This document includes the programming specifications for the following device:

PIC16F72

1.0 PROGRAMMING THE PIC16F72

The PIC16F72 is programmed using a serial method. The Serial mode allows the PIC16F72 to be programmed while in the users’ system, allowing for increased design flexibility. This programming specification applies to PIC16F72 devices in all packages.

1.1 Hardware Requirements

The PIC16F72 requires two programmable power supplies, one for VDD (2.0V to 5.5V) and the other for VPP of 12.75V to 13.25V. Both supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The Programming mode for the PIC16F72 allows programming of user program memory, special locations used for ID, and the configuration word.

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F72

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>During Programming</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCLR/VPP</td>
<td>VTEST MODE</td>
<td>Program Mode Select</td>
</tr>
<tr>
<td>VDD</td>
<td>VDD</td>
<td>Power Supply</td>
</tr>
<tr>
<td>VSS</td>
<td>VSS</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Legend: I = Input, O = Output, P = Power
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to 0x07FF (2K). Table 2-1 shows the actual implementation of program memory in the PIC16F72. Configuration memory begins at 0x2000, and continues to 0x3FFF. The PC will increment from 0x0000 to 0x1FFF and wrap to 0x0000, 0x2000 to 0x3FFF and wrap around to 0x2000 (not to 0x0000).

Once in configuration memory, the highest bit of the PC stays a ‘1’, thus, always pointing to the configuration memory. The only way to point to program memory is to reset the part and re-enter Program/Verify mode, as described in Section 2.3.

Configuration memory is selected when the PC points to any address in the range of 0x2000-0x201F; however, only locations 0x2000 through 0x2007 are implemented. Addressing locations beyond 0x201F will access program memory (see Figure 2-1).

TABLE 2-1: PROGRAM MEMORY IMPLEMENTATION IN THE PIC16F72

<table>
<thead>
<tr>
<th>Device</th>
<th>Program Memory Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F72</td>
<td>0x0000 – 0x07FF (2K)</td>
</tr>
</tbody>
</table>

2.2 ID Locations

A user may store identification information (ID) in four ID locations mapped to [0x2000:0x2003]. It is recommended that each ID location word is written as ‘11 1111 1000 bbbb’, where ‘bbbb’ is ID information. The ID locations can be read even after code protection is enabled.

To understand the program memory read mechanism after code protection is enabled, refer to Section 4.0. Table 4-1 shows specific calculations and behavior for the PIC16F72 device.
FIGURE 2-1: PROGRAM MEMORY MAPPING

2K words

Implemented
Implemented
Reserved

Accesses 0x0020 to 0x0FFF

Device ID
Configuration Word

Reserved

ID Location

0h 1FFh 3FFh 400h 7FFh

Reserved

Device ID

0x0020 to 0xFFFF

Reserved

ID Location

2000h 2001h 2002h 2003h 2004h 2005h 2006h 2007h 2008h 2009h 200Ah 200Bh 200Ch 200Dh 200Eh 200Fh 2010h 2011h 2012h 2013h 2014h 2015h 2016h 2017h 2018h 2019h 201Ah 201Bh 201Ch 201Dh 201Eh 201Fh 2020h 2021h 2022h 2023h 2024h 2025h 2026h 2027h 2028h 2029h 202Ah 202Bh 202Ch 202Dh 202Eh 202Fh 2030h 2031h 2032h 2033h 2034h 2035h 2036h 2037h 2038h 2039h 203Ah 203Bh 203Ch 203Dh 203Eh 203Fh 2040h 2041h 2042h 2043h 2044h 2045h 2046h 2047h 2048h 2049h 204Ah 204Bh 204Ch 204Dh 204Eh 204Fh 2050h 2051h 2052h 2053h 2054h 2055h 2056h 2057h 2058h 2059h 205Ah 205Bh 205Ch 205Dh 205Eh 205Fh 2060h 2061h 2062h 2063h 2064h 2065h 2066h 2067h 2068h 2069h 206Ah 206Bh 206Ch 206Dh 206Eh 206Fh 2070h 2071h 2072h 2073h 2074h 2075h 2076h 2077h 2078h 2079h 207Ah 207Bh 207Ch 207Dh 207Eh 207Fh 2080h 2081h 2082h 2083h 2084h 2085h 2086h 2087h 2088h 2089h 208Ah 208Bh 208Ch 208Dh 208Eh 208Fh 2090h 2091h 2092h 2093h 2094h 2095h 2096h 2097h 2098h 2099h 209Ah 209Bh 209Ch 209Dh 209Eh 209Fh 20A0h 20A1h 20A2h 20A3h 20A4h 20A5h 20A6h 20A7h 20A8h 20A9h 20AAh 20ABh 20ACh 20ADh 20AEh 20AFh 20B0h 20B1h 20B2h 20B3h 20B4h 20B5h 20B6h 20B7h 20B8h 20B9h 20BAh 20BBh 20BCh 20BCh 20BDh 20BEh 20BFh 20C0h 20C1h 20C2h 20C3h 20C4h 20C5h 20C6h 20C7h 20C8h 20C9h 20CAh 20CBh 20CCh 20CDh 20CEh 20CFh 20D0h 20D1h 20D2h 20D3h 20D4h 20D5h 20D6h 20D7h 20D8h 20D9h 20DAh 20DBh 20DCh 20DDh 20DEh 20DFh 20E0h 20E1h 20E2h 20E3h 20E4h 20E5h 20E6h 20E7h 20E8h 20E9h 20EAh 20EBh 20ECh 20EDh 20EEh 20EFh 20F0h 20F1h 20F2h 20F3h 20F4h 20F5h 20F6h 20F7h 20F8h 20F9h 20FAh 20FBh 20FCf 20FDh 20FEh 20FFh
2.3 Program/Verify Mode

