PRODUCT FEATURES

- USB-IF “Hi-Speed” compliant to the Universal Serial Bus Specification Rev 2.0
- Interface compliant with the ULPI Specification revision 1.1 as a Single Data Rate (SDR) PHY
- 1.8V to 3.3V IO Voltage (±10%)
- flexPWR® Technology
 - Low current design ideal for battery powered applications
 - “Sleep” mode tri-states all ULPI pins and places the part in a low current state
- Supports FS pre-amble for FS hubs with a LS device attached (UTMI+ Level 3)
- Supports HS SOF and LS keep-alive pulse
- Includes full support for the optional On-The-Go (OTG) protocol detailed in the On-The-Go Supplement Revision 1.0a specification
- Supports the OTG Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
- Allows host to turn VBUS off to conserve battery power in OTG applications
- Support OTG monitoring of VBUS levels with internal comparators
- “Wrapper-less” design for optimal timing performance and design ease
 - Low Latency Hi-Speed Receiver (43 Hi-Speed clocks Max) allows use of legacy UTMI Links with a ULPI bridge
- Internal 5V cable short-circuit protection of ID, DP and DM lines to VBUS or ground
- 26MHz Reference Clock Operation
 - 0 to 3.6V input drive tolerant
 - Able to accept “noisy” clock sources
- Internal low jitter PLL for 480MHz Hi-Speed USB operation
- Internal detection of the value of resistance to ground on the ID pin
- Integrated battery to 3.3V LDO regulator
 - 2.2uF bypass capacitor
 - 100mV dropout voltage
- Integrated ESD protection circuits
 - Up to ±15kV without any external devices

- Carkit UART mode for non-USB serial data transfers
- Industrial Operating Temperature -40°C to +85°C
- Packaging Options
 - 24 pin QFN lead-free RoHS compliant package (4 x 4 x 0.90 mm height)
 - 25 ball VFBGA lead-free RoHS compliant package also available; (3 x 3 x 0.88mm height)

Applications

The USB3317 is targeted for any application where a Hi-Speed USB connection is desired and when board space, power, and interface pins must be minimized.

The USB3317 is well suited for:
- Cell Phones
- PDAs
- MP3 Players
- GPS Personal Navigation
- Scanners
- External Hard Drives
- Digital Still and Video Cameras
- Scanners
- Entertainment Devices
- Printers
- Set Top Boxes
- Video Record/Playback Systems
- IP and Video Phones
- Gaming Consoles
- POS Terminals
Order Number(s):
USB3317C-CP-TR FOR 24 PIN, QFN LEAD-FREE ROHS COMPLIANT PACKAGE (TAPE AND REEL)
USB3317C-GJ-TR FOR 25 PIN, VFBGA LEAD-FREE ROHS COMPLIANT PACKAGE (TAPE AND REEL)
REEL SIZE IS 4000 PIECES.

This product meets the halogen maximum concentration values per IEC61249-2-21
For RoHS compliance and environmental information, please visit www.smsc.com/rohs
General Description

The USB3317 is a highly integrated Hi-Speed USB 2.0 Transceiver (PHY) that supports systems architectures based on a 26MHz reference clock. It is designed to be used in both commercial and industrial temperature applications.

The USB3317 meets all of the electrical requirements to be used as a Hi-Speed USB Host, Device, or an On-the-Go (OTG) device. In addition to the supporting USB signaling the USB3317 also provides USB UART mode.

USB3317 uses the industry standard UTMI+ Low Pin Interface (ULPI) to connect the USB PHY to the Link. The industry standard ULPI interface uses a method of in-band signaling and status byte transfers between the Link and PHY, to facilitate a USB session. By using in-band signaling and status byte transfers the ULPI interface requires only 12 pins.

The USB3317 uses SMSC’s “wrapper-less” technology to implement the ULPI interface. This “wrapper-less” technology allows the PHY to achieve a low latency transmit and receive time. SMSC’s low latency transceiver allows an existing UTMI Link to be reused by adding a UTMI to ULPI bridge. By adding a bridge to the ASIC the existing and proven UTMI Link IP can be reused.

The USB3317 is designed to run with a 26MHz reference clock. By using a reference clock from the Link the USB3317 is able to remove the cost of a crystal reference from the design.

The USB3317 includes a integrated 3.3V LDO regulator to generate its own supply from power applied at the VBAT pin. The voltage on the VBAT pin can range from 3.1 to 5.5V. The regulator dropout voltage is less than 100mV which allows the PHY to continue USB signaling when the voltage on VBAT drops to 3.1V. The USB transceiver will continue to operate at lower voltages, although some parameters may be outside the limits of the USB specifications. If the user would like to provide a 3.3V supply to the USB3317, the VBAT and VDD33 pins should be connected together.

