16 Mbit / 32 Mbit / (x16) Multi-Purpose Flash Plus
SST39VF1601 / SST39VF3201
SST39VF1602 / SST39VF3202

Not Recommended for New Designs

The SST39VF1601/1602 and SST39VF3201/3202 devices are 1M x16 and 2M x16, respectively, CMOS Multi-Purpose Flash Plus (MPF+) manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39VF1601/1602/3201/3202 write (Program or Erase) with a 2.7-3.6V power supply. These devices conforms to JEDEC standard pinouts for x16 memories.

Features

- Organized as 1M x16: SST39VF1601/1602
 2M x16: SST39VF3201/3202
- Single Voltage Read and Write Operations
 – 2.7-3.6V
- Superior Reliability
 – Endurance: 100,000 Cycles (Typical)
 – Greater than 100 years Data Retention
- Low Power Consumption (typical values at 5 MHz)
 – Active Current: 9 mA (typical)
 – Standby Current: 3 μA (typical)
 – Auto Low Power Mode: 3 μA (typical)
- Hardware Block-Protection/ WP# Input Pin
 – Top Block-Protection (top 32 KWord)
 for SST39VF1602/3202
 – Bottom Block-Protection (bottom 32 KWord)
 for SST39VF1601/3201
- Sector-Erase Capability
 – Uniform 2 KWord sectors
- Block-Erase Capability
 – Uniform 32 KWord blocks
- Chip-Erase Capability
- Erase-Suspend/Erase-Resume Capabilities
- Hardware Reset Pin (RST#)
- Security-ID Feature
 – SST: 128 bits; User: 128 bits
- Fast Read Access Time:
 – 70 ns
- Latched Address and Data
- Fast Erase and Word-Program:
 – Sector-Erase Time: 18 ms (typical)
 – Block-Erase Time: 18 ms (typical)
 – Chip-Erase Time: 40 ms (typical)
 – Word-Program Time: 7 μs (typical)
- Automatic Write Timing
 – Internal VPP Generation
- End-of-Write Detection
 – Toggle Bits
 – Data# Polling
- CMOS I/O Compatibility
- JEDEC Standard
 – Flash EEPROM Pinouts and command sets
- Packages Available
 – 48-lead TSOP (12mm x 20mm)
 – 48-ball TFBGA (6mm x 8mm)
- All devices are RoHS compliant
Product Description

The SST39VF160x and SST39VF320x devices are 1M x16 and 2M x16, respectively, CMOS Multi-Purpose Flash Plus (MPF+) manufactured with SST’s proprietary, high performance CMOS Super-Flash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39VF160x/320x write (Program or Erase) with a 2.7-3.6V power supply. These devices conform to JEDEC standard pinouts for x16 memories.

Featuring high performance Word-Program, the SST39VF160x/320x devices provide a typical Word-Program time of 7 µsec. These devices use Toggle Bit or Data# Polling to indicate the completion of Program operation. To protect against inadvertent write, they have on-chip hardware and Software Data Protection schemes. Designed, manufactured, and tested for a wide spectrum of applications, these devices are offered with a guaranteed typical endurance of 100,000 cycles. Data retention is rated at greater than 100 years.

The SST39VF160x/320x devices are suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, they significantly improve performance and reliability, while lowering power consumption. They inherently use less energy during Erase and Program than alternative flash technologies. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. These devices also improve flexibility while lowering the cost for program, data, and configuration storage applications.

The SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore the system software or hardware does not have to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles.

To meet high density, surface mount requirements, the SST39VF160x/320x are offered in 48-lead TSOP and 48-ball TFBGA packages. See Figures 2 and 3 for pin assignments.
Block Diagram

Figure 1: Functional Block Diagram
Pin Assignment

Figure 2: Pin Assignments for 48-lead TSOP

Figure 3: Pin assignments for 48-ball TFBGA
Table 1: Pin Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin Name</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{MS}^{1}-A0</td>
<td>Address Inputs</td>
<td>To provide memory addresses. During Sector-Erase A_{MS}-A_{11} address lines will select the sector. During Block-Erase A_{MS}-A_{15} address lines will select the block.</td>
</tr>
<tr>
<td>DQ15-DQ0</td>
<td>Data Input/output</td>
<td>To output data during Read cycles and receive input data during Write cycles. Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high.</td>
</tr>
<tr>
<td>WP#</td>
<td>Write Protect</td>
<td>To protect the top/bottom boot block from Erase/Program operation when grounded.</td>
</tr>
<tr>
<td>RST#</td>
<td>Reset</td>
<td>To reset and return the device to Read mode.</td>
</tr>
<tr>
<td>CE#</td>
<td>Chip Enable</td>
<td>To activate the device when CE# is low.</td>
</tr>
<tr>
<td>OE#</td>
<td>Output Enable</td>
<td>To gate the data output buffers.</td>
</tr>
<tr>
<td>WE#</td>
<td>Write Enable</td>
<td>To control the Write operations.</td>
</tr>
<tr>
<td>VDD</td>
<td>Power Supply</td>
<td>To provide power supply voltage: 2.7-3.6V</td>
</tr>
<tr>
<td>VSS</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>No Connection</td>
<td>Unconnected pins.</td>
</tr>
</tbody>
</table>

1. $A_{MS} = \text{Most significant address}$
2. $A_{MS} = A_{19}$ for SST39VF1601/1602, and A_{20} for SST39VF3201/3202
Device Operation

Commands are used to initiate the memory operation functions of the device. Commands are written to the device using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.

The SST39VF160x/320x also have the Auto Low Power mode which puts the device in a near standby mode after data has been accessed with a valid Read operation. This reduces the I_{DD} active read current from typically 9 mA to typically 3 µA. The Auto Low Power mode reduces the typical I_{DD} active read current to the range of 2 mA/MHz of Read cycle time. The device exits the Auto Low Power mode with any address transition or control signal transition used to initiate another Read cycle, with no access time penalty. Note that the device does not enter Auto-Low Power mode after power-up with CE# held steadily low, until the first address transition or CE# is driven high.