The Program/Verify mode is entered by holding pins RB6 and RB7 low, while raising MCLR pin from VIL to VPP. Once in this mode, the user program memory and the configuration memory can be accessed and programmed in serial fashion (RB6 and RB7 are Schmitt Trigger inputs in this mode).

The sequence that enters the device into the Programming/Verify mode places all other logic into the RESET state. All I/O are in the RESET state (high impedance inputs).

A device RESET will clear the PC and point to address 0x0000. The 'Increment Address' command will increment the PC. The 'Load Configuration' command will set the PC to 0x2000. The available commands are shown in Table 2-2.

The normal sequence for programming two program memory words at a time is as follows:

1. Issue the ‘Load Data’ command to load a word at the current (even) program memory address.
2. Issue an ‘Increment Address’ command.
3. Load a word at the current (odd) program memory address using the ‘Load Data’ command.
4. Issue a ‘Begin Programming’ command to begin programming.
5. Wait tprog (about 1 ms).
7. Increment to the next address.
8. Repeat this sequence as required to write program and configuration memory.

The alternative sequence for programming one program memory word at a time is as follows:

1. Set a word for the current memory location using the ‘Load Data’ command.
2. Issue a ‘Begin Programming’ command to begin programming.
3. Wait tprog.
4. Issue an ‘End Programming’ command.
5. Increment to the next address.
6. Repeat this alternative sequence as required to write program and configuration memory.

The address and program counter is reset to 0x0000 by resetting the device (taking MCLR below VIL) and re-entering Programming mode. Program and configuration memory may then be read or verified using the ‘Read Data’ and ‘Increment Address’ commands.

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

RB6 is used as a clock input pin, and RB7 is used for entering command bits and data input/output. To enter a command, the clock pin (RB6) is pulsed six times. Each command bit is latched on the falling edge of the clock (RB6), with the Least Significant bit (LSb) of the command being entered first. The data on pin RB7 needs a minimum setup (tset1) and hold time (thold1), with respect to the falling edge of the clock. The read and load commands are specified to have a minimum delay (tdly1) between the command and data. After this delay, the clock pin is cycled 16 times with the first cycle being a START bit (0) and the last cycle being a STOP bit (0). Data is transferred LSb first (see Figure 5-1).

During a read operation, the LSB will be output to pin RB7 on the rising edge of the second clock pulse and during a load operation, the LSB will be latched on the falling edge of the second clock pulse. A minimum delay (tdly2) is required between consecutive commands (see Figure 5-2).

To allow for decoding of commands and reversal of data pin configuration, a time separation of at least (tdly1) is required between a command and a data word, or another command (see Figure 5-3).

The available commands are listed below:

- Load Configuration
- Load Data for Memory
- Read Data from Memory
- Increment Address
- Begin Programming
- Bulk Erase Program Memory
- End Programming

The address and program counter is reset to 0x0000 by resetting the device (taking MCLR below VIL) and re-entering Programming mode. Program and configuration memory may then be read or verified using the ‘Read Data’ and ‘Increment Address’ commands.

