MCP6N11

500 kHz, 800 µA Instrumentation Amplifier

Features

- Rail-to-Rail Input and Output
- Gain Set by 2 External Resistors
- Minimum Gain (GMIN) Options: 1, 2, 5, 10 or 100 V/V
- Common Mode Rejection Ratio (CMRR): 115 dB (typical, GMIN = 100)
- Power Supply Rejection Ratio (PSRR): 112 dB (typical, GMIN = 100)
- Bandwidth: 500 kHz (typical, Gain = GMIN)
- Supply Current: 800 µA/channel (typical)
- Single Channel
- Enable/VOS Calibration pin: (EN/CAL)
- Power Supply: 1.8V to 5.5V
- Extended Temperature Range: -40°C to +125°C

Typical Applications

- High Side Current Sensor
- Wheatstone Bridge Sensors
- Difference Amplifier with Level Shifting
- Power Control Loops

Design Aids

- Microchip Advanced Part Selector (MAPS)
- Demonstration Board
- Application Notes

Description

Microchip Technology Inc. offers the single MCP6N11 instrumentation amplifier (INA) with Enable/VOS Calibration pin (EN/CAL) and several minimum gain options. It is optimized for single-supply operation with rail-to-rail input (no common mode crossover distortion) and output performance.

Two external resistors set the gain, minimizing gain error and drift-over temperature. The reference voltage (VREF) shifts the output voltage (VOUT).

The supply voltage range (1.8V to 5.5V) is low enough to support many portable applications. All devices are fully specified from -40°C to +125°C.

These parts have five minimum gain options (1, 2, 5, 10 and 100 V/V). This allows the user to optimize the input offset voltage and input noise for different applications.

Typical Application Circuit

Package Types

<table>
<thead>
<tr>
<th>MCP6N11 SOIC</th>
<th>MCP6N11 2x3 TDFN *</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFG</td>
<td>EN/CAL</td>
</tr>
<tr>
<td>VIM</td>
<td>7 VDD</td>
</tr>
<tr>
<td>VIP</td>
<td>6 VOUT</td>
</tr>
<tr>
<td>VSS</td>
<td>4 VREF</td>
</tr>
</tbody>
</table>

* Includes Exposed Thermal Pad (EP); see Table 3-1.
Minimum Gain Options

Table 1 shows key specifications that differentiate between the different minimum gain (G_MIN) options. See Section 1.0 “Electrical Characteristics”, Section 6.0 “Packaging Information” and Product Identification System for further information on G_MIN.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>G_MIN (V/V)</th>
<th>V_OS (±mV)</th>
<th>ΔV_OS/ΔT_A (±µV/°C) Typ.</th>
<th>CMRR (dB) Min. V_DD = 5.5V</th>
<th>PSRR (dB) Min.</th>
<th>V_DMH (V) Max.</th>
<th>GBWP (MHz) Nom.</th>
<th>E_ni (µVP-P) Nom. (f = 0.1 to 10 Hz)</th>
<th>E_ni (nV/√Hz) Nom. (f = 10 kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP6N11-001</td>
<td>1</td>
<td>3.0</td>
<td>90</td>
<td>70</td>
<td>62</td>
<td>2.70</td>
<td>0.50</td>
<td>570</td>
<td>950</td>
</tr>
<tr>
<td>MCP6N11-002</td>
<td>2</td>
<td>2.0</td>
<td>45</td>
<td>78</td>
<td>68</td>
<td>1.35</td>
<td>1.0</td>
<td>285</td>
<td>475</td>
</tr>
<tr>
<td>MCP6N11-005</td>
<td>5</td>
<td>0.85</td>
<td>18</td>
<td>80</td>
<td>75</td>
<td>0.54</td>
<td>2.5</td>
<td>114</td>
<td>190</td>
</tr>
<tr>
<td>MCP6N11-010</td>
<td>10</td>
<td>0.50</td>
<td>9.0</td>
<td>81</td>
<td>81</td>
<td>0.27</td>
<td>5.0</td>
<td>57</td>
<td>95</td>
</tr>
<tr>
<td>MCP6N11-100</td>
<td>100</td>
<td>0.35</td>
<td>2.7</td>
<td>88</td>
<td>86</td>
<td>0.027</td>
<td>35</td>
<td>18</td>
<td>35</td>
</tr>
</tbody>
</table>
1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>GMIN</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD – VSS</td>
<td>6.5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current at Input Pins ††</td>
<td>±2 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Inputs (VIP and VIM) ††</td>
<td>VSS – 1.0V to VDD + 1.0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Other Inputs and Outputs</td>
<td>VSS – 0.3V to VDD + 0.3V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference Input Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current at Output and Supply Pins</td>
<td>±30 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Junction Temperature</td>
<td>+150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD protection on all pins (HBM, CDM, MM)</td>
<td>≥ 2 kV, 1.5 kV, 300V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.2.1.2 “Input Voltage Limits” and Section 4.2.1.3 “Input Current Limits”.

1.2 Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>GMIN</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset</td>
<td>VOS</td>
<td>-3.0</td>
<td>—</td>
<td>+3.0</td>
<td>mV</td>
<td>1</td>
<td>(Note 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.0</td>
<td>—</td>
<td>+2.0</td>
<td>mV</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.85</td>
<td>—</td>
<td>+0.85</td>
<td>mV</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.50</td>
<td>—</td>
<td>+0.50</td>
<td>mV</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.35</td>
<td>—</td>
<td>+0.35</td>
<td>mV</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage Trim Step</td>
<td>VOSTRM</td>
<td>—</td>
<td>0.36</td>
<td>—</td>
<td>mV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.21</td>
<td>—</td>
<td>mV</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.077</td>
<td>—</td>
<td>mV</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.045</td>
<td>—</td>
<td>mV</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.014</td>
<td>—</td>
<td>mV</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage Drift</td>
<td>ΔVOS/ΔTA</td>
<td>±90/GMIN</td>
<td>—</td>
<td>—</td>
<td>µV/°C</td>
<td>1 to 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±2.7</td>
<td>—</td>
<td>—</td>
<td>µV/°C</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>62</td>
<td>82</td>
<td>—</td>
<td>dB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
<td>88</td>
<td>—</td>
<td>dB</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>96</td>
<td>—</td>
<td>dB</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>81</td>
<td>102</td>
<td>—</td>
<td>dB</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86</td>
<td>112</td>
<td>—</td>
<td>dB</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: VCM = (VIP + VIM) / 2, VDM = (VIP – VIM) and GDM = 1 + Rf/RG.
Note 2: The VOS spec limits include 1/f noise effects.
Note 3: This is the input offset drift without VOS re-calibration; toggle EN/CAL to minimize this effect.
Note 4: These specs apply to both the VIP, VIM input pair (use VCM) and to the VREF, VFG input pair (VREF takes VCM’s place).
Note 5: This spec applies to the VIP, VIM, VREF and VFG pins individually.
Note 6: Figure 2-11 and Figure 2-19 show the VVR and VDMR variation over temperature.
Note 7: See Section 1.5 “Explanation of DC Error Specs”.
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $T_A = +25°C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $EN/CAL = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_{L} = V_{DD}/2$, $R_L = 10\,\text{k}Ω$ to V_L and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Bias Current (Note 4)</td>
<td>I$_B$</td>
<td>—10</td>
<td>—</td>
<td>pA</td>
</tr>
<tr>
<td>Across Temperature</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>pA</td>
</tr>
<tr>
<td>Across Temperature</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>nA</td>
</tr>
<tr>
<td>Input Offset Current (Note 4)</td>
<td>I$_{OS}$</td>
<td>—</td>
<td>±1</td>
<td>—</td>
</tr>
<tr>
<td>Across Temperature</td>
<td>—</td>
<td>±5</td>
<td>—</td>
<td>pA</td>
</tr>
<tr>
<td>Across Temperature</td>
<td>-1</td>
<td>±0.05</td>
<td>+1</td>
<td>nA</td>
</tr>
<tr>
<td>Common Mode Input Impedance</td>
<td>Z$_{CM}$</td>
<td>—</td>
<td>10^{13}</td>
<td>—</td>
</tr>
<tr>
<td>Input Common Mode Voltage (V_{CM} or V_{REF}) (Note 4)</td>
<td>V_{IVL}</td>
<td>—</td>
<td>—</td>
<td>$V_{SS} - 0.2$</td>
</tr>
<tr>
<td>V$_{IVH}$</td>
<td></td>
<td></td>
<td></td>
<td>$V_{DD} + 0.15$</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>CMRR</td>
<td>62</td>
<td>79</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>87</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>101</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>107</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>119</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>94</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>100</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>108</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>114</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>115</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Common Mode Non-Linearity</td>
<td>INL$_{CM}$</td>
<td>-1000</td>
<td>±115</td>
<td>+1000</td>
</tr>
<tr>
<td></td>
<td>-570</td>
<td>±27</td>
<td>+570</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-230</td>
<td>±11</td>
<td>+230</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-125</td>
<td>±6</td>
<td>+125</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-50</td>
<td>±2</td>
<td>+50</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-400</td>
<td>±42</td>
<td>+400</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-220</td>
<td>±10</td>
<td>+220</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-100</td>
<td>±4</td>
<td>+100</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-50</td>
<td>±2</td>
<td>+50</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>-30</td>
<td>±1</td>
<td>+30</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Note 1: $V_{CM} = (V_{IP} + V_{IM}) / 2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$.