Read

The Read operation of the SST39VF160x/320x is controlled by CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 4).

Word-Program Operation

The SST39VF160x/320x are programmed on a word-by-word basis. Before programming, the sector where the word exists must be fully erased. The Program operation is accomplished in three steps. The first step is the three-byte load sequence for Software Data Protection. The second step is to load word address and word data. During the Word-Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed within 10 µs. See Figures 5 and 6 for WE# and CE# controlled Program operation timing diagrams and Figure 20 for flowcharts. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the host is free to perform additional tasks. Any commands issued during the internal Program operation are ignored. During the command sequence, WP# should be statically held high or low.

Sector/Block-Erase Operation

The Sector- (or Block-) Erase operation allows the system to erase the device on a sector-by-sector (or block-by-block) basis. The SST39VF160x/320x offer both Sector-Erase and Block-Erase mode. The sector architecture is based on uniform sector size of 2 KWord. The Block-Erase mode is based on uniform block size of 32 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with Sector-Erase command (30H) and sector address (SA) in the last bus cycle. The Block-Erase operation is initiated by executing a six-byte command sequence with Block-Erase command (50H) and block address (BA) in the last bus cycle. The sector or block address is latched on the falling edge of the sixth WE# pulse, while the command (30H or 50H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. The End-of-Erase operation can be determined using either Data# Polling or Toggle Bit methods. See Figures 10 and 11.
for timing waveforms and Figure 24 for the flowchart. Any commands issued during the Sector- or Block-Erase operation are ignored. When WP# is low, any attempt to Sector- (Block-) Erase the protected block will be ignored. During the command sequence, WP# should be statically held high or low.

Erase-Suspend/Erase-Resume Commands

The Erase-Suspend operation temporarily suspends a Sector- or Block-Erase operation thus allowing data to be read from any memory location, or program data into any sector/block that is not suspended for an Erase operation. The operation is executed by issuing one byte command sequence with Erase-Suspend command (B0H). The device automatically enters read mode typically within 20 µs after the Erase-Suspend command had been issued. Valid data can be read from any sector or block that is not suspended from an Erase operation. Reading at address location within erase-suspended sectors/blocks will output DQ2 toggling and DQ6 at “1”. While in Erase-Suspend mode, a Word-Program operation is allowed except for the sector or block selected for Erase-Suspend.

To resume Sector-Erase or Block-Erase operation which has been suspended the system must issue Erase Resume command. The operation is executed by issuing one byte command sequence with Erase Resume command (30H) at any address in the last Byte sequence.

Chip-Erase Operation

The SST39VF160x/320x provide a Chip-Erase operation, which allows the user to erase the entire memory array to the “1” state. This is useful when the entire device must be quickly erased.

The Chip-Erase operation is initiated by executing a six-byte command sequence with Chip-Erase command (10H) at address 5555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid read is Toggle Bit or Data# Polling. See Table 6 for the command sequence, Figure 10 for timing diagram, and Figure 24 for the flowchart. Any commands issued during the Chip-Erase operation are ignored. When WP# is low, any attempt to Chip-Erase will be ignored. During the command sequence, WP# should be statically held high or low.

Write Operation Status Detection

The SST39VF160x/320x provide two software means to detect the completion of a Write (Program or Erase) cycle, in order to optimize the system write cycle time. The software detection includes two status bits: Data# Polling (DQ7) and Toggle Bit (DQ6). The End-of-Write detection mode is enabled after the rising edge of WE#, which initiates the internal Program or Erase operation.

The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the write cycle. If this occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with either DQ7 or DQ6. In order to prevent spurious rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the Write cycle, otherwise the rejection is valid.
Data# Polling (DQ7)

When the SST39VF160x/320x are in the internal Program operation, any attempt to read DQ7 will produce the complement of the true data. Once the Program operation is completed, DQ7 will produce true data. Note that even though DQ7 may have valid data immediately following the completion of an internal Write operation, the remaining data outputs may still be invalid: valid data on the entire data bus will appear in subsequent successive Read cycles after an interval of 1 µs. During internal Erase operation, any attempt to read DQ7 will produce a ‘0’. Once the internal Erase operation is completed, DQ7 will produce a ‘1’. The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block- or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 7 for Data# Polling timing diagram and Figure 21 for a flowchart.

Toggle Bits (DQ6 and DQ2)

During the internal Program or Erase operation, any consecutive attempts to read DQ6 will produce alternating “1”s and “0”s, i.e., toggling between 1 and 0. When the internal Program or Erase operation is completed, the DQ6 bit will stop toggling. The device is then ready for the next operation. For Sector-, Block-, or Chip-Erase, the toggle bit (DQ6) is valid after the rising edge of sixth WE# (or CE#) pulse. DQ6 will be set to “1” if a Read operation is attempted on an Erase-Suspended Sector/Block. If Program operation is initiated in a sector/block not selected in Erase-Suspend mode, DQ6 will toggle.

An additional Toggle Bit is available on DQ2, which can be used in conjunction with DQ6 to check whether a particular sector is being actively erased or erase-suspended. Table 2 shows detailed status bits information. The Toggle Bit (DQ2) is valid after the rising edge of the last WE# (or CE#) pulse of Write operation. See Figure 8 for Toggle Bit timing diagram and Figure 21 for a flowchart.