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

RB6 is used as a clock input pin, and RB7 is used for entering command bits and data input/output. To enter a command, the clock pin (RB6) is pulsed six times. Each command bit is latched on the falling edge of the clock (RB6), with the Least Significant bit (LSb) of the command being entered first. The data on pin RB7 needs a minimum setup (tset1) and hold time (thold1), with respect to the falling edge of the clock. The read and load commands are specified to have a minimum delay (tdly1) between the command and data. After this delay, the clock pin is cycled 16 times with the first cycle being a START bit (0) and the last cycle being a STOP bit (0). Data is transferred LSb first (see Figure 5-1).

During a read operation, the LSB will be output to pin RB7 on the rising edge of the second clock pulse and during a load operation, the LSB will be latched on the falling edge of the second clock pulse. A minimum delay (tdly2) is required between consecutive commands (see Figure 5-2).

To allow for decoding of commands and reversal of data pin configuration, a time separation of at least (tdly1) is required between a command and a data word, or another command (see Figure 5-3).

The available commands are listed below:

- Load Configuration
- Load Data for Memory
- Read Data from Memory
- Increment Address
- Begin Programming
- Bulk Erase Program Memory
- End Programming

The address and program counter is reset to 0x0000 by resetting the device (taking MCLR below VIL) and re-entering Programming mode. Program and configuration memory may then be read or verified using the ‘Read Data’ and ‘Increment Address’ commands.

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

RB6 is used as a clock input pin, and RB7 is used for entering command bits and data input/output. To enter a command, the clock pin (RB6) is pulsed six times. Each command bit is latched on the falling edge of the clock (RB6), with the Least Significant bit (LSb) of the command being entered first. The data on pin RB7 needs a minimum setup (tset1) and hold time (thold1), with respect to the falling edge of the clock. The read and load commands are specified to have a minimum delay (tdly1) between the command and data. After this delay, the clock pin is cycled 16 times with the first cycle being a START bit (0) and the last cycle being a STOP bit (0). Data is transferred LSb first (see Figure 5-1).

During a read operation, the LSB will be output to pin RB7 on the rising edge of the second clock pulse and during a load operation, the LSB will be latched on the falling edge of the second clock pulse. A minimum delay (tdly2) is required between consecutive commands (see Figure 5-2).

To allow for decoding of commands and reversal of data pin configuration, a time separation of at least (tdly1) is required between a command and a data word, or another command (see Figure 5-3).

The available commands are listed below:

- Load Configuration
- Load Data for Memory
- Read Data from Memory
- Increment Address
- Begin Programming
- Bulk Erase Program Memory
- End Programming

The address and program counter is reset to 0x0000 by resetting the device (taking MCLR below VIL) and re-entering Programming mode. Program and configuration memory may then be read or verified using the ‘Read Data’ and ‘Increment Address’ commands.

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

RB6 is used as a clock input pin, and RB7 is used for entering command bits and data input/output. To enter a command, the clock pin (RB6) is pulsed six times. Each command bit is latched on the falling edge of the clock (RB6), with the Least Significant bit (LSb) of the command being entered first. The data on pin RB7 needs a minimum setup (tset1) and hold time (thold1), with respect to the falling edge of the clock. The read and load commands are specified to have a minimum delay (tdly1) between the command and data. After this delay, the clock pin is cycled 16 times with the first cycle being a START bit (0) and the last cycle being a STOP bit (0). Data is transferred LSb first (see Figure 5-1).

During a read operation, the LSB will be output to pin RB7 on the rising edge of the second clock pulse and during a load operation, the LSB will be latched on the falling edge of the second clock pulse. A minimum delay (tdly2) is required between consecutive commands (see Figure 5-2).

To allow for decoding of commands and reversal of data pin configuration, a time separation of at least (tdly1) is required between a command and a data word, or another command (see Figure 5-3).

The available commands are listed below:

- Load Configuration
- Load Data for Memory
- Read Data from Memory
- Increment Address
- Begin Programming
- Bulk Erase Program Memory
- End Programming

The address and program counter is reset to 0x0000 by resetting the device (taking MCLR below VIL) and re-entering Programming mode. Program and configuration memory may then be read or verified using the ‘Read Data’ and ‘Increment Address’ commands.

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

RB6 is used as a clock input pin, and RB7 is used for entering command bits and data input/output. To enter a command, the clock pin (RB6) is pulsed six times. Each command bit is latched on the falling edge of the clock (RB6), with the Least Significant bit (LSb) of the command being entered first. The data on pin RB7 needs a minimum setup (tset1) and hold time (thold1), with respect to the falling edge of the clock. The read and load commands are specified to have a minimum delay (tdly1) between the command and data. After this delay, the clock pin is cycled 16 times with the first cycle being a START bit (0) and the last cycle being a STOP bit (0). Data is transferred LSb first (see Figure 5-1).