Note 2: The V_{OS} spec limits include 1/f noise effects.

Note 3: This is the input offset drift without V_{OS} re-calibration; toggle EN/CAL to minimize this effect.

Note 4: These specs apply to both the V_{IP}, V_{IM} input pair (use V_{CM}) and to the V_{REF}, V_{FG} input pair (V_{REF} takes V_{CM}'s place).

Note 5: This spec applies to the V_{IP}, V_{IM}, V_{REF} and V_{FG} pins individually.

Note 6: Figure 2-11 and Figure 2-19 show the V_{VR} and V_{DMR} variation over temperature.

Note 7: See Section 1.5 “Explanation of DC Error Specs”.
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, and GDM = GMIN; see Figure 1-6 and Figure 1-7.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>GMIN</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Differential Mode Voltage (VDM) (Note 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage Range</td>
<td>VDML</td>
<td>-2.7/GMIN</td>
<td></td>
<td></td>
<td>V</td>
<td>all</td>
<td>VREF = (VDD - GDMVDM)/2 (Note 6)</td>
</tr>
<tr>
<td></td>
<td>VDMH</td>
<td></td>
<td></td>
<td></td>
<td>+2.7/GMIN</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Differential Gain Error</td>
<td>gE</td>
<td>-1</td>
<td>±0.13</td>
<td>+1</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Gain Drift</td>
<td>ΔgE/ΔTA</td>
<td></td>
<td>±0.0006</td>
<td></td>
<td>%/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Non-Linearity</td>
<td>INLDM</td>
<td>-500</td>
<td>±30</td>
<td>+500</td>
<td>ppm</td>
<td>1</td>
<td>(Note 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-800</td>
<td>±40</td>
<td>+800</td>
<td>ppm</td>
<td>2, 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2000</td>
<td>±100</td>
<td>+2000</td>
<td>ppm</td>
<td>10, 100</td>
<td></td>
</tr>
<tr>
<td>DC Open-Loop Gain</td>
<td>AOL</td>
<td>61</td>
<td>84</td>
<td></td>
<td>dB</td>
<td>1</td>
<td>VDD = 1.8V, VOUT = 0.2V to 1.6V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
<td>90</td>
<td></td>
<td>dB</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>98</td>
<td></td>
<td>dB</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>78</td>
<td>104</td>
<td></td>
<td>dB</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86</td>
<td>116</td>
<td></td>
<td>dB</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>94</td>
<td></td>
<td>dB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>77</td>
<td>100</td>
<td></td>
<td>dB</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>84</td>
<td>108</td>
<td></td>
<td>dB</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>114</td>
<td></td>
<td>dB</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>97</td>
<td>125</td>
<td></td>
<td>dB</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Output Voltage Swing</td>
<td>VOLT</td>
<td></td>
<td></td>
<td></td>
<td>VSS + 15</td>
<td>mV</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Output Voltage Swing</td>
<td>VOH</td>
<td>VDD – 15</td>
<td></td>
<td></td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD – 25</td>
<td></td>
<td></td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>ISC</td>
<td></td>
<td>±8</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>VDD</td>
<td>1.8</td>
<td></td>
<td>5.5</td>
<td>V</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent Current per Amplifier</td>
<td>IQ</td>
<td>0.5</td>
<td>0.8</td>
<td>1.1</td>
<td>mA</td>
<td></td>
<td>(I_O = 0)</td>
</tr>
<tr>
<td>POR Trip Voltage</td>
<td>VPRL</td>
<td>1.1</td>
<td></td>
<td>1.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPRR</td>
<td></td>
<td>1.4</td>
<td>1.7</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. \(V_{CM} = (V_{IP} + V_{IM}) / 2\). \(V_{DM} = (V_{IP} - V_{IM})\) and \(G_{DM} = 1 + R_F/R_G\).
2. The \(V_{OS}\) spec limits include 1/f noise effects.
3. This is the input offset drift without \(V_{OS}\) re-calibration; toggle EN/CAL to minimize this effect.
4. These specs apply to both the \(V_{IP}, V_{IM}\) input pair (use \(V_{CM}\)) and to the \(V_{REF}, V_{FG}\) input pair (\(V_{REF}\) takes \(V_{CM}\)’s place).
5. This spec applies to the \(V_{IP}, V_{IM}\), \(V_{REF}\) and \(V_{FG}\) pins individually.
6. Figure 2-11 and Figure 2-19 show the \(V_{IR}\) and \(V_{DMR}\) variation over temperature.
7. See Section 1.5 “Explanation of DC Error Specs”.
TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V, VREF = VDD/2, VL = VDD/2, R_L = 10 kΩ to VL, C_L = 60 pF and G_DM = G_MIN; see Figure 1-6 and Figure 1-7.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>G_MIN</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>GBWP</td>
<td>0.50</td>
<td>0.5G_MIN</td>
<td>—</td>
<td>MHz</td>
<td>1 to 10</td>
<td></td>
</tr>
<tr>
<td>Phase Margin</td>
<td>PM</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>°</td>
<td></td>
<td>all</td>
</tr>
<tr>
<td>Open-Loop Output Impedance</td>
<td>ROL</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>kΩ</td>
<td>1 to 10</td>
<td></td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>dB</td>
<td>all</td>
<td>f < 10 kHz</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>CMRR</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>dB</td>
<td>1 to 10</td>
<td>f < 10 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>dB</td>
<td>100</td>
<td>f < 10 kHz</td>
</tr>
<tr>
<td>Step Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>SR</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>V/µs</td>
<td>1 to 10</td>
<td>V_DD = 1.8V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>V/µs</td>
<td></td>
<td>V_DD = 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>V/µs</td>
<td>100</td>
<td>V_DD = 1.8V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>V/µs</td>
<td></td>
<td>V_DD = 5.5V</td>
</tr>
<tr>
<td>Overdrive Recovery, Input Common Mode</td>
<td>tIRC</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>µs</td>
<td>all</td>
<td>V_CM = V_SS – 1V (V_DD + 1V) to V_DD/2, G_DM, V_DM = ±0.1V, 90% of V_OUT change</td>
</tr>
<tr>
<td>Overdrive Recovery, Input Differential Mode</td>
<td>tIRD</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>µs</td>
<td></td>
<td>V_DM = V_DML – (0.5V/G_MIN (V_DMH + (0.5V/G_MIN)) to 0V, V_REF = (V_DD – G_DM V_DM)/2, 90% of V_OUT change</td>
</tr>
<tr>
<td>Overdrive Recovery, Output</td>
<td>tOR</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>µs</td>
<td></td>
<td>G_DM = 2G_MIN, G_DM V_DM = 0.5V_DD to 0V, V_REF = 0.75V_DD (or 0.25V_DD), 90% of V_OUT change</td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Noise Voltage</td>
<td>E_{ni}</td>
<td>570/G_MIN</td>
<td>—</td>
<td>—</td>
<td>µV_p-p</td>
<td>1 to 10</td>
<td>f = 0.1 Hz to 10 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>µV_p-p</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Input Noise Voltage Density</td>
<td>e_{ni}</td>
<td>950/G_MIN</td>
<td>—</td>
<td>—</td>
<td>nV/√Hz</td>
<td>1 to 10</td>
<td>f = 100 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>nV/√Hz</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Input Current Noise Density</td>
<td>i_{ni}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>fA/√Hz</td>
<td>all</td>
<td>f = 1 kHz</td>
</tr>
</tbody>
</table>
TABLE 1-3: DIGITAL ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V, VREF = VDD/2, VIL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN. see Figure 1-6 and Figure 1-7.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>GMIN</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN/CAL Low Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN/CAL Logic Threshold, Low</td>
<td>VIL</td>
<td>VSS</td>
<td>0.2 VDD</td>
<td>V</td>
<td>V</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>EN/CAL Input Current, Low</td>
<td>IENL</td>
<td>—</td>
<td>-0.1</td>
<td>nA</td>
<td></td>
<td>EN/CAL = 0V</td>
<td></td>
</tr>
<tr>
<td>GND Current</td>
<td>ISS</td>
<td>-7</td>
<td>-2.5</td>
<td>µA</td>
<td></td>
<td>EN/CAL = 0V, VDD = 5.5V</td>
<td></td>
</tr>
<tr>
<td>Amplifier Output Leakage</td>
<td>IO(LEAK)</td>
<td>10</td>
<td>—</td>
<td>nA</td>
<td></td>
<td>EN/CAL = 0V</td>
<td></td>
</tr>
<tr>
<td>EN/CAL High Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN/CAL Logic Threshold, High</td>
<td>VIH</td>
<td>0.8 VDD</td>
<td>VDD</td>
<td>V</td>
<td>all</td>
<td>EN/CAL = VDD</td>
<td></td>
</tr>
<tr>
<td>EN/CAL Input Current, High</td>
<td>IENH</td>
<td>—</td>
<td>-0.01</td>
<td>nA</td>
<td></td>
<td>EN/CAL = VDD</td>
<td></td>
</tr>
<tr>
<td>EN/CAL Dynamic Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN/CAL Input Hysteresis</td>
<td>VHYST</td>
<td>—</td>
<td>0.2</td>
<td>V</td>
<td>all</td>
<td>EN/CAL = 0V, VOUT = 0.1(VDD/2), VDMGDM = 1 V, VIL = 0V</td>
<td></td>
</tr>
<tr>
<td>EN/CAL Low to Amplifier Output High-Z Turn-off Time</td>
<td>tOFF</td>
<td>—</td>
<td>3</td>
<td>10</td>
<td>µs</td>
<td>EN/CAL = 0.8VDD to VOUT = 0.9(VDD/2), VDMGDM = 1 V, VIL = 0V</td>
<td></td>
</tr>
<tr>
<td>EN/CAL High to Amplifier Output On Time</td>
<td>tON</td>
<td>12</td>
<td>20</td>
<td>28</td>
<td>ms</td>
<td>EN/CAL = 0.8VDD to VOUT = 0.9(VDD/2), VDMGDM = 1 V, VIL = 0V</td>
<td></td>
</tr>
<tr>
<td>EN/CAL Low to EN/CAL High low time</td>
<td>tENLH</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>Minimum time before externally releasing EN/CAL (Note 1)</td>
<td></td>
</tr>
<tr>
<td>Amplifier On to EN/CAL Low Setup Time</td>
<td>tENOL</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>µs</td>
<td>Minimum time before externally releasing EN/CAL (Note 1)</td>
<td></td>
</tr>
<tr>
<td>POR Dynamic Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD ↓ to Output Off</td>
<td>tPHL</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>µs</td>
<td>all</td>
<td>VIL = 0V, VDD = 1.8V to VPRH ± 0.1V step, 90% of VOUT change</td>
</tr>
<tr>
<td>VDD ↑ to Output On</td>
<td>tPLH</td>
<td>140</td>
<td>250</td>
<td>360</td>
<td>ms</td>
<td>all</td>
<td>VIL = 0V, VDD = 0V to VPRH ± 0.1V step, 90% of VOUT change</td>
</tr>
</tbody>
</table>