<table>
<thead>
<tr>
<th>Status</th>
<th>DQ7</th>
<th>DQ6</th>
<th>DQ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Program</td>
<td>DQ7#</td>
<td>Toggle</td>
<td>No Toggle</td>
</tr>
<tr>
<td>Standard Erase</td>
<td>0</td>
<td>Toggle</td>
<td>Toggle</td>
</tr>
<tr>
<td>Erase-Suspend Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read from Erase-Suspended Sector/Block</td>
<td>1</td>
<td>1</td>
<td>Toggle</td>
</tr>
<tr>
<td>Read from Non-Erase-Suspended Sector/Block</td>
<td>Data</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>Program</td>
<td>DQ7#</td>
<td>Toggle</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: DQ7 and DQ2 require a valid address when reading status information.

Data Protection

The SST39VF160x/320x provide both hardware and software features to protect nonvolatile data from inadvertent writes.

Hardware Data Protection

Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a write cycle.

VDD Power Up/Down Detection: The Write operation is inhibited when VDD is less than 1.5V.

Write Inhibit Mode: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.
Hardware Block Protection

The SST39VF1602/3202 support top hardware block protection, which protects the top 32 KWord block of the device. The SST39VF1601/3201 support bottom hardware block protection, which protects the bottom 32 KWord block of the device. The Boot Block address ranges are described in Table 3. Program and Erase operations are prevented on the 32 KWord when WP# is low. If WP# is left floating, it is internally held high via a pull-up resistor, and the Boot Block is unprotected, enabling Program and Erase operations on that block.

Table 3: Boot Block Address Ranges

<table>
<thead>
<tr>
<th>Product</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Boot Block</td>
<td></td>
</tr>
<tr>
<td>SST39VF1601/3201</td>
<td>000000H-007FFFH</td>
</tr>
<tr>
<td>Top Boot Block</td>
<td></td>
</tr>
<tr>
<td>SST39VF1602</td>
<td>0F8000H-0FFFFFFH</td>
</tr>
<tr>
<td>SST39VF3202</td>
<td>1F8000H-1FFFFFFH</td>
</tr>
</tbody>
</table>

Hardware Reset (RST#)

The RST# pin provides a hardware method of resetting the device to read array data. When the RST# pin is held low for at least TRP, any in-progress operation will terminate and return to Read mode. When no internal Program/Erase operation is in progress, a minimum period of TRHR is required after RST# is driven high before a valid Read can take place (see Figure 16).

The Erase or Program operation that has been interrupted needs to be reinitiated after the device resumes normal operation mode to ensure data integrity.

Software Data Protection (SDP)

The SST39VF160x/320x provide the JEDEC approved Software Data Protection scheme for all data alteration operations, i.e., Program and Erase. Any Program operation requires the inclusion of the three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. Any Erase operation requires the inclusion of six-byte sequence. These devices are shipped with the Software Data Protection permanently enabled. See Table 6 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to read mode within TRC. The contents of DQ15-DQ8 can be VIL or VIH, but no other value, during any SDP command sequence.

Common Flash Memory Interface (CFI)

The SST39VF160x/320x also contain the CFI information to describe the characteristics of the device. In order to enter the CFI Query mode, the system must write three-byte sequence, same as product ID entry command with 98H (CFI Query command) to address 5555H in the last byte sequence. Once the device enters the CFI Query mode, the system can read CFI data at the addresses given in Tables 7 through 10. The system must write the CFI Exit command to return to Read mode from the CFI Query mode.
Product Identification

The Product Identification mode identifies the devices as the SST39VF1601, SST39VF1602, SST39VF3201, or SST39VF3202, and manufacturer as SST. This mode may be accessed software operations. Users may use the Software Product Identification operation to identify the part (i.e., using the device ID) when using multiple manufacturers in the same socket. For details, see Table 6 for software operation, Figure 12 for the Software ID Entry and Read timing diagram and Figure 22 for the Software ID Entry command sequence flowchart.

Table 4: Product Identification

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer’s ID</td>
<td>0000H BFH</td>
</tr>
<tr>
<td>Device ID</td>
<td></td>
</tr>
<tr>
<td>SST39VF1601</td>
<td>0001H 234BH</td>
</tr>
<tr>
<td>SST39VF1602</td>
<td>0001H 234AH</td>
</tr>
<tr>
<td>SST39VF3201</td>
<td>0001H 235BH</td>
</tr>
<tr>
<td>SST39VF3202</td>
<td>0001H 235AH</td>
</tr>
</tbody>
</table>

Product Identification Mode Exit/CFI Mode Exit

In order to return to the standard Read mode, the Software Product Identification mode must be exited. Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. Please note that the Software ID Exit/CFI Exit command is ignored during an internal Program or Erase operation. See Table 6 for software command codes, Figure 14 for timing waveform, and Figures 22 and 23 for flowcharts.

Security ID

The SST39VF160x/320x devices offer a 256-bit Security ID space. The Secure ID space is divided into two 128-bit segments - one factory programmed segment and one user programmed segment. The first segment is programmed and locked at SST with a random 128-bit number. The user segment is left un-programmed for the customer to program as desired.

To program the user segment of the Security ID, the user must use the Security ID Word-Program command. To detect end-of-write for the SEC ID, read the toggle bits. Do not use Data# Polling. Once this is complete, the Sec ID should be locked using the User Sec ID Program Lock-Out. This disables any future corruption of this space. Note that regardless of whether or not the Sec ID is locked, neither Sec ID segment can be erased.

