bit processor. Many 8-bit microcontrollers also have a wide operating voltage range of 1.8V to 5.5V, which makes them well-suited to use in electrically noisy environments like industrial controls and automation applications. With these styles of applications in mind, Microchip has designed MCUs that are extremely robust to radiated and induced noise (EMC/EMI). Robustness is especially important for appliance and automotive applications.

Most 32-bit microcontrollers are optimized for higher frequencies, which typically means more power consumption and smaller manufacturing technology which is less robust to noise. Granted, you can solve that problem by running them slower, but there is a power consumption threshold you can’t go below, not to mention the fact that if you take that approach, you are paying for technology you can’t use. Why buy a Ferrari if you are only going to drive 35 miles per hour?

Looking at the microcontroller market in terms of the data bus width (8-, 16- or 32-bit) is really too simple. Instead, there are a range of solutions that try to balance integration, power consumption, computational efficiency, robustness and cost. In general, the 32-bit microcontrollers are a better fit for applications that have a machine interface with calculation performance and software centric designs with an RTOS or multi-tasking. For hardware centric applications that need deterministic behavior, low sleep power consumption, robust electrical characteristics, and a real world interface, the 8-bit microcontroller is still the best technical solution.

FIGURE 5: CONTINUUM OF 8-BIT, 16-BIT AND 32-BIT MCUs

This is true for applications such as coffee machines, toasters, key fobs, security tokens, security system sensors, toothbrushes, PC fan controllers, thermostats and thousands of other applications. Microchip provides 8-bit, 16-bit and 32-bit MCUs that meet the need for the full range of embedded applications.

PIC MCU ARCHITECTURE

One of the things that makes Microchip’s 8-bit microcontrollers unique is their proprietary PIC MCU core, based on a modified Harvard architecture with RISC instruction set. There are a number of advantages to using this architecture. Utilizing a modified Harvard dual-bus architecture means data and instructions get transferred on separate buses, avoiding processing bottlenecks. Over 80% of the instructions execute in a single cycle, making the core extremely efficient. Two-stage pipelining makes it possible to execute one instruction while the next one is being accessed. The combination of architectural efficiency and ease of use help designers get more done, faster with PIC MCUs. Once the initial design is complete, it is easy to migrate to another PIC MCU when requirements change. Using common peripherals and pinouts make it easy to migrate from 6 to 100 pins and from 384 bytes to 128 Kbytes of program memory when design requirements change.

SOFTWARE AND SUPPORT

These days your hardware is only as good as the software that tells it what to do and how to do it. If you are a hardware engineer, that fact can sometimes be a little intimidating. Microchip understands and has taken steps to alleviate that anxiety and help designers achieve faster time-to-market.

For starters, their 8-bit microcontrollers do not have to be programmed in assembly language. They can be programmed in C using a C compiler that Microchip provides free of charge. That simplifies design, speeds time-to-market, and cuts costs, all at the same time. If you are looking for higher levels of optimization, Microchip offers more sophisticated C compilers for purchase.

Continuing that theme, they also offer a large library of software written in C that can be ported not just to their 8-bit microcontrollers, but to their 16- and 32-bit devices as well, so that if your needs change in the future and you require more processing power, you do not have to go back to square one. All of the 8-bit software libraries are provided free of charge, and in most cases they will provide you with the source code so you can customize it for your particular application.

Think about that for a moment. Let’s say, for the sake of argument, you have to buy your software from a third-party vendor, and for some reason the microcontroller does not do what you want it to do. Who do you call? The software vendor will probably refer you to the microcontroller manufacturer, and the microcontroller manufacturer will probably refer you to the software vendor. So there are definitely advantages to obtaining the hardware and software from the same vendor.
Microchip also supplies its customers with a free IDE so they can take advantage of the company’s development and debugging environments at no additional cost. Plus, with so many 8-bit devices being used in so many applications throughout the world, there is a very active user community that supports one another through Microchip’s web site forums, as well as a host of other internet forums.

Designers continue to select 8-bit MCUs because they are easy to use, robust to noise, low power and cost effective. The 8-bit microcontroller may be approaching its 40th birthday, but its current technology is far from 40 years old. In fact, the things you can do with them today nobody could have envisioned years ago. Faster, more powerful devices may have entered the market since then, but in the end, it all comes down to one of the fundamentals of good engineering—using the right tool for the job.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-617-3

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KezLoc® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com</td>
<td>Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431</td>
<td>India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123</td>
<td>Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455</td>
<td>China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104</td>
<td>India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632</td>
<td>Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829</td>
</tr>
<tr>
<td>Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088</td>
<td>China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889</td>
<td>India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513</td>
<td>France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075</td>
<td>China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500</td>
<td>Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122</td>
<td>Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>Cleveland
Independence, OH
Tel: 216-447-0564
Fax: 216-447-0643</td>
<td>China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431</td>
<td>Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302</td>
<td>Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924</td>
<td>China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470</td>
<td>Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934</td>
<td>Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340</td>
</tr>
<tr>
<td>Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260</td>
<td>China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205</td>
<td>Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859</td>
<td>Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td>Kokomo
Kokomo, IN
Tel: 765-884-3860
Fax: 765-884-8387</td>
<td>China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066</td>
<td>Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068</td>
<td>UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820</td>
</tr>
<tr>
<td>Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608</td>
<td>China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2933</td>
<td>Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069</td>
<td>Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850</td>
</tr>
<tr>
<td>Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445</td>
<td>China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760</td>
<td>Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370</td>
<td>Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305</td>
</tr>
<tr>
<td>Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509</td>
<td>China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118</td>
<td>Taiwan - Taipei
Tel: 886-2-2508-0102
Fax: 886-2-2500-6610</td>
<td>Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350</td>
</tr>
<tr>
<td>China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130</td>
<td>China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049</td>
<td>Thailand - Chiang Mai
Tel: 66-5-814-8888
Fax: 66-5-814-8899</td>
<td>Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350</td>
</tr>
</tbody>
</table>

08/04/10