Note 1: For design guidance only; not tested.

TABLE 1-4: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = 1.8V to 5.5V, VSS = GND.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>TA</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>TA</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>TA</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>θJA</td>
<td>—</td>
<td>150</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-TDFN (2×3)</td>
<td>θJA</td>
<td>—</td>
<td>53</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Operation must not cause TJ to exceed the Absolute Maximum Junction Temperature specification (+150°C).
1.3 Timing Diagrams

FIGURE 1-1: Common Mode Input Overdrive Recovery Timing Diagram.

FIGURE 1-2: Differential Mode Input Overdrive Recovery Timing Diagram.

FIGURE 1-3: Output Overdrive Recovery Timing Diagram.

FIGURE 1-4: POR Timing Diagram.

FIGURE 1-5: EN/CAL Timing Diagram.
1.4 DC Test Circuits

1.4.1 INPUT OFFSET TEST CIRCUIT

Figure 1-6 is used for testing the INA’s input offset errors and input voltage range (VE, VIL and VIH; see Section 1.5.1 “Input Offset Related Errors” and Section 1.5.2 “Input Offset Common Mode Non-linearity”). U2 is part of a control loop that forces VOUT to equal VCNT; U1 can be set to any bias point.

FIGURE 1-6: Test Circuit for Common Mode (Input Offset).

When MCP6N11 is in its normal range of operation, the DC output voltages are (where VE is the sum of input offset errors and gE is the gain error):

EQUATION 1-1:

\[G_{DM} = I + R_F/R_G \]
\[V_{OUT} = V_{CNT} \]
\[V_M = V_{REF} + G_{DM}(I + g_E)VE \]

Table 1-5 gives the recommended RF and RG values for different GMIN options.

TABLE 1-5: SELECTING RF AND RG

<table>
<thead>
<tr>
<th>GMIN (V/V)</th>
<th>RF (Ω)</th>
<th>RG (Ω)</th>
<th>GDM (V/V)</th>
<th>GDMVOS (±V) Max.</th>
<th>BW (kHz) Nom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100k</td>
<td>499</td>
<td>201.4</td>
<td>0.60</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>499</td>
<td>100</td>
<td>1001</td>
<td>0.40</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>100k</td>
<td>100</td>
<td>1001</td>
<td>0.85</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
<td>1001</td>
<td>0.50</td>
<td>5.0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1001</td>
<td>0.35</td>
<td>35</td>
</tr>
</tbody>
</table>

1.4.2 DIFFERENTIAL GAIN TEST CIRCUIT

Figure 1-7 is used for testing the INA’s differential gain error, non-linearity and input voltage range (gE, INLDM, VDML and VDMH; see Section 1.5.3 “Differential Gain Error and Non-linearity”). RF and RG are 0.01% for accurate gain error measurements.

FIGURE 1-7: Test Circuit for Differential Mode.

The output voltages are (where VE is the sum of input offset errors and gE is the gain error):

EQUATION 1-2:

\[G_{DM} = I + R_F/R_G \]
\[V_{OUT} = V_{REF} + G_{DM}(I + g_E)(V_{DM} + V_E) \]
\[V_M = V_{OUT} - V_{REF} = G_{DM}(I + g_E)(V_{DM} + V_E) \]

To keep VREF, VFG and VOUT within their ranges, set:

EQUATION 1-3:

\[V_{REF} = (V_{DD} - G_{DM}V_{DM})/2 \]

Table 1-6 shows the recommended RF and RG. They produce a 10 kΩ load; VL can usually be left open.