During a read operation, the LSB will be output to pin RB7 on the rising edge of the second clock pulse and during a load operation, the LSB will be latched on the falling edge of the second clock pulse. A minimum delay (tdly2) is required between consecutive commands (see Figure 5-2).

To allow for decoding of commands and reversal of data pin configuration, a time separation of at least (tdly1) is required between a command and a data word, or another command (see Figure 5-3).

The available commands are listed below:

- Load Configuration
- Load Data for Memory
- Read Data from Memory
- Increment Address
- Begin Programming
- Bulk Erase Program Memory
- End Programming

The address and program counter is reset to 0x0000 by resetting the device (taking MCLR below VIL) and re-entering Programming mode. Program and configuration memory may then be read or verified using the ‘Read Data’ and ‘Increment Address’ commands.
2.3.1.1 Load Configuration

After receiving the Load Configuration command, the PC will be set to 0x2000 and the data sent with the command is discarded. The four ID locations and the configuration word can then be programmed using the normal programming sequence, as described in Section 2.3. A description of the memory mapping schemes of the program memory for normal operation and Configuration mode operation is shown in Figure 2-1. After the configuration memory is entered, the only way to get back to the user program memory is to exit the Program/Verify Test mode by taking MCLR low.

2.3.1.2 Load Data for Memory

The device will load in a 14-bit “data word” when 16 cycles are applied, as described previously. A timing diagram for the load data command is shown in Figure 5-1.

2.3.1.3 Read Data from Memory

The device will transmit data bits out of the memory (program or configuration) currently addressed by the PC, starting with the second rising edge of the clock input. RB7 will go into Output mode on the second rising clock edge and will revert back to Input mode (hi-impedance) after the 16th rising edge. A timing diagram for this command is shown in Figure 5-2. If the device is code protected, user program memory will read all '0's. Configuration memory can still be read.

2.3.1.4 Increment Address

The PC is incremented by one. A timing diagram for this command is shown in Figure 5-3.

2.3.1.5 Begin Programming

A ‘Load Data’ command must be issued before every ‘Begin Programming’ command. Programming of memory (configuration or program) will begin after this command is received and decoded. Programming requires (tprog) time and is terminated using an ‘End Programming’ command.

2.3.1.6 Chip Erase (Program Memory)

Erasure of configuration and program memory begins after this command is received and decoded. The erase sequence is self-timed and it is not necessary to issue an ‘End Programming’ command, only to wait for the appropriate time interval (tera) for the entire erase sequence, before issuing another command.

This procedure will disable code protection (code protect bit = 1); however, all data within the program memory will be erased when this command is executed and thus, the security of the data or code is not compromised.

Note: All CHIP ERASE operations must take place with VDD between 4.75V and 5.25V.

2.4 Programming Algorithm Requires Variable VDD

The PIC16F72 uses an intelligent algorithm, which calls for program verification at VDDAPP. The actual chip erase and programming must be done with VDD in the VDDP range (see Table 5-1).

VDDP = VDD range required during programming
VDDAPP = VDD in the target application

Programmers must verify the PIC16F72 at VDDAPP. Since Microchip may introduce future versions of the PIC16F72 with a broader VDD range, it is best that these levels are user selectable (defaults are OK).

Note: Any programmer not meeting this requirement may only be classified as a “prototype” or “development” programmer, but not a “production quality” programmer.
FIGURE 2-2: PROGRAMMING METHOD FLOW CHART (SHEET 1 OF 3)

START

CHIP ERASE

BLANK CHECK AT VDD = VDDMIN

PASS?

YES

NO

REPORT POSSIBLE ERASE FAILURE. CONTINUE PROGRAMMING AT USER'S OPTION

PROGRAM TWO LOCATIONS VPP = 12.75 TO 13.25V VDD = VDDP

ALL LOCATIONS DONE?

NO

YES

VERIFY ALL PROGRAM MEMORY LOCATIONS AT VDD = VDDAPP

PASS?

NO

REPORT VERIFY FAILURE AT VDDAPP

YES

LOAD CONFIGURATION

PROGRAM TWO ID LOCATIONS VPP = 12.75 TO 13.25V VDD = VDDP

ALL ID LOCATIONS DONE?