The Secure ID space can be queried by executing a three-byte command sequence with Enter Sec ID command (88H) at address 5555H in the last byte sequence. To exit this mode, the Exit Sec ID command should be executed. Refer to Table 6 for more details.
Operations

Table 5: Operation Modes Selection

<table>
<thead>
<tr>
<th>Mode</th>
<th>CE#</th>
<th>OE#</th>
<th>WE#</th>
<th>DQ</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>(V_{IL})</td>
<td>(V_{IL})</td>
<td>(V_{IH})</td>
<td>(DOUT)</td>
<td>(AIN)</td>
</tr>
<tr>
<td>Program</td>
<td>(V_{IL})</td>
<td>(V_{IH})</td>
<td>(V_{IL})</td>
<td>(D_{IN})</td>
<td>(AIN)</td>
</tr>
<tr>
<td>Erase</td>
<td>(V_{IL})</td>
<td>(V_{IH})</td>
<td>(V_{IL})</td>
<td>(X^1)</td>
<td>Sector or block address, XXH for Chip-Erase</td>
</tr>
<tr>
<td>Standby</td>
<td>(V_{IH})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Inhibit</td>
<td>(X)</td>
<td>(V_{IL})</td>
<td>(X)</td>
<td>(High Z)</td>
<td>(X)</td>
</tr>
<tr>
<td>Product Identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Mode</td>
<td>(V_{IL})</td>
<td>(V_{IL})</td>
<td>(V_{IH})</td>
<td></td>
<td>See Table 6</td>
</tr>
</tbody>
</table>

1. \(X\) can be \(V_{IL}\) or \(V_{IH}\), but no other value.

Table 6: Software Command Sequence

<table>
<thead>
<tr>
<th>Command Sequence</th>
<th>1st Bus Write Cycle</th>
<th>2nd Bus Write Cycle</th>
<th>3rd Bus Write Cycle</th>
<th>4th Bus Write Cycle</th>
<th>5th Bus Write Cycle</th>
<th>6th Bus Write Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Addr(^1) Data(^2)</td>
<td>Addr(^1) Data(^2)</td>
<td>Addr(^1) Data(^2)</td>
<td>Addr(^1) Data(^2)</td>
<td>Addr(^1) Data(^2)</td>
<td>Addr(^1) Data(^2)</td>
</tr>
<tr>
<td>Word-Program</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H A0H</td>
<td>WA(^3)</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>Sector-Erase</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 80H</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>SA(^4)</td>
</tr>
<tr>
<td>Block-Erase</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 80H</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>BA(^5)</td>
</tr>
<tr>
<td>Chip-Erase</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 80H</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 10H</td>
</tr>
<tr>
<td>Erase-Suspend</td>
<td>XXXX H</td>
<td>B0H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erase-Resume</td>
<td>XXXX H</td>
<td>30H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query Sec ID(^5)</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 88H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Security ID</td>
<td>Word-Program</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H A5H</td>
<td>WA(^6)</td>
<td>Data</td>
</tr>
<tr>
<td>User Security ID</td>
<td>Program Lock-Out</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 85H</td>
<td>XXH(^6)</td>
<td>0000H</td>
</tr>
<tr>
<td>Software ID</td>
<td>Entry(^7,8)</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 90H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFI Query Entry</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H 98H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software ID</td>
<td>Exit(^9,10)/CFI Exit/Sec ID Exit</td>
<td>5555H AAH</td>
<td>2AAAH 55H</td>
<td>5555H F0H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software ID</td>
<td>Exit(^9,10)/CFI Exit/Sec ID Exit</td>
<td>XXH F0H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Address format \(A_{14-0}\) (Hex).
2. Addresses \(A_{15-19}\) can be \(V_{IL}\) or \(V_{IH}\), but no other value, for Command sequence for SST39VF1601/1602,
3. Addresses \(A_{15-20}\) can be \(V_{IL}\) or \(V_{IH}\), but no other value, for Command sequence for SST39VF3201/3202,
2. DQ15-DQ8 can be VIL or VIH, but no other value, for Command sequence
3. WA = Program Word address
4. SAx for Sector-Erase; uses AMS-A11 address lines
 BAX, for Block-Erase; uses AMS-A15 address lines
 AMS = Most significant address
 AMS = A19 for SST39VF1601/1602 and A20 for SST39VF3201/3202
5. With AMS-A4 = 0; Sec ID is read with A7-A0,
 SST ID is read with A3 = 0 (Address range = 000000H to 000007H),
 User ID is read with A3 = 1 (Address range = 000010H to 000017H).
 Lock Status is read with A7-A0 = 0000FFH. Unlocked: DQ3 = 1 / Locked: DQ3 = 0.
6. Valid Word-Addresses for Sec ID are from 000000H-000007H and 000010H-000017H.
7. The device does not remain in Software Product ID Mode if powered down.
8. With AMS-A1 =0; SST Manufacturer ID = 00BFH, is read with A0 = 0,
 SST39VF1601 Device ID = 234BH, is read with A0 = 1,
 SST39VF1602 Device ID = 234AH, is read with A0 = 1,
 SST39VF3201 Device ID = 235BH, is read with A0 = 1,
 SST39VF3202 Device ID = 235AH, is read with A0 = 1,
 AMS = Most significant address
 AMS = A19 for SST39VF1601/1602 and A20 for SST39VF3201/3202
9. Both Software ID Exit operations are equivalent
10. If users never lock after programming, Sec ID can be programmed over the previously unprogrammed bits (data=1)
 using the Sec ID mode again (the programmed “0” bits cannot be reversed to “1”). Valid Word-Addresses for Sec ID are
 from 000000H-000007H and 000010H-000017H.