TABLE 1-6: SELECTING RF AND RG

<table>
<thead>
<tr>
<th>GMIN (V/V)</th>
<th>RF (Ω)</th>
<th>RG (Ω)</th>
<th>GDM (V/V) Nom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Open</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>4.99k</td>
<td>4.99k</td>
<td>2.00</td>
</tr>
<tr>
<td>5</td>
<td>8.06k</td>
<td>2.00k</td>
<td>5.030</td>
</tr>
<tr>
<td>10</td>
<td>9.09k</td>
<td>1.00k</td>
<td>10.09</td>
</tr>
<tr>
<td>100</td>
<td>10.0k</td>
<td>100</td>
<td>101.0</td>
</tr>
</tbody>
</table>
1.5 Explanation of DC Error Specs

1.5.1 INPUT OFFSET RELATED ERRORS

The input offset error (\(V_E\)) is extracted from input offset measurements (see Section 1.4.1 “Input Offset Test Circuit”), based on Equation 1-1:

EQUATION 1-4:

\[V_E = \frac{V_M - V_{REF}}{G_{DM}(1 + g_E)} \]

\(V_E\) has several terms, which assume a linear response to changes in \(V_{DD}, V_{SS}, V_{CM}, V_{OUT}\) and \(T_A\) (all of which are in their specified ranges):

EQUATION 1-5:

\[V_E = V_{OS} + \frac{\Delta V_{DD} - \Delta V_{SS}}{PSRR} + \frac{\Delta V_{CM}}{CMRR} + \frac{\Delta V_{REF}}{CMRR} + \frac{\Delta V_{OUT}}{A_{OL}} + \frac{\Delta V_{OS}}{\Delta T_A} \]

Where:
- \(PSRR\), \(CMRR\) and \(A_{OL}\) are in units of \(V/V\)
- \(\Delta T_A\) is in units of °C
- \(V_{DM} = 0\)

Equation 1-2 shows how \(V_E\) affects \(V_{OUT}\).

1.5.2 INPUT OFFSET COMMON MODE NON-LINEARITY

The input offset error (\(V_E\)) changes non-linearly with \(V_{CM}\). Figure 1-8 shows \(V_E\) vs. \(V_{CM}\), as well as a linear fit line (\(V_{E,\text{LIN}}\)) based on \(V_{OS}\) and \(CMRR\). The op amp is in standard conditions (\(\Delta V_{OUT} = 0\), \(V_{DM} = 0\), etc.). \(V_{CM}\) is swept from \(V_{\text{IVL}}\) to \(V_{\text{IVH}}\). The test circuit is in Section 1.4.1 “Input Offset Test Circuit” and \(V_E\) is calculated using Equation 1-4.

Based on the measured \(V_E\) data, we obtain the following linear fit:

EQUATION 1-6:

\[V_{E,\text{LIN}} = V_{OS} + \frac{V_{CM} - V_{DD}/2}{CMRR} \]

Where:
- \(V_{OS} = V_2\)
- \(\frac{1}{CMRR} = V_{\text{IVH}} - V_{\text{IVL}}\)

The remaining error (\(\Delta V_E\)) is described by the Common Mode Non-Linearity spec:

EQUATION 1-7:

\[INL_{CM} = \frac{\max |\Delta V_E|}{V_{\text{IVH}} - V_{\text{IVL}}} \]

Where:
- \(\Delta V_E = V_E - V_{E,\text{LIN}}\)

The same common mode behavior applies to \(V_E\) when \(V_{\text{REF}}\) is swept, instead of \(V_{CM}\), since both input stages are designed the same:

EQUATION 1-8:

\[V_{E,\text{LIN}} = V_{OS} + \frac{V_{REF} - V_{DD}/2}{CMRR} \]

\[INL_{CM} = \frac{\max |\Delta V_E|}{V_{\text{IVH}} - V_{\text{IVL}}} \]

1.5.3 DIFFERENTIAL GAIN ERROR AND NON-LINEARITY

The differential errors are extracted from differential gain measurements (see Section 1.4.2 “Differential Gain Test Circuit”), based on Equation 1-2. These errors are the differential gain error (\(g_E\)) and the input offset error (\(V_E\), which changes non-linearly with \(V_{DM}\)):

EQUATION 1-9:

\[G_{DM} = I + \frac{R_F}{R_G} \]

\[V_M = G_{DM}(I + g_E)(V_{DM} + V_E) \]

These errors are adjusted for the expected output, then referred back to the input, giving the differential input error (\(V_{ED}\)) as a function of \(V_{DM}\):

EQUATION 1-10:

\[V_{ED} = \frac{V_M}{G_{DM}} - V_{DM} \]
Figure 1-9 shows V_{ED} vs. V_{DM}, as well as a linear fit line (V_{ED_LIN}) based on V_E and g_E. The op amp is in standard conditions ($\Delta V_{OUT} = 0$, etc.). V_{DM} is swept from V_{DML} to V_{DMH}.

FIGURE 1-9: Differential Input Error vs. Differential Input Voltage.

Based on the measured V_{ED} data, we obtain the following linear fit:

EQUATION 1-11:

$$V_{ED_LIN} = (1 + g_E)V_E + g_E V_{DM}$$

Where:

$$g_E = \frac{V_3 - V_1}{V_{DMH} - V_{DML}} - 1$$

$$V_E = \frac{V_2}{1 + g_E}$$

Note that the V_E value measured here is not as accurate as the one obtained in **Section 1.5.1 “Input Offset Related Errors”**.

The remaining error (ΔV_{ED}) is described by the Differential Mode Non-Linearity spec:

EQUATION 1-12:

$$INL_{DM} = \frac{\max|\Delta V_{ED}|}{V_{DMH} - V_{DML}}$$

Where:

$$\Delta V_{ED} = V_{ED} - V_{ED_LIN}$$
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V, VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.

2.1 DC Voltages and Currents

FIGURE 2-1: Normalized Input Offset Voltage, with GMIN = 1 to 10.

FIGURE 2-3: Normalized Input Offset Voltage Drift, with GMIN = 1 to 10.

FIGURE 2-2: Normalized Input Offset Voltage, with GMIN = 100.

FIGURE 2-4: Normalized Input Offset Voltage Drift, with GMIN = 100.
Note: Unless otherwise indicated, \(T_A = +25^\circ C, V_{DD} = 1.8\) V to 5.5\(V, V_{SS} = GND, EN/\overline{CAL} = V_{DD}, V_{CM} = V_{DD}/2, V_{DM} = 0V, V_{REF} = V_{DD}/2, V_L = V_{DD}/2, R_L = 10 \, k\Omega \) to \(V_L, C_L = 60 \, pF \) and \(G_{DM} = G_{MIN} \); see Figure 1-6 and Figure 1-7.

FIGURE 2-5: Normalized Input Offset Voltage vs. Power Supply Voltage, with \(V_{CM} = 0V \) and \(G_{MIN} = 1 \) to 10.

FIGURE 2-6: Normalized Input Offset Voltage vs. Power Supply Voltage, with \(V_{CM} = 0V \) and \(G_{MIN} = 100 \).

FIGURE 2-7: Normalized Input Offset Voltage vs. Power Supply Voltage, with \(V_{CM} = V_{DD} \) and \(G_{MIN} = 1 \) to 10.

FIGURE 2-8: Normalized Input Offset Voltage vs. Power Supply Voltage, with \(V_{CM} = V_{DD} \) and \(G_{MIN} = 100 \).

FIGURE 2-9: Normalized Input Offset Voltage vs. Output Voltage, with \(G_{MIN} = 1 \) to 10.

FIGURE 2-10: Normalized Input Offset Voltage vs. Output Voltage, with \(G_{MIN} = 100 \).
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 1.8V$ to $5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_{L} = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L, $C_L = 60 \, pF$ and $G_{DM} = G_{MIN}$ see Figure 1-6 and Figure 1-7.

FIGURE 2-11: Input Common Mode Voltage Headroom vs. Ambient Temperature.

FIGURE 2-12: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 1.8V$ and $G_{MIN} = 1$ to 10.

FIGURE 2-13: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 1.8V$ and $G_{MIN} = 100$.

FIGURE 2-14: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 5.5V$ and $G_{MIN} = 1$ to 10.

FIGURE 2-15: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 5.5V$ and $G_{MIN} = 100$.

FIGURE 2-16: Normalized CMRR and PSRR vs. Ambient Temperature.
Note: Unless otherwise indicated, \(T_A = +25^\circ C, V_{DD} = 1.8\text{V to } 5.5\text{V}, V_{SS} = \text{GND, EN/CAL} = V_{DD}, V_{CM} = V_{DD}/2, V_{DM} = 0\text{V}, V_{REF} = V_{DD}/2, V_L = V_{DD}/2, R_L = 10 \text{k}\Omega \) to \(V_L, C_L = 60 \text{pF} \) and \(G_{DM} = G_{MIN} \); see Figure 1-6 and Figure 1-7.

FIGURE 2-17: Normalized DC Open-Loop Gain vs. Ambient Temperature.

FIGURE 2-18: The MCP6N11 Shows No Phase Reversal vs. Common Mode Voltage.

FIGURE 2-19: Normalized Differential Mode Voltage Range vs. Ambient Temperature.