NO

YES
FIGURE 2-3: PROGRAMMING METHOD FLOW CHART (SHEET 2 OF 3)

A

INCREMENT ADDRESS TO CONFIGURATION WORD

LOAD DATA FOR MEMORY (ODD ADDRESS)

BEGIN PROGRAMMING

WAIT tprog

END PROGRAMMING

VERIFY ALL CONFIGURATION MEMORY LOCATIONS AT VDD = VDDAPP

PASS? NO REPORT VERIFY ERROR

YES DONE
FIGURE 2-4: PROGRAMMING METHOD FLOW CHART (SHEET 3 OF 3)

PROGRAM TWO LOCATIONS

START

LOAD DATA FOR MEMORY (EVEN ADDRESS)

INCREMENT ADDRESS

LOAD DATA FOR MEMORY (ODD ADDRESS)

BEGIN PROGRAMMING

WAIT tprog

END PROGRAMMING

INCREMENT ADDRESS

RETURN

VERIFY ALL LOCATIONS

START

RESET DEVICE, RETURN TO PROGRAMMING MODE

HAS PROGRAM MEMORY BEEN VERIFIED?

YES

LOAD CONFIGURATION

NO

READ DATA FROM MEMORY

COMPARE DATA TO EXPECTED DATA

DOES DATA MATCH?

NO

FAIL

YES

INCREMENT ADDRESS

RETURN

ALL LOCATIONS VERIFIED?

NO

YES

PASS

INCREMENT ADDRESS

RETURN
3.0 CONFIGURATION WORD

The PIC16F72 has configuration bits in a configuration word located at 0x2007. These bits can be cleared (reads '0'), or left unchanged (reads '1'), to select various device configurations.

3.1 Device ID Word

The device ID word for the PIC16F72 is located at 2006h. The nine Most Significant bits are the device ID number, while the five Least Significant bits are the device revision number.

REGISTER 3-1: CONFIGURATION WORD FOR PIC16F72

<table>
<thead>
<tr>
<th>Bit 13-7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimplemented: Read as ‘1’</td>
<td>BOREN: Brown-out Reset Enable bit(1)</td>
<td>Unimplemented: Read as ‘1’</td>
<td>CP: Program Memory Code Protection bit</td>
<td>PWRTEN: Power-up Timer Enable bit(1)</td>
<td>WDTEN: Watchdog Timer Enable bit</td>
<td>FOSC1:FOSC0: Oscillator Selection bits</td>
</tr>
<tr>
<td>1 = BOR enabled</td>
<td>0 = BOR disabled</td>
<td>1 = Code protection off</td>
<td>0 = 0000h to 07FFh code protected (All)</td>
<td>1 = PWRT disabled</td>
<td>0 = PWRT enabled</td>
<td>11 = RC oscillator</td>
</tr>
</tbody>
</table>

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTEN. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
1 = bit is set
0 = bit is cleared
x = bit is unknown
4.0 CODE PROTECTION

Once code protection is enabled, all program memory locations read all '0's; further programming of program memory is disabled. ID locations and the configuration word may still be read and programmed (1's to 0's only).

4.1 Disabling Code Protection

The following procedure should be performed before any other programming is attempted. This procedure also turns off code protection (code protect bit = 1); however, all program memory will be erased when this procedure is executed and thus, the security of the code is not compromised.

Procedure to disable code protection:

a) Issue the ‘Chip Erase’ command.

b) Wait for the erase cycle time (tera) to pass. The program memory is erased, then the configuration memory is erased.

4.2 Embedding Configuration Word and ID Information in the HEX File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the HEX file, when loading the HEX file. If configuration word information was not present in the HEX file, then a simple warning message may be issued. Similarly, while saving a HEX file, configuration word and ID information must be included. An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

4.3 Checksum Computation

The checksum is calculated by reading the contents of the PIC16F72 memory locations and adding up the opcodes, up to the maximum user addressable location (i.e., 0x07FFh for the PIC16F72). Any carry bits exceeding 16 bits are neglected. Finally, the configuration word (appropriately masked) is added to the checksum.

The checksum is calculated by summing the following:

- The contents of all program memory locations
- The configuration word, appropriately masked
- Masked ID locations (when applicable)

The Least Significant 16 bits of this sum are the checksum.

Table 4-1 describes how to calculate the checksum for the PIC16F72. Note that the checksum calculation differs depending on the code protection setting. Since the program memory locations read out differently depending on the code protection setting, the table describes how to manipulate the actual program memory values to simulate the values that would be read from a protected device. When calculating a checksum of a non-protected device, the entire program memory can simply be read and summed. The configuration word and ID locations can always be read.