Table 7: CFI Query Identification String1 for SST39VF160x/320x

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>10H</td>
<td>0051H</td>
<td>Query Unique ASCII string “QRY”</td>
</tr>
<tr>
<td>11H</td>
<td>0052H</td>
<td></td>
</tr>
<tr>
<td>12H</td>
<td>0059H</td>
<td></td>
</tr>
<tr>
<td>13H</td>
<td>0001H</td>
<td>Primary OEM command set</td>
</tr>
<tr>
<td>14H</td>
<td>0007H</td>
<td></td>
</tr>
<tr>
<td>15H</td>
<td>0000H</td>
<td>Address for Primary Extended Table</td>
</tr>
<tr>
<td>16H</td>
<td>0000H</td>
<td></td>
</tr>
<tr>
<td>17H</td>
<td>0000H</td>
<td>Alternate OEM command set (00H = none exists)</td>
</tr>
<tr>
<td>18H</td>
<td>0000H</td>
<td></td>
</tr>
<tr>
<td>19H</td>
<td>0000H</td>
<td>Address for Alternate OEM extended Table (00H = none exists)</td>
</tr>
<tr>
<td>1AH</td>
<td>0000H</td>
<td></td>
</tr>
</tbody>
</table>

1. Refer to CFI publication 100 for more details.
Table 8: System Interface Information for SST39VF160x/320x

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1BH</td>
<td>0027H</td>
<td>(V_{DD}) Min (Program/Erase)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DQ7-DQ4: Volts, DQ3-DQ0: 100 millivolts</td>
</tr>
<tr>
<td>1CH</td>
<td>0036H</td>
<td>(V_{DD}) Max (Program/Erase)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DQ7-DQ4: Volts, DQ3-DQ0: 100 millivolts</td>
</tr>
<tr>
<td>1DH</td>
<td>0000H</td>
<td>(V_{PP}) min. (00H = no (V_{PP}) pin)</td>
</tr>
<tr>
<td>1EH</td>
<td>0000H</td>
<td>(V_{PP}) max. (00H = no (V_{PP}) pin)</td>
</tr>
<tr>
<td>1FH</td>
<td>0003H</td>
<td>Typical time out for Word-Program (2^N) µs ((2^3 = 8 , \mu s))</td>
</tr>
<tr>
<td>20H</td>
<td>0000H</td>
<td>Typical time out for min. size buffer program (2^N) µs ((00H = not supported))</td>
</tr>
<tr>
<td>21H</td>
<td>0004H</td>
<td>Typical time out for individual Sector/Block-Erase (2^N) ms ((2^4 = 16 , ms))</td>
</tr>
<tr>
<td>22H</td>
<td>0005H</td>
<td>Typical time out for Chip-Erase (2^N) ms ((2^5 = 32 , ms))</td>
</tr>
<tr>
<td>23H</td>
<td>0001H</td>
<td>Maximum time out for Word-Program (2^N) times typical ((2^1 \times 2^3 = 16 , \mu s))</td>
</tr>
<tr>
<td>24H</td>
<td>0000H</td>
<td>Maximum time out for buffer program (2^N) times typical</td>
</tr>
<tr>
<td>25H</td>
<td>0001H</td>
<td>Maximum time out for individual Sector/Block-Erase (2^N) times typical ((2^1 \times 2^4 = 32 , ms))</td>
</tr>
<tr>
<td>26H</td>
<td>0001H</td>
<td>Maximum time out for Chip-Erase (2^N) times typical ((2^1 \times 2^5 = 64 , ms))</td>
</tr>
</tbody>
</table>

Table 9: Device Geometry Information for SST39VF1601/1602

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>27H</td>
<td>0015H</td>
<td>Device size = (2^N) Bytes ((15H = 21; , 2^{21} = 2 , MByte))</td>
</tr>
<tr>
<td>28H</td>
<td>0001H</td>
<td>Flash Device Interface description; 0001H = x16-only asynchronous interface</td>
</tr>
<tr>
<td>29H</td>
<td>0000H</td>
<td></td>
</tr>
<tr>
<td>2AH</td>
<td>0000H</td>
<td>Maximum number of byte in multi-byte write = (2^N) ((00H = not supported))</td>
</tr>
<tr>
<td>2BH</td>
<td>0000H</td>
<td></td>
</tr>
<tr>
<td>2CH</td>
<td>0002H</td>
<td>Number of Erase Sector/Block sizes supported by device</td>
</tr>
<tr>
<td>2DH</td>
<td>00FFH</td>
<td>Sector Information ((y + 1 = Number\ of\ sectors; , z \times 256B = sector\ size))</td>
</tr>
<tr>
<td>2EH</td>
<td>0011H</td>
<td>(y = 511 + 1 = 512) sectors ((01FF = 511))</td>
</tr>
<tr>
<td>2FH</td>
<td>0010H</td>
<td></td>
</tr>
<tr>
<td>30H</td>
<td>0000H</td>
<td>(z = 16 \times 256) Bytes = 4 KByte/sector ((0010H = 16))</td>
</tr>
<tr>
<td>31H</td>
<td>001FH</td>
<td>Block Information ((y + 1 = Number\ of\ blocks; , z \times 256B = block\ size))</td>
</tr>
<tr>
<td>32H</td>
<td>0000H</td>
<td>(y = 31 + 1 = 32) blocks ((001F = 31))</td>
</tr>
<tr>
<td>33H</td>
<td>0000H</td>
<td></td>
</tr>
<tr>
<td>34H</td>
<td>0001H</td>
<td>(z = 256 \times 256) Bytes = 64 KByte/block ((0100H = 256))</td>
</tr>
</tbody>
</table>

©2011 Silicon Storage Technology, Inc.
Table 10: Device Geometry Information for SST39VF3201/3202