FIGURE 2-20: Normalized Differential Input Error vs. Differential Voltage, with \(G_{MIN} = 1 \).

FIGURE 2-21: Normalized Differential Input Error vs. Differential Voltage, with \(G_{MIN} = 2 \) to 100.

FIGURE 2-22: The MCP6N11 Shows No Phase Reversal vs. Differential Voltage, with \(V_{DD} = 5.5\text{V} \).
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $EN/CAL = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L, $C_L = 60 \, pF$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

FIGURE 2-23: Input Bias and Offset Currents vs. Ambient Temperature, with $V_{DD} = +5.5V$.

FIGURE 2-24: Input Bias Current vs. Input Voltage (below V_{SS}).

FIGURE 2-25: Input Bias and Offset Currents vs. Common Mode Input Voltage, with $T_A = +85^\circ C$.

FIGURE 2-26: Input Bias and Offset Currents vs. Common Mode Input Voltage, with $T_A = +125^\circ C$.

FIGURE 2-27: Output Voltage Headroom vs. Output Current.

FIGURE 2-28: Output Voltage Headroom vs. Ambient Temperature.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 1.8$V to 5.5V, $V_{SS} = $GND, $EN/CAL = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{k}\Omega$ to V_L, $C_L = 60 \text{pF}$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

FIGURE 2-29: Output Short Circuit Current vs. Power Supply Voltage.

FIGURE 2-30: Supply Current vs. Power Supply Voltage.

FIGURE 2-31: Supply Current vs. Common Mode Input Voltage.
Note: Unless otherwise indicated, $T_A = +25°C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $EN/\overline{CAL} = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L, $C_L = 60 \, pF$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

2.2 Frequency Response

FIGURE 2-32: CMRR vs. Frequency.

FIGURE 2-33: PSRR vs. Frequency.

FIGURE 2-34: Normalized Open-Loop Gain vs. Frequency.

FIGURE 2-35: Normalized Gain Bandwidth Product and Phase Margin vs. Ambient Temperature.

FIGURE 2-36: Closed-Loop Output Impedance vs. Frequency.

FIGURE 2-37: Gain Peaking vs. Normalized Capacitive Load.
Note: Unless otherwise indicated, \(T_A = +25^\circ C, V_{DD} = 1.8V \) to 5.5V, \(V_{SS} = \text{GND}, EN/\text{CAL} = V_{DD}, V_{CM} = V_{DD}/2, V_{DM} = 0V, \) \(V_{REF} = V_{DD}/2, V_L = V_{DD}/2, R_L = 10 \, \Omega \) to \(V_L, C_L = 60 \, \text{pF} \) and \(G_{DM} = G_{\text{MIN}} \); see Figure 1-6 and Figure 1-7.

2.3 Noise

FIGURE 2-38: Normalized Input Noise Voltage Density vs. Frequency.

FIGURE 2-39: Normalized Input Noise Voltage Density vs. Input Common Mode Voltage, with \(f = 100 \, \text{Hz} \).

FIGURE 2-40: Normalized Input Noise Voltage Density vs. Input Common Mode Voltage, with \(f = 10 \, \text{kHz} \).

FIGURE 2-41: Normalized Input Noise Voltage vs. Time, with \(G_{\text{MIN}} = 1 \) to 10.

FIGURE 2-42: Normalized Input Noise Voltage vs. Time, with \(G_{\text{MIN}} = 100 \).
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 1.8V$ to $5.5V$, $V_{SS} = GND$, $EN/CAL = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L, $C_L = 60 \, pF$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

2.4 Time Response

FIGURE 2-43: Small Signal Step Response.

FIGURE 2-44: Large Signal Step Response.

FIGURE 2-45: Slew Rate vs. Ambient Temperature.

FIGURE 2-46: Maximum Output Voltage Swing vs. Frequency.

FIGURE 2-47: Common Mode Input Overdrive Recovery Time vs. Normalized Gain.

FIGURE 2-48: Differential Input Overdrive Recovery Time vs. Normalized Gain.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 1.8$V to 5.5V, $V_{SS} = GND$, $EN/\overline{CAL} = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0$V, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10$ kΩ to V_L, $C_L = 60$ pF and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

FIGURE 2-49: Output Overdrive Recovery Time vs. Normalized Gain.

FIGURE 2-50: The MCP6N11 Shows No Phase Reversal vs. Common Mode Input Overdrive, with $V_{DD} = 5.5$V.

FIGURE 2-51: The MCP6N11 Shows No Phase Reversal vs. Differential Input Overdrive, with $V_{DD} = 5.5$V.
Note: Unless otherwise indicated, \(T_A = +25^\circ \text{C}, V_{DD} = 1.8 \text{V to } 5.5 \text{V}, V_{SS} = \text{GND}, \text{EN/\text{CAL}} = V_{DD}, \text{V}_{CM} = V_{DD}/2, \text{V}_{DM} = 0 \text{V}, \text{V}_{REF} = V_{DD}/2, \text{V}_{L} = V_{DD}/2, R_L = 10 \text{k}\Omega \text{ to } V_L, C_L = 60 \text{pF} \text{ and } G_{DM} = G_{MIN} \); see Figure 1-6 and Figure 1-7.

2.5 Enable/Calibration and POR Responses

FIGURE 2-52: EN/\text{CAL} and Output Voltage vs. Time, with \(V_{DD} = 1.8 \text{V} \).

FIGURE 2-53: EN/\text{CAL} and Output Voltage vs. Time, with \(V_{DD} = 5.5 \text{V} \).

FIGURE 2-54: EN/\text{CAL} Hysteresis vs. Ambient Temperature.

FIGURE 2-55: EN/\text{CAL} Turn On Time vs. Ambient Temperature.

FIGURE 2-56: Power Supply On and Off and Output Voltage vs. Time.

FIGURE 2-57: POR Trip Voltages and Hysteresis vs. Temperature.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = 1.8$V to 5.5V, $V_{SS} = \text{GND}$, $\text{EN/CAL} = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0$V, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10$ kΩ to V_L, $C_L = 60$ pF and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

FIGURE 2-58: Quiescent Current in Shutdown vs. Power Supply Voltage.

FIGURE 2-59: Output Leakage Current vs. Output Voltage.
3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

Table 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFG</td>
<td>Feedback Input</td>
</tr>
<tr>
<td>VIM</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>VIP</td>
<td>Non-inverting Input</td>
</tr>
<tr>
<td>VSS</td>
<td>Negative Power Supply</td>
</tr>
<tr>
<td>VREF</td>
<td>Reference Input</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output</td>
</tr>
<tr>
<td>VDD</td>
<td>Positive Power Supply</td>
</tr>
<tr>
<td>EN/CAL</td>
<td>Enable/VOS Calibrate Digital Input</td>
</tr>
<tr>
<td>EP</td>
<td>Exposed Thermal Pad (EP); must be connected to VSS</td>
</tr>
</tbody>
</table>

3.1 Analog Signal Inputs

The non-inverting and inverting inputs (VIP and VIM) are high-impedance CMOS inputs with low bias currents.

3.2 Analog Feedback Input

The analog feedback input (VFG) is the inverting input of the second input stage. The external feedback components (RF and RG) are connected to this pin. It is a high-impedance CMOS input with low bias current.

3.3 Analog Reference Input

The analog reference input (VREF) is the non-inverting input of the second input stage; it shifts VOUT to its desired range. The external gain resistor (RG) is connected to this pin. It is a high-impedance CMOS input with low bias current.

3.4 Analog Output

The analog output (VOUT) is a low-impedance voltage output. It represents the differential input voltage (VDM = VIP - VIM), with gain GDM and is shifted by VREF. The external feedback resistor (RF) is connected to this pin.

3.5 Power Supply Pins

The positive power supply (VDD) is 1.8V to 5.5V higher than the negative power supply (VSS). For normal operation, the other pins are between VSS and VDD. Typically, these parts are used in a single (positive) supply configuration. In this case, VSS is connected to ground and VDD is connected to the supply; VDD will need bypass capacitors.

3.6 Digital Enable and VOS Calibration Input

This input (EN/CAL) is a CMOS, Schmitt-triggered input that controls the active, low power and VOS calibration modes of operation. When this pin goes low, the part is placed into a low power mode and the output is high-Z. When this pin goes high, the amplifier’s input offset voltage is corrected by the calibration circuitry, then the output is re-connected to the VOUT pin, which becomes low impedance, and the part resumes normal operation.

