Single phase induction motors are widely used in home appliances, industrial fans, blowers, pumps, etc. When these motors are connected to the specified supply, they run at a constant speed. However, varying the motor speed is desired in most of the applications. Using power electronics and control systems, induction motor speed can be varied. In addition to variable speed, these drives are easy to control, provide energy efficiency, and reduce noise.

Microchip Technology Inc. and Anacon Systems, Inc. have jointly developed a motor control evaluation kit used to demonstrate the PIC18F2539 motor control microcontroller. The PIC18F2539 Motor Control Evaluation Kit (PIC18F2539 MC Eval Kit) provides great flexibility for the user to develop applications that work directly with the motor control kernel that resides in the PIC18F2539. The kit uses Programmable Motor Control Processor Technology (ProMPT™). The ProMPT board is a compact module containing propriety circuits and a sophisticated firmware kernel required for single phase induction motor control. The motor control is based on open loop variable voltage and variable frequency (VF) technology.

The PIC18F2539 Motor Control Evaluation Kit includes the following items:

- ProMPT Evaluation Board (EVB) with heat sink: This is the single phase induction motor control board.
- ProMPT-Eye board
- Control and display board
- Motor Control Evaluation Configuration CD:
 - DashDriveMP™ V1.0 for Windows® 98, Windows® Me, Windows® 2000 and Windows® XP
 - DashDriveMP User’s Guide
 - PIC18F2539 Motor Control Evaluation Kit User’s Guide
 - Demo programs
- Input power cable
- Shaded pole induction motor

The DashDriveMP software is the Graphical User Interface (GUI) that allows the user to configure the drive parameters with ease and flexibility. The ProMPT EVB with the ProMPT-Eye board, communicates with the DashDriveMP software over the wireless media on infrared. The ProMPT EVB includes default motor parameters and VF curves. The user can command a frequency using the graphical interface and see the status on the ProMPT EVB, such as motor current, bus voltage, and heat sink temperature. The user can also modify the parameters, including the acceleration rate, deceleration rate and the VF curve using the DashDriveMP GUI.

The motor control circuit is built around Microchip’s FLASH microcontroller, PIC18F2539. This microcontroller has a powerful 8-bit RISC core with 24 Kbytes of on-chip program memory, 1.4 Kbytes of data memory and 256 bytes of EEPROM. The peripherals include up to 5 channels of 10-bit Analog-to-Digital Converters (ADC), PWMs, USART, I²C™, SPI™ and up to 21 digital I/Os.

The motor control kernel is embedded in the microcontroller before shipping the kit. The user can develop their own application around this kernel. A set of Application Program Interface (API) methods are defined. These methods are used to communicate between the motor control kernel and application software. The application program can be developed, debugged and executed using MPLAB® IDE (Integrated Development Environment). Microchip Technology also provides a low cost In-Circuit Debugger, MPLAB® ICD 2, and the C compiler, MPLAB® C18. The MPLAB ICD 2 debugging tool allows the user to single-step, break and watch required memory locations in the application program while connected to the circuit. MPLAB ICD 2 can also be used as a programmer for PICmicro® microcontrollers with FLASH program memory.

FIGURE 1: PIC18F2539 PIN DIAGRAM

|----------|--------|--------|--------------|--------------|----------|-----------------|-----|-----------|--------------|-------------|----------|---------------|-------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|
Most of the I/O pins are brought out to the I/O expander connector on the ProMPT EVB board. This enables the user to develop hardware required for the application.

Note: This control is suitable for Permanent Series Capacitor (PSC) and shaded pole single phase induction motors, to 230 volts and 5 amps. Connecting other types of motors may damage the PIC18F2539 MC Eval Kit, the motor, or both. Additionally, the drive may not function as intended.
FIGURE 3: SOFTWARE ARCHITECTURE

Application Software\(^{(1,2)}\)

Application Program Interface (API)

Methods

ProMPT Motor Control Kernel

Hardware

Note 1: Use MPLAB IDE V6.XX and MPLAB C18 C compiler for application software development.
2: Use MPLAB ICD 2 for programming and debugging the application software.