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>27H</td>
<td>0016H</td>
<td>Device size = 2^N Bytes ($16H = 22; 2^{22} = 4$ MByte)</td>
</tr>
<tr>
<td>28H</td>
<td>0001H</td>
<td>Flash Device Interface description; 0001H = x16-only asynchronous interface</td>
</tr>
<tr>
<td>29H</td>
<td>0000H</td>
<td>Maximum number of byte in multi-byte write = 2^N (00H = not supported)</td>
</tr>
<tr>
<td>2AH</td>
<td>0000H</td>
<td>Number of Erase Sector/Block sizes supported by device</td>
</tr>
<tr>
<td>2BH</td>
<td>0000H</td>
<td>Maximum number of byte in multi-byte write = 2^N (00H = not supported)</td>
</tr>
<tr>
<td>2CH</td>
<td>0002H</td>
<td>Number of Erase Sector/Block sizes supported by device</td>
</tr>
<tr>
<td>2DH</td>
<td>00FFH</td>
<td>Sector Information ($y + 1 = Number of sectors; z \times 256B = sector size$)</td>
</tr>
<tr>
<td>2EH</td>
<td>0003H</td>
<td>$y = 1023 + 1 = 1024 (03FFH = 1023)$</td>
</tr>
<tr>
<td>2FH</td>
<td>0010H</td>
<td></td>
</tr>
<tr>
<td>30H</td>
<td>0000H</td>
<td>$z = 16 \times 256$ Bytes = 4 KBytes/sector (0010H = 16)</td>
</tr>
<tr>
<td>31H</td>
<td>003FH</td>
<td>Block Information ($y + 1 = Number of blocks; z \times 256B = block size$)</td>
</tr>
<tr>
<td>32H</td>
<td>0000H</td>
<td>$y = 63 + 1 = 64$ blocks (003FH = 63)</td>
</tr>
<tr>
<td>33H</td>
<td>0000H</td>
<td></td>
</tr>
<tr>
<td>34H</td>
<td>0001H</td>
<td>$z = 256 \times 256$ Bytes = 64 KBytes/block (0100H = 256)</td>
</tr>
</tbody>
</table>
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under “Absolute Maximum Stress Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias ... -55°C to +125°C
Storage Temperature ... -65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential-0.5V to V_{DD}+0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential-2.0V to V_{DD}+2.0V
Voltage on A_9 Pin to Ground Potential -0.5V to 13.2V
Package Power Dissipation Capability (T_{A} = 25°C) 1.0W
Surface Mount Solder Reflow Temperature¹ 260°C for 10 seconds
Output Short Circuit Solder Reflow Temperature² 50 mA

1. Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions. Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest information.
2. Outputs shorted for no more than one second. No more than one output shorted at a time.

Table 11: Operating Range

<table>
<thead>
<tr>
<th>Range</th>
<th>Ambient Temp</th>
<th>V_{DD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>0°C to +70°C</td>
<td>2.7-3.6V</td>
</tr>
<tr>
<td>Industrial</td>
<td>-40°C to +85°C</td>
<td>2.7-3.6V</td>
</tr>
</tbody>
</table>

Table 12: AC Conditions of Test¹

<table>
<thead>
<tr>
<th>Input Rise/Fall Time</th>
<th>Output Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ns</td>
<td>C_L = 30 pF</td>
</tr>
</tbody>
</table>

1. See Figures 18 and 19
Table 13: DC Operating Characteristics V_{DD} = 2.7-3.6V¹

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Limits</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>DD</sub></td>
<td>Power Supply Current</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>Read<sup>3</sup></td>
<td>18 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program and Erase</td>
<td>35 mA</td>
<td></td>
</tr>
<tr>
<td>I<sub>SB</sub></td>
<td>Standby V<sub>DD</sub> Current</td>
<td>20 µA</td>
<td></td>
</tr>
<tr>
<td>I<sub>ALP</sub></td>
<td>Auto Low Power</td>
<td>20 µA</td>
<td></td>
</tr>
<tr>
<td>I<sub>I</sub></td>
<td>Input Leakage Current</td>
<td>1 µA</td>
<td></td>
</tr>
<tr>
<td>I<sub>IW</sub></td>
<td>Input Leakage Current on WP# pin and RST#</td>
<td>10 µA</td>
<td></td>
</tr>
<tr>
<td>I<sub>LO</sub></td>
<td>Output Leakage Current</td>
<td>10 µA</td>
<td></td>
</tr>
<tr>
<td>V<sub>I</sub></td>
<td>Input Low Voltage</td>
<td>0.8 V</td>
<td></td>
</tr>
<tr>
<td>V<sub>ILC</sub></td>
<td>Input Low Voltage (CMOS)</td>
<td>0.3 V</td>
<td></td>
</tr>
<tr>
<td>V<sub>H</sub></td>
<td>Input High Voltage</td>
<td>0.7V<sub>DD</sub></td>
<td></td>
</tr>
<tr>
<td>V<sub>HNC</sub></td>
<td>Input High Voltage (CMOS)</td>
<td>V<sub>DD</sub>-0.3 V</td>
<td></td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Output Low Voltage</td>
<td>0.2 V</td>
<td></td>
</tr>
<tr>
<td>V<sub>OH</sub></td>
<td>Output High Voltage</td>
<td>V<sub>DD</sub>-0.2 V</td>
<td></td>
</tr>
</tbody>
</table>

1. Typical conditions for the Active Current shown on the front page of the data sheet are average values at 25°C (room temperature), and V_{DD} = 3V. Not 100% tested.
2. See Figure 18
3. The I_{DD} current listed is typically less than 2mA/MHz, with OE# at V_{IH}. Typical V_{DD} is 3V.

Table 14: Recommended System Power-up Timings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>PU-READ</sub><sup>1</sup></td>
<td>Power-up to Read Operation</td>
<td>100</td>
<td>µs</td>
</tr>
<tr>
<td>T<sub>PU-WRITE</sub><sup>1</sup></td>
<td>Power-up to Program/Erase Operation</td>
<td>100</td>
<td>µs</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

Table 15: Capacitance (T_A = 25°C, f=1 MHz, other pins open)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Condition</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>IO</sub><sup>1</sup></td>
<td>I/O Pin Capacitance</td>
<td>V<sub>I/O</sub> = 0V</td>
<td>12 pF</td>
</tr>
<tr>
<td>C<sub>IN</sub><sup>1</sup></td>
<td>Input Capacitance</td>
<td>V<sub>I</sub> = 0V</td>
<td>6 pF</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