3.7 Exposed Thermal Pad (EP)

There is an internal connection between the Exposed Thermal Pad (EP) and the VSS pin; they must be connected to the same potential on the Printed Circuit Board (PCB). This pad can be connected to a PCB ground plane to provide a larger heat sink. This improves the package thermal resistance (θJA).
4.0 APPLICATIONS

The MCP6N11 instrumentation amplifier (INA) is manufactured using Microchip’s state of the art CMOS process. It is low cost, low power and high speed, making it ideal for battery-powered applications.

4.1 Basic Performance

4.1.1 STANDARD CIRCUIT

Figure 4-1 shows the standard circuit configuration for these INAs. When the inputs and output are in their specified ranges, the output voltage is approximately:

\[
\text{EQUATION 4-1:} \quad V_{\text{OUT}} \approx V_{\text{REF}} + G_{\text{DM}} V_{\text{DM}}
\]

Where:

\[
G_{\text{DM}} = 1 + \frac{R_F}{R_G}
\]

The input offset voltage (V_{\text{OS}}) is corrected by the voltage V_{TR}. Each time a V_{\text{OS}} Calibration event occurs, V_{TR} is updated to the best value (at that moment). These events are triggered by either powering up (monitored by the POR) or by toggling the EN/CAL pin high. The current out of G_{M3} (I_3) is constant and very small (assumed to be zero in the following discussion).

The input signal is applied to G_{M1}. Equation 4-2 shows the relationships between the input voltages (V_{IP} and V_{IM}) and the common mode and differential voltages (V_{CM} and V_{DM}).

\[
\text{EQUATION 4-2:}
\begin{align*}
V_{\text{IP}} &= V_{\text{CM}} + V_{\text{DM}}/2 \\
V_{\text{IM}} &= V_{\text{CM}} - V_{\text{DM}}/2 \\
V_{\text{CM}} &= (V_{\text{IP}} + V_{\text{IM}})/2 \\
V_{\text{DM}} &= V_{\text{IP}} - V_{\text{IM}}
\end{align*}
\]

The negative feedback loop includes G_{M2}, R_{M4}, R_F and R_G. These blocks set the DC open-loop gain (A_{OL}) and the nominal differential gain (G_{DM}).

\[
\text{EQUATION 4-3:}
\begin{align*}
A_{\text{OL}} &= G_{\text{M2}} R_{\text{M4}} \\
G_{\text{DM}} &= 1 + \frac{R_F}{R_G}
\end{align*}
\]

A_{OL} is very high, so I_4 is very small and I_1 + I_2 \approx 0. This makes the differential inputs to G_{M1} and G_{M2} equal in magnitude and opposite in polarity. Ideally, this gives:

\[
\text{EQUATION 4-4:}
\begin{align*}
(V_{\text{FG}} - V_{\text{REF}}) &= V_{\text{DM}} \\
V_{\text{OUT}} &= V_{\text{DM}} G_{\text{DM}} + V_{\text{REF}}
\end{align*}
\]

For an ideal part, changing V_{CM}, V_{SS} or V_{DD} produces no change in V_{OUT}. V_{REF} shifts V_{OUT} as needed.

The different G_{MIN} options change G_{M1}, G_{M2} and the internal compensation capacitor. This results in the performance trade-offs shown in Table 1.
4.1.3 DC ERRORS

Section 1.5 “Explanation of DC Error Specs” defines some of the DC error specifications. These errors are internal to the INA, and can be summarized as follows:

EQUATION 4-5:

\[
V_{OUT} = V_{REF} + G_{DM}(I_g + g_E)(V_{DM} + AV_{ED}) + G_{DM}(I_g + g_E)(V_E + AV_E)
\]

Where:

\[
V_E = V_{OS} + \frac{AV_{DD} - AV_{SS}}{PSRR} + \frac{AV_{CM}}{CMRR} + \frac{AV_{REF}}{CMRR} + \frac{AV_{OUT}}{A_{OL}} + \Delta T_A \cdot \frac{AV_{OS}}{\Delta T_A}
\]

\[
\Delta V_{ED} \leq \text{INL}_{DM}(V_{DMH} - V_{DML})
\]

\[
\Delta V_{E} \leq \text{INL}_{CM}(V_{IVH} - V_{IVL})
\]

Where:

PSRR, CMRR and A_{OL} are in units of V/V

\[\Delta T_A\] is in units of °C

The non-linearity specs (INL_{CM} and INL_{DM}) describe errors that are non-linear functions of V_{CM} and V_{DM}, respectively. They give the maximum excursion from linear response over the entire common mode and differential ranges.

The input bias current and offset current specs (I_B and I_{OS}), together with a circuit's external input resistances, give an additional DC error. Figure 4-3 shows the resistors that set the DC bias point.

![Figure 4-3: DC Bias Resistors.](image)

The resistors at the main input (R_{IP} and R_{IM}) and its input bias currents (I_{BP} and I_{BM}) give the following changes in the INA's bias voltages:

EQUATION 4-6:

\[
\Delta V_{IP} = -I_{BP}R_{IP} = \left(-I_{B} - \frac{I_{OS}}{2}\right)R_{IP}
\]

\[
\Delta V_{IM} = -I_{BM}R_{IM} = \left(-I_{B} + \frac{I_{OS}}{2}\right)R_{IM}
\]

\[
\Delta V_{CM} = \frac{\Delta V_{IP} + \Delta V_{IM}}{2}
\]

\[
= \left(-I_{B}\right)\left(\frac{R_{IP} + R_{IM}}{2}\right) + \frac{I_{OS}}{2}\left(-\frac{R_{IP} + R_{IM}}{2}\right)
\]

\[
\Delta V_{DM} = \Delta V_{IP} - \Delta V_{IM}
\]

\[
= I_{B}(R_{IP} + R_{IM}) - \frac{I_{OS}}{2}\left(R_{IP} + R_{IM}\right)
\]

\[
\Delta V_{OUT} = G_{DM}\left(\Delta V_{DM} + \frac{\Delta V_{CM}}{CMRR}\right)
\]

Where:

CMRR is in units of V/V

The best design results when R_{IP} and R_{IM} are equal and small:

EQUATION 4-7:

\[
\Delta V_{OUT} \approx G_{DM}\Delta V_{DM}
\]

\[
\approx G_{DM}(\pm 2I_{B}\varepsilon_{RTOL} - I_{OS})R_{IP}
\]

Where:

\[R_{IP} = R_{IM}\]

\[\varepsilon_{RTOL} = \text{tolerance of } R_{IP} \text{ and } R_{IM}\]

The resistors at the feedback input (R_{R}, R_{F} and R_{G}) and its input bias currents (I_{BR} and I_{BF}) give the following changes in the INA's bias voltages:

EQUATION 4-8:

\[
\Delta V_{REF} = -I_{BR}R_{R} = \left(-I_{B2} - \frac{I_{OS2}}{2}\right)R_{R}
\]

\[
\Delta V_{FG} = \Delta V_{REF}, \text{ due to high } A_{OL}
\]

\[
\Delta V_{OUT} = I_{B2}(R_{F} - G_{DM}R_{R}) + \frac{I_{OS2}}{2}(R_{F} + G_{DM}R_{R})
\]

Where:

\[I_{B2} \text{ meets the } I_{B} \text{ spec, but is not equal to } I_{B}\]

\[I_{OS2} \text{ meets the } I_{OS} \text{ spec, but is not equal to } I_{OS}\]

The best design results when G_{DM}R_{R} and R_{F} are equal and small:

EQUATION 4-9:

\[
\Delta V_{OUT} \approx (\pm 2I_{B2}\varepsilon_{RTOL} + I_{OS2})R_{F}
\]

Where:

\[G_{DM}R_{R} = R_{F}\]

\[\varepsilon_{RTOL} = \text{tolerance of } R_{R}, R_{F} \text{ and } R_{G}\]
4.1.4 AC PERFORMANCE

The bandwidth of these amplifiers depends on G_{DM} and G_{MIN}:

EQUATION 4-10:

$$f_{BW} \approx \frac{f_{GBWP}}{G_{DM}}$$

$$\approx (0.50 \text{ MHz})(G_{MIN}/G_{DM}). \quad G_{MIN} = 1, \ldots, 10$$

$$\approx (0.35 \text{ MHz})(G_{MIN}/G_{DM}). \quad G_{MIN} = 100$$

Where:

- $f_{BW} = -3$ dB bandwidth
- $f_{GBWP} = \text{Gain bandwidth product}$

The bandwidth at the maximum output swing is called the Full Power Bandwidth (f_{FPBW}). It is limited by the Slew Rate (SR) for many amplifiers, but is close to f_{BW} for these parts:

EQUATION 4-11:

$$f_{FPBW} \approx \frac{SR}{\pi V_O}$$

$$\approx f_{BW}, \text{ for these parts}$$

Where:

- $V_O = \text{Maximum output voltage swing}$
- $\approx V_{OH} - V_{OL}$

CMRR is constant from DC to about 1 kHz.