FIGURE 4: ProMPT EVB

Ground

Input Supply (J1)

Motor Terminals (J2)

Ground

I/O Expansion Connector (J3)

7-Segment Display

ProMPT™ Eye/MPLAB® ICD 2 Connector (J4)
The electrical characteristics of the drive are given below:

TABLE 1: ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>115/230</td>
<td>85</td>
<td>275</td>
<td>Vrms</td>
<td>Single Phase</td>
</tr>
<tr>
<td>Start-up Supply Voltage</td>
<td>70</td>
<td>60</td>
<td>80</td>
<td>Vrms</td>
<td>Line Voltage required for ProMPT drive power supply to start</td>
</tr>
<tr>
<td>Dropout Supply Voltage</td>
<td>30</td>
<td></td>
<td></td>
<td>Vrms</td>
<td>Low Line Voltage before ProMPT drive power supply enters shutdown</td>
</tr>
<tr>
<td>Standby Current</td>
<td>42</td>
<td></td>
<td></td>
<td>mA</td>
<td>With 115V supply</td>
</tr>
<tr>
<td>Standby Power</td>
<td>1.0</td>
<td>0.9</td>
<td>1.2</td>
<td>Watts</td>
<td>With 115V supply</td>
</tr>
<tr>
<td>Supply Frequency</td>
<td>50/60</td>
<td>DC</td>
<td>400</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Motor Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>—</td>
<td>0</td>
<td>275</td>
<td>Vrms</td>
<td>Single Phase</td>
</tr>
<tr>
<td>Output Frequency</td>
<td>—</td>
<td>1</td>
<td>127</td>
<td>Hz</td>
<td>Sine Wave Simulated</td>
</tr>
<tr>
<td>Output Current</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>Amps</td>
<td>Continuous rating</td>
</tr>
<tr>
<td>Output Current</td>
<td>—</td>
<td>—</td>
<td>6.25</td>
<td>Amps</td>
<td>30 seconds overload rating</td>
</tr>
<tr>
<td>Isolated Power Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation Voltage</td>
<td>—</td>
<td>2500</td>
<td></td>
<td>VAC</td>
<td>Meets UL, CSA and IEC requirements for reinforced isolation</td>
</tr>
<tr>
<td>Creepage</td>
<td>—</td>
<td>6.5</td>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>DC Voltage Output</td>
<td>16.5</td>
<td>18.0</td>
<td>18.5</td>
<td>VDC</td>
<td>Fully isolated and available for external circuits</td>
</tr>
<tr>
<td>DC Supply Current</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>mA</td>
<td>Fully isolated and available for external circuit</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Plate Temperature</td>
<td>—</td>
<td>—</td>
<td>75°</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td>75°</td>
<td></td>
<td>—</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Ambient Operating Temperature</td>
<td>—</td>
<td>0°</td>
<td>40°</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
Mechanical dimensions for the PIC18F2539 Motor Control Evaluation Kit:

FIGURE 5: ProMPT EVB PHYSICAL DIMENSIONS

Note: All dimensions are in inches. Error: ± 0.01 inch
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, dsPIC® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.

Trademarks
The Microchip name and logo, the Microchip logo, KEELOG, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

Phoenix
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-9750 Fax: 408-436-7955

Toronto
6285 Northview Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Marketing Support Division
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 8 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office
Rm. B505A, Fullhope Plaza,
5022 Binhe Road, Futian District
No. 710-02 Prime Centre
200 Middle Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0119

EUROPE
Austria
Microchip Technology Austria GmbH
Durlistorstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Imsaying, Germany
Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Via Quasimodo, 12
00205 Rome, Italy
Tel: 39-0331-743612 Fax: 39-0331-743613

United Kingdom
Microchip Technology Ltd.
505 Eskdale Road
Typia Triangle
Wokingham Berkshire, England RG14 5TU
Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/25/03