<table>
<thead>
<tr>
<th>TABLE 4-1: CHECKSUM COMPUTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Legend:
- CFWD = Configuration Word
- SUM[a:b] = [Sum of locations a to b inclusive]
- SUM_ID = ID locations masked by 0x0F, then concatenated into a 16-bit value with ID0 as the most significant nibble.
 For example, ID0 = 0x01, ID2 = 0x02, ID3 = 0x03, ID4 = 0x04, then SUM_ID = 0x1234
- Checksum = [Sum of all the individual expressions]
 MODULO [0xFFFF]
- + = Addition
- & = Bitwise AND

Checksum 0x05E6 at 0x0000 and max address 0x05E6 at 0x07FF + CFWD & 0x005F 0xF85F 0x842D

For example, ID0 = 0x01, ID2 = 0x02, ID3 = 0x03, ID4 = 0x04, then SUM_ID = 0x1234

Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

5.1 AC/DC Characteristics

TABLE 5-1: TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

<table>
<thead>
<tr>
<th>Standard Operating Conditions (unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature: (+10 \degree C \leq T_A \leq +40 \degree C)</td>
</tr>
<tr>
<td>Operating Voltage: (4.5V \leq V_{DD} \leq 5.5V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD level for read and verification</td>
<td>VDD</td>
<td>2.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD level for programming and erasing</td>
<td>VDDP</td>
<td>4.75</td>
<td>5.25</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High voltage on MCLR for chip erase and program write operations</td>
<td>VPP</td>
<td>12.75</td>
<td>13.25</td>
<td>V</td>
<td></td>
<td>(Notes 1, 2)</td>
</tr>
<tr>
<td>MCLR rise time (VSS to VPP) for Test mode entry</td>
<td>tVHHR</td>
<td>1.0</td>
<td>µs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RB6, RB7) input high level</td>
<td>VIH1</td>
<td>0.8 VDD</td>
<td>V</td>
<td>Schmitt Trigger input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RB6, RB7) input low level</td>
<td>VIL1</td>
<td>0.2 VDD</td>
<td>V</td>
<td>Schmitt Trigger input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Program/Verify</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data in setup time before clock↓</td>
<td>tSET1</td>
<td>100</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data in hold time after clock↓</td>
<td>tHLD1</td>
<td>100</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data input not driven to next clock input (delay required between command/data or command/command)</td>
<td>tdly1</td>
<td>1.0</td>
<td></td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay between clock↓ to clock↑ of next command or data</td>
<td>tdly2</td>
<td>1.0</td>
<td></td>
<td>µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock↑ to data out valid (during read data)</td>
<td>tdly3</td>
<td>200</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erase cycle time</td>
<td>tERA</td>
<td>30</td>
<td></td>
<td>ms</td>
<td></td>
<td>(Note 3)</td>
</tr>
<tr>
<td>Programming cycle time</td>
<td>tPROG</td>
<td>1</td>
<td></td>
<td>3(4)</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: VPP should be current limited to about 100 mA.
2: VPP must remain above VDDP + 4.0V to remain in Programming mode, while not actually erasing or programming.
3: The chip erase is self-timed.
4: tprog is expected to be reduced to 1 ms max.
FIGURE 5-1: LOAD DATA COMMAND MODE (PROGRAM/VERIFY)

MCLR
\[t_{set0} \]
RB6 (CLOCK)
\[t_{set1} \]
RB7 (DATA)
\[t_{hld0} \]
RESET

1
2
3
4
5
6
1 \(\mu \text{s} \) min.

1
2
3
4
5
6
1 \(\mu \text{s} \) min.

Program/Verify Test Mode

FIGURE 5-2: READ DATA COMMAND MODE (PROGRAM/VERIFY)

MCLR
\[t_{set0} \]
RB6 (CLOCK)
\[t_{set1} \]
RB7 (DATA)
\[t_{hld0} \]
RESET

1
2
3
4
5
6
1 \(\mu \text{s} \) min.

1
2
3
4
5
6
1 \(\mu \text{s} \) min.

Program/Verify Test Mode

FIGURE 5-3: INCREMENT ADDRESS COMMAND MODE (PROGRAM/VERIFY)

MCLR
\[t_{set0} \]
RB6 (CLOCK)
\[t_{set1} \]
RB7 (DATA)
\[t_{hld1} \]
RESET

1
2
3
4
5
6
1 \(\mu \text{s} \) min.

Program/Verify Test Mode
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”.
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELoQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microID, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rFIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.