4.1.5 NOISE PERFORMANCE

As shown in Figures 2-41 and 2-42, the 1/f noise causes an apparent wander in the DC output voltage. Changing the measurement time or bandwidth has little effect on this noise.

We recommend re-calibrating V_{OS} periodically, to reduce 1/f noise wander. For example, V_{OS} could be re-calibrated at least once every 15 minutes; more often when temperature or V_{DD} change significantly.

4.2 Functional Blocks

4.2.1 RAIL-TO-RAIL INPUTS

Each input stage uses one PMOS differential pair at the input. The output of each differential pair is processed using current mode circuitry. The inputs show no crossover distortion vs. common mode voltage.

With this topology, the inputs (V_{IP} and V_{IM}) operate normally down to $V_{SS} - 0.2V$ and up to $V_{DD} + 0.15V$ at room temperature (see Figure 2-11). The input offset voltage (V_{OS}) is measured at $V_{CM} = V_{SS} - 0.2V$ and $V_{DD} + 0.15V$ (at $+25^\circ C$), to ensure proper operation.

4.2.1.1 Phase Reversal

The input devices are designed to not exhibit phase inversion when the input pins exceed the supply voltages. Figures 2-18 and 2-50 show an input voltage exceeding both supplies with no phase inversion.

The input devices also do not exhibit phase inversion when the differential input voltage exceeds its limits; see Figures 2-22 and 2-51.

4.2.1.2 Input Voltage Limits

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the voltages at the input pins (see Section 1.1 “Absolute Maximum Ratings†”). This requirement is independent of the current limits discussed later on.

The ESD protection on the inputs can be depicted as shown in Figure 4-4. This structure was chosen to protect the input transistors against many (but not all) overvoltage conditions, and to minimize input bias current (I_B).
The input ESD diodes clamp the inputs when they try to go more than one diode drop below \(V_{SS} \). They also clamp any voltages that go too far above \(V_{DD} \); their breakdown voltage is high enough to allow normal operation, but not low enough to protect against slow overvoltage (beyond \(V_{DD} \)) events. Very fast ESD events (that meet the spec) are limited so that damage does not occur.

In some applications, it may be necessary to prevent excessive voltages from reaching the op amp inputs. Figure 4-5 shows one approach to protecting these inputs. \(D_1 \) and \(D_2 \) may be small signal silicon diodes, Schottky diodes for lower clamping voltages or diode-connected FETs for low leakage.

FIGURE 4-5: Protecting the Analog Inputs Against High Voltages.

4.2.1.3 Input Current Limits

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the currents into the input pins (see Section 1.1 "Absolute Maximum Ratings†"). This requirement is independent of the voltage limits previously discussed.

Figure 4-6 shows one approach to protecting these inputs. The resistors \(R_1 \) and \(R_2 \) limit the possible current in or out of the input pins (and into \(D_1 \) and \(D_2 \)). The diode currents will dump onto \(V_{DD} \).

FIGURE 4-6: Protecting the Analog Inputs Against High Currents.

It is also possible to connect the diodes to the left of the resistor \(R_1 \) and \(R_2 \). In this case, the currents through the diodes \(D_1 \) and \(D_2 \) need to be limited by some other mechanism. The resistors then serve as in-rush current limiters; the DC current into the input pins (\(V_{IP} \) and \(V_{IM} \)) should be very small.

A significant amount of current can flow out of the inputs (through the ESD diodes) when the common mode voltage (\(V_{CM} \)) is below ground (\(V_{SS} \)); see Figure 2-25.

4.2.1.4 Input Voltage Ranges

Figure 4-7 shows possible input voltage values (\(V_{SS} = 0 \) V). Lines with a slope of +1 have constant \(V_{DM} \) (e.g., the \(V_{DM} = 0 \) line). Lines with a slope of -1 have constant \(V_{CM} \) (e.g., the \(V_{CM} = V_{DD}/2 \) line).

For normal operation, \(V_{IP} \) and \(V_{IM} \) must be kept within the region surrounded by the thick blue lines. The horizontal and vertical blue lines show the limits on the individual inputs. The blue lines with a slope of +1 show the limits on \(V_{DM} \); the larger \(G_{MIN} \) is, the closer they are to the \(V_{DM} = 0 \) line.

The input voltage range specs (\(V_{IVL} \) and \(V_{IVH} \)) change with the supply voltages (\(V_{SS} \) and \(V_{DD} \), respectively). The differential input range specs (\(V_{DML} \) and \(V_{DMH} \)) change with minimum gain (\(G_{MIN} \)). Temperature also affects these specs.

To take full advantage of \(V_{DML} \) and \(V_{DMH} \), set \(V_{REF} \) (see Figure 1-6 and Figure 1-7) so that the output (\(V_{OUT} \)) is centered between the supplies (\(V_{SS} \) and \(V_{DD} \)).

FIGURE 4-7: Input Voltage Ranges.
4.2.2 ENABLE/V_{OS} CALIBRATION
(EN/CAL)

These parts have a Normal mode, a Low Power mode
and a V_{OS} Calibration mode.

When the EN/CAL pin is high and the internal POR
(with delay) indicates that power is good, the part
operates in its Normal mode.

When the EN/CAL pin is low, the part operates in its
Low Power mode. The quiescent current (at V_{SS}) drops
to -2.5 µA (typical), the amplifier output is put into a
high-impedance state. Signals at the input pins can
feed through to the output pin.

When the EN/CAL pin goes high and the internal POR
(with delay) indicates that power is good, the amplifier
internally corrects its input offset voltage (V_{OS}) with the
internal common mode voltage at mid-supply (V_{DD}/2)
and the output tri-stated (after t_{OFF}). Once V_{OS}
Calibration is completed, the amplifier is enabled and normal
operation resumes.

The EN/CAL pin does not operate normally when left
floating. Either drive it with a logic output, or tie it high
so that the part is always on.

4.2.3 POR WITH DELAY

The internal POR makes sure that the input offset
voltage (V_{OS}) is calibrated whenever the supply
voltage goes from low voltage (< V_{PRH}) to high voltage
(> V_{PRH}). This prevents corruption of the V_{OS} trim reg-
isters after a low-power event.

After the POR goes high, the internal circuitry adds a
fixed delay (t_{PLH}), before telling the V_{OS} Calibration
circuitry (see Figure 4-2) to start. If the EN/CAL pin is
toggled during this time, the fixed delay is restarted
(takes an additional time t_{PLH}).

4.2.4 PARITY DETECTOR

A parity error detector monitors the memory contents
for any corruption. In the rare event that a parity error is
detected (e.g., corruption from an alpha particle), a
POR event is automatically triggered. This will cause
the input offset voltage to be re-corrected, and the op
amp will not return to normal operation for a period of
time (the POR turn on time, t_{PLH}).

4.2.5 RAIL-TO-RAIL OUTPUT

The Minimum Output Voltage (V_{OL}) and Maximum
Output Voltage (V_{OH}) specs describe the widest output
swing that can be achieved under the specified load
conditions.

The output can also be limited when V_{IP} or V_{IM} exceeds
V_{IVL} or V_{IVH}, or when V_{DM} exceeds V_{DM}L or V_{DMH}.

4.3 Applications Tips

4.3.1 MINIMUM STABLE GAIN

There are different options for different Minimum Stable
Gains (1, 2, 5, 10 and 100 V/V; see Table 1-1). The
differential gain (G_{DM}) needs to be greater than or
equal to G_{MIN} in order to maintain stability.