Table 16: Reliability Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum Specification</th>
<th>Units</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>N<sub>END</sub><sup>1,2</sup></td>
<td>Endurance</td>
<td>10,000 Cycles</td>
<td>JEDEC Standard A117</td>
<td></td>
</tr>
<tr>
<td>T<sub>DR</sub><sup>1</sup></td>
<td>Data Retention</td>
<td>100 Years</td>
<td>JEDEC Standard A103</td>
<td></td>
</tr>
<tr>
<td>I<sub>LTH</sub><sup>1</sup></td>
<td>Latch Up</td>
<td>100 + I<sub>DD</sub></td>
<td>JEDEC Standard 78</td>
<td></td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
2. N_{END} endurance rating is qualified as a 10,000 cycle minimum for the whole device. A sector- or block-level rating would result in a higher minimum specification.
AC Characteristics

Table 17: Read Cycle Timing Parameters $V_{DD} = 2.7$-3.6V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{RC}</td>
<td>Read Cycle Time</td>
<td>70</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CE}</td>
<td>Chip Enable Access Time</td>
<td>70</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{AA}</td>
<td>Address Access Time</td>
<td>70</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{OE}</td>
<td>Output Enable Access Time</td>
<td>35</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CLZ}</td>
<td>CE# Low to Active Output</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{OLZ}</td>
<td>OE# Low to Active Output</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CHZ}</td>
<td>CE# High to High-Z Output</td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{OH}</td>
<td>OE# High to High-Z Output</td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CLZ}</td>
<td>Output Hold from Address Change</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{RP}</td>
<td>RST# Pulse Width</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{RH}</td>
<td>RST# High before Read</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{RY}</td>
<td>RST# Pin Low to Read Mode</td>
<td>20</td>
<td></td>
<td>µs</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
2. This parameter applies to Sector-Erase, Block-Erase and Program operations. This parameter does not apply to Chip-Erase operations.

Table 18: Program/Erase Cycle Timing Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{BP}</td>
<td>Word-Program Time</td>
<td>10</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>T_{AS}</td>
<td>Address Setup Time</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{AH}</td>
<td>Address Hold Time</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CS}</td>
<td>WE# and CE# Setup Time</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CH}</td>
<td>WE# and CE# Hold Time</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{OES}</td>
<td>OE# High Setup Time</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{OEH}</td>
<td>OE# High Hold Time</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CP}</td>
<td>CE# Pulse Width</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{WP}</td>
<td>WE# Pulse Width</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{WPH}</td>
<td>WE# Pulse Width High</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{CPH}</td>
<td>CE# Pulse Width High</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{DS}</td>
<td>Data Setup Time</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{DH}</td>
<td>Data Hold Time</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{IDA}</td>
<td>Software ID Access and Exit Time</td>
<td>150</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{SE}</td>
<td>Sector-Erase</td>
<td>25</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>T_{BE}</td>
<td>Block-Erase</td>
<td>25</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>T_{SCE}</td>
<td>Chip-Erase</td>
<td>50</td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
Figure 4: Read Cycle Timing Diagram

Figure 5: WE# Controlled Program Cycle Timing Diagram
Figure 6: CE# Controlled Program Cycle Timing Diagram

Figure 7: Data# Polling Timing Diagram
Figure 8: Toggle Bits Timing Diagram

Figure 9: WE# Controlled Chip-Erase Timing Diagram
16 Mbit / 32 Mbit Multi-Purpose Flash Plus
SST39VF1601 / SST39VF3201
SST39VF1602 / SST39VF3202

Not Recommended for New Designs

FIGURE 10: WE# CONTROLLED BLOCK-ERASE TIMING DIAGRAM

FIGURE 11: WE# CONTROLLED SECTOR-ERASE TIMING DIAGRAM
Three-Byte Sequence for Software ID Entry

ADDRESS A14-0

5555 2AAA 5555

CE#

OE#

WE#

DQ15-0

XXAA XX55 XX90

SW0 SW1 SW2

Note: Device ID = 234BH for 39VF1601, 234AH for 39VF1602, 235BH for 39VF3201, and 235AH for 39VF3202, WP# must be held in proper logic state (VIL or VIH) 1 µs prior to and 1 µs after the command sequence X can be VIL or VIH but no other value

Figure 12: Software ID Entry and Read

Three-Byte Sequence for CFI Query Entry

ADDRESS A14-0

5555 2AAA 5555

CE#

OE#

WE#

DQ15-0

XXAA XX55 XX98

SW0 SW1 SW2

Note: WP# must be held in proper logic state (VIL or VIH) 1 µs prior to and 1 µs after the command sequence X can be VIL or VIH but no other value

Figure 13: CFI Query Entry and Read
Three-byte sequence for Software ID Exit and Reset

Address A_{14:0}:
- 5555
- 2AAA
- 5555

DQ_{15:0}:
- XXAA
- XX55
- XXF0

CE#:
- T_{IDA}

OE#:
- T_{WP}

WE#:
- SW0
- SW1
- SW2

Note: WP# must be held in proper logic state (V_{IL} or V_{IH}) 1 µs prior to and 1 µs after the command sequence. X can be V_{IL} or V_{IH} but no other value.

Figure 14: Software ID Exit/CFI Exit

Three-byte sequence for CFI Query Entry

Address A_{MS:0}:
- 5555
- 2AAA
- 5555

CE#:

OE#:

WE#:
- T_{WP}
- T_{WPH}

DQ_{15:0}:
- XXAA
- XX55
- XX88

Note: A_{MS} = Most significant address.
- A_{MS} = A_{19} for SST39VF1601/1602 and A_{30} for SST39VF3201/3202.
- WP# must be held in proper logic state (V_{IL} or V_{IH}) 1 µs prior to and 1 µs after the command sequence.
- X can be V_{IL} or V_{IH} but no other value.