The USB3317 also includes integrated pull-up resistors that can be used for detecting the attachment of a USB Charger. By sensing the attachment to a USB Charger, a product using the USB3317 can charge its battery at more than the 500mA allowed when charging from a USB Host.

![Figure 1 USB3317 Block Diagram](image)
Package Outlines

COMMON DIMENSIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>NOTE</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td>OVERALL PACKAGE HEIGHT</td>
</tr>
<tr>
<td>A1</td>
<td>0</td>
<td>0.02</td>
<td>0.05</td>
<td></td>
<td>STANDOFF</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
<td>0.90</td>
<td></td>
<td>MOLD CAP THICKNESS</td>
</tr>
<tr>
<td>D/E</td>
<td>3.85</td>
<td>4.00</td>
<td>4.15</td>
<td></td>
<td>X/Y BODY SIZE</td>
</tr>
<tr>
<td>D1/E1</td>
<td>3.55</td>
<td></td>
<td>3.95</td>
<td></td>
<td>X/Y MOLD CAP SIZE</td>
</tr>
<tr>
<td>D2/E2</td>
<td>2.40</td>
<td>2.50</td>
<td>2.60</td>
<td>2</td>
<td>X/Y EXPOSED PAD SIZE</td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
<td></td>
<td>0.50</td>
<td></td>
<td>TERMINAL LENGTH</td>
</tr>
<tr>
<td>b</td>
<td>0.18</td>
<td>0.25</td>
<td>0.30</td>
<td>2</td>
<td>TERMINAL WIDTH</td>
</tr>
<tr>
<td>e</td>
<td>0.50</td>
<td>BSC</td>
<td></td>
<td></td>
<td>TERMINAL PITCH</td>
</tr>
</tbody>
</table>

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. POSITION TOLERANCE OF EACH TERMINAL AND EXPOSED PAD IS ± 0.05mm at maximum material condition. Dimensions “b” applies to plated terminals and it is measured between 0.15 and 0.30 mm from the terminal tip.
3. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE AREA INDICATED.

Figure 2 24-Pin QFN, 4x4mm Body, 0.5mm Pitch
Hi-Speed USB Transceiver with 1.8V-3.3V ULPI Interface - 26MHz Reference Clock

Revision 2.1 (06-02-10)

PRODUCT PREVIEW

COMMON DIMENSIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>NOTE</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
<td>5</td>
<td>OVERALL PACKAGE HEIGHT</td>
</tr>
<tr>
<td>A1</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>STANDOFF</td>
</tr>
<tr>
<td>A2</td>
<td>0.65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>PKG BODY THICKNESS</td>
</tr>
<tr>
<td>D/E</td>
<td>2.00</td>
<td>3.00</td>
<td>3.10</td>
<td>-</td>
<td>XY BODY SIZE</td>
</tr>
<tr>
<td>D1/E1</td>
<td>2.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X/Y END BALLS DISTANCE</td>
</tr>
<tr>
<td>b</td>
<td>0.25</td>
<td>0.30</td>
<td>0.35</td>
<td>2</td>
<td>BALL DIAMETER</td>
</tr>
<tr>
<td>e</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BALL PITCH</td>
</tr>
<tr>
<td>ccc</td>
<td>0</td>
<td>-</td>
<td>0.08</td>
<td>4</td>
<td>COPLANARITY</td>
</tr>
</tbody>
</table>

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. MAXIMUM RADIAL TRUE POSITION TOLERANCE OF EACH BALL IS ± 0.075mm AT MAXIMUM MATERIAL CONDITION. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER, PARALLEL TO PRIMARY DATUM "C".
3. THE BALL "A1" CORNER MUST BE IDENTIFIED IN THE INDICATED AREA OF THE TOP PACKAGE SURFACE BY USING A CORNER CHAMFER, INK/LASER/METALIZED MARKING, INDENTATION, OR OTHER FEATURE OF PACKAGE BODY, EXACT SHAPE OF EACH CORNER IS OPTIONAL, BUT TERMINAL "A1" CORNER MUST BE UNIQUE.
4. PRIMARY DATUM "C" AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE CONTACT SOLDER BALLS.
5. DIMENSION "A" DOES NOT INCLUDE ATTACHED EXTERNAL FEATURES, SUCH AS HEAT SINK OR CHIP CAPACITORS.

LAND PATTERN DIMENSIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1/E1'</td>
<td>-</td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td>b'</td>
<td>0.20</td>
<td>-</td>
<td>0.25</td>
</tr>
<tr>
<td>e'</td>
<td>-</td>
<td>0.50</td>
<td>-</td>
</tr>
</tbody>
</table>

THE USER MAY MODIFY THE PCB LAND PATTERN DIMENSIONS, BASED ON THEIR EXPERIENCE AND/OR PROCESS CAPABILITY.

RECOMMENDED PCB LAND PATTERN

Figure 3 25-pin VFBGA, 3x3mm Body, 0.5mm Pitch