Picking a part with higher G_{MIN} has the advantages of
lower Input Noise Voltage Density (e_n), lower Input
Offset Voltage (V_{OS}) and increased Gain Bandwidth
Product (GBWP); see Table 1. The Differential Input
Voltage Range (V_{DMR}) is lower for higher G_{MIN}, but the
output voltage range would limit V_{DMR} anyway, when
G_{DM} ≥ 2.

4.3.2 CAPACITIVE LOADS

Driving large capacitive loads can cause stability
problems for amplifiers. As the load capacitance
increases, the feedback loop’s phase margin
decreases, and the closed-loop bandwidth is reduced.
This produces gain peaking in the frequency response,
with overshoot and ringing in the step response. Lower
 gains (G_{DM}) exhibit greater sensitivity to capacitive
loads.

When driving large capacitive loads with these
instrumentation amps (e.g., > 100 pF), a small series
resistor at the output (R_{ISO} in Figure 4-8) improves the
feedback loop’s phase margin (stability) by making the
output load resistive at higher frequencies. The
bandwidth will be generally lower than the bandwidth
with no capacitive load.

![Output Resistor, R_{ISO} stabilizes large capacitive loads.](image)

Figure 4-8: Output Resistor, R_{ISO} stabilizes large capacitive loads.

Figure 4-9 gives recommended R_{ISO} values for
different capacitive loads and gains. The x-axis is the
normalized load capacitance (C_L G_{MIN}/G_{DM}), where
G_{DM} is the circuit’s differential gain (1 + R_F/ R_G) and
G_{MIN} is the minimum stable gain.
MCP6N11

FIGURE 4-9: Recommended R_{ISO} Values for Capacitive Loads.

After selecting R_{ISO} for your circuit, double check the resulting frequency response peaking and step response overshoot on the bench. Modify R_{ISO}’s value until the response is reasonable.

4.3.3 GAIN RESISTORS

Figure 4-10 shows a simple gain circuit with the INA’s input capacitances at the feedback inputs (V_{REF} and V_{FG}). These capacitances interact with R_F and R_G to modify the gain at high frequencies. The equivalent capacitance acting in parallel to R_G is $C_G = C_{DM} + C_{CM}$ plus any board capacitance in parallel to R_G. C_G will cause an increase in G_{DM} at high frequencies, which reduces the phase margin of the feedback loop (i.e., reduce the feedback loop’s stability).

![Simple Gain Circuit with Parasitic Capacitances](image)

FIGURE 4-10: Simple Gain Circuit with Parasitic Capacitances.

In this data sheet, $R_F + R_G = 10 \, \text{k}\Omega$ for most gains ($0 \, \Omega$ for $G_{DM} = 1$); see Table 1-6. This choice gives good Phase Margin. In general, R_F (Figure 4-10) needs to meet the following limits to maintain stability:

EQUATION 4-12:

For $G_{DM} = 1$:

$$R_F = 0$$

For $G_{DM} > 1$:

$$R_F < \frac{a G_{DM}^2}{2 \pi f_{GBWP} C_G}$$

Where:

- $a \leq 0.25$
- $G_{DM} \geq G_{MIN}$
- f_{GBWP} = Gain Bandwidth Product
- $C_G = C_{DM} + C_{CM} + \text{(PCB stray capacitance)}$

4.3.4 SUPPLY BYPASS

With these INAs, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good high frequency performance. Surface mount, multilayer ceramic capacitors, or their equivalent, should be used.

These INAs require a bulk capacitor (i.e., 1.0 µF or larger) within 100 mm, to provide large, slow currents. This bulk capacitor can be shared with other nearby analog parts as long as crosstalk through the supplies does not prove to be a problem.
4.4 Typical Applications

4.4.1 HIGH INPUT IMPEDANCE DIFFERENCE AMPLIFIER

Figure 4-11 shows the MCP6N11 used as a difference amplifier. The inputs are high impedance and give good CMRR performance.

4.4.2 DIFFERENCE AMPLIFIER FOR VERY LARGE COMMON MODE SIGNALS

Figure 4-12 shows the MCP6N11 INA used as a difference amplifier for signals with a very large common mode component. The input resistor dividers (R₁ and R₂) ensure that the voltages at the INA’s inputs are within their range of normal operation. The capacitors C₁, with the parasitic capacitances C₂ (the resistors’ parasitic capacitance plus the INA’s input common mode capacitance, C_CM), set the same division ratio, so that high-frequency signals (e.g., a step in voltage) have the same gain. Select the INA gain to compensate for R₁ and R₂’s attenuation. Select R₁ and R₂’s tolerances for good CMRR.

4.4.3 HIGH SIDE CURRENT DETECTOR

Figure 4-13 shows the MCP6N11 INA used as to detect and amplify the high side current in a battery powered design. The INA gain is set at 21 V/V, so V_OUT changes 210 mV for every 1 mA of I_DD current. The best G_MIN option to pick would be a gain of 10 (MCP6N11-010).

4.4.4 WHEATSTONE BRIDGE

Figure 4-14 shows the MCP6N11 single instrumentation amp used to condition the signal from a Wheatstone bridge (e.g., strain gage). The overall INA gain is set at 201 V/V. The best G_MIN option to pick, for this gain, is 100 V/V (MCP6N11-100).
5.0 DESIGN AIDS

Microchip provides the basic design aids needed for the MCP6N11 instrumentation amplifiers.

5.1 Microchip Advanced Part Selector (MAPS)

MAPS is a software tool that helps efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip website at www.microchip.com/maps, the MAPS is an overall selection tool for Microchip’s product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool, a customer can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for Data sheets, Purchase and Sampling of Microchip parts.

5.2 Analog Demonstration Board

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help customers achieve faster time to market. For a complete listing of these boards and their corresponding user’s guides and technical information, visit the Microchip web site at www.microchip.com/analog tools.

5.3 Application Notes

The following Microchip Application Notes are available on the Microchip web site at www.microchip.com/appnotes and are recommended as supplemental reference resources.

- **AN884**: “Driving Capacitive Loads With Op Amps”, DS00884
- **AN990**: “Analog Sensor Conditioning Circuits – An Overview”, DS00990
- **AN1228**: “Op Amp Precision Design: Random Noise”, DS01228

Some of these application notes, and others, are listed in the design guide:

- “Signal Chain Design Guide”, DS21825
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:
- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- NNN Alphanumeric traceability code
- 3e Pb-free JEDEC designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (3e) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

Example

8-Lead SOIC (150 mil) (MCP6N11)

Device	Code
MCP6N11-001 | AAQ
MCP6N11-002 | AAR
MCP6N11-005 | AAS
MCP6N11-010 | AAT
MCP6N11-100 | AAU

Note: Applies to 8-Lead 2x3 TDFN

Example

8-Lead TDFN (2x3) (MCP6N11)

Note: The example is for a MCP6N11-001 part.

Example
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>A</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (Optional)</td>
<td>n</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/package.

![Recommended Land Pattern](image-url)

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.50 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.70</td>
<td>0.75</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
<td>0.20 REF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>2.00 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>3.00 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>1.20</td>
<td>-</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>1.20</td>
<td>-</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
<td>0.25</td>
<td>0.30</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-129C Sheet 2 of 2
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75 mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>W2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>T2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
APPENDIX A: REVISION HISTORY

Revision A (October 2011)

• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Gain Option</td>
<td>X</td>
<td>/XX</td>
</tr>
</tbody>
</table>

Device: MCP6N11 Single Instrumentation Amplifier
MCP6N11T Single Instrumentation Amplifier (Tape and Reel)

Gain Option: 001 = Minimum gain of 1 V/V
002 = Minimum gain of 2 V/V
005 = Minimum gain of 5 V/V
010 = Minimum gain of 10 V/V
100 = Minimum gain of 100 V/V

Temperature Range: E = -40°C to +125°C

Package: MNY = 2x3 TDFN, 8-lead *
SN = Plastic SOIC (150mil Body), 8-lead

* Y = nickel palladium gold manufacturing designator. Only available on the TDFN package.

Examples:

a) MCP6N11T-001E/MNY: Tape and Reel, Minimum gain = 1, Extended temperature, 8LD 2x3 TDFN.
b) MCP6N11-002E/SN: Minimum gain = 2, Extended temperature, 8LD SOIC.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omnicent Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rFLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.