Figure 15: Sec ID Entry
16 Mbit / 32 Mbit Multi-Purpose Flash Plus
SST39VF1601 / SST39VF3201
SST39VF1602 / SST39VF3202

Not Recommended for New Designs

Figure 16: RST# Timing Diagram (When no internal operation is in progress)

Figure 17: RST# Timing Diagram (During Program or Erase operation)

AC test inputs are driven at V_{IHT} (0.9 V_{DD}) for a logic “1” and V_{ILT} (0.1 V_{DD}) for a logic “0”. Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Input rise and fall times (10% ↔ 90%) are <5 ns.

Note: V_{IT} - V_{INPUT} Test
V_{OT} - V_{OUTPUT} Test
V_{IHT} - V_{INPUT} HIGH Test
V_{ILT} - V_{INPUT} LOW Test

Figure 18: AC Input/Output Reference Waveforms

Figure 19: A Test Load Example
Figure 20: Word-Program Algorithm

- Start
- Load data: XXAAH
 Address: 5555H
- Load data: XX55H
 Address: 2AAAAH
- Load data: XXA0H
 Address: 5555H
- Load Word
 Address/Word
 Data
- Wait for end of Program (TBP,
 Data# Polling bit, or Toggle bit
 operation)
- Program Completed

X can be V_{IL} or V_{IH}, but no other value
Figure 21: Wait Options

Internal Timer
- Program/Erase Initiated
 - Wait T_{BP}, T_{SCE}, T_{SE} or T_{BE}
 - Program/Erase Completed

Toggle Bit
- Program/Erase Initiated
 - Read word
 - Read same word
 - Does DQ6 match
 - No
 - Yes
 - Program/Erase Completed

Data# Polling
- Program/Erase Initiated
 - Read DQ7
 - Is DQ7 = true data
 - Yes
 - Program/Erase Completed
 - No
 - Does DQ6 match
 - No
 - Yes
 - Program/Erase Completed
Figure 22: Software ID/CFI Entry Command Flowcharts

- **CFI Query Entry Command Sequence**
 - Load data: XXAAH
 - Address: 5555H
 - Load data: XX55H
 - Address: 2AAAAH
 - Load data: XX98H
 - Address: 5555H
 - Wait T\text{tID}\text{A}
 - Read CFI data

- **Sec ID Query Entry Command Sequence**
 - Load data: XXAAH
 - Address: 5555H
 - Load data: XX55H
 - Address: 2AAAAH
 - Load data: XX88H
 - Address: 5555H
 - Wait T\text{tID}\text{A}
 - Read Sec ID

- **Software Product ID Entry Command Sequence**
 - Load data: XXAAH
 - Address: 5555H
 - Load data: XX55H
 - Address: 2AAAAH
 - Load data: XX90H
 - Address: 5555H
 - Wait T\text{tID}\text{A}
 - Read Software ID

\(X\) can be \(V_{IL}\) or \(V_{IH}\), but no other value
Figure 23: Software ID/CFI Exit Command Flowcharts

Software ID Exit/CFI Exit/Sec ID Exit Command Sequence

- Load data: XXAAH Address: 5555H
- Load data: XX55H Address: 2AAAH
- Load data: XXF0H Address: 5555H
- Wait T_{IDA}
- Return to normal operation

- Load data: XXF0H Address: XXH
- Wait T_{IDA}
- Return to normal operation

X can be V_{IL} or V_{IH}, but no other value

1223 F18.1
Chip-Erase Command Sequence

1. Load data: XXAAH
 Address: 5555H
2. Load data: XX55H
 Address: 2AAAH
3. Load data: XX80H
 Address: 5555H
4. Load data: XXAAH
 Address: 5555H
5. Load data: XX55H
 Address: 2AAAH
6. Load data: XX10H
 Address: 5555H
7. Wait TSCE
8. Chip erased to FFFFH

Sector-Erase Command Sequence

1. Load data: XXAAH
 Address: 5555H
2. Load data: XX55H
 Address: 2AAAH
3. Load data: XX80H
 Address: 5555H
4. Load data: XXAAH
 Address: 5555H
5. Load data: XX55H
 Address: 2AAAH
6. Load data: XX30H
 Address: SAX
7. Wait TSE
8. Sector erased to FFFFH

Block-Erase Command Sequence

1. Load data: XXAAH
 Address: 5555H
2. Load data: XX55H
 Address: 2AAAH
3. Load data: XX80H
 Address: 5555H
4. Load data: XXAAH
 Address: 5555H
5. Load data: XX55H
 Address: 2AAAH
6. Load data: XX50H
 Address: BAX
7. Wait TBE
8. Block erased to FFFFH

X can be VIL or VIH, but no other value
16 Mbit / 32 Mbit Multi-Purpose Flash Plus
SST39VF1601 / SST39VF3201
SST39VF1602 / SST39VF3202

Not Recommended for New Designs

Product Ordering Information

<table>
<thead>
<tr>
<th>SST</th>
<th>39</th>
<th>VF</th>
<th>1601</th>
<th>-</th>
<th>70</th>
<th>-</th>
<th>4C</th>
<th>-</th>
<th>EKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td>XX</td>
<td>XXXX</td>
<td>-</td>
<td>XX</td>
<td>-</td>
<td>XX</td>
<td>-</td>
<td>XXX</td>
<td></td>
</tr>
</tbody>
</table>

- **Environmental Attribute**

 $E^1 = \text{non-Pb}$

- **Package Modifier**

 $K = 48$ balls or leads

- **Package Type**

 $E = \text{TSOP (type1, die up, 12mm x 20mm)}$

 $B3 = \text{TFBGA (6mm x 8mm, 0.8mm pitch)}$

- **Temperature Range**

 $C = \text{Commercial} = 0°C$ to $+70°C$

 $I = \text{Industrial} = -40°C$ to $+85°C$

- **Minimum Endurance**

 $4 = 10,000$ cycles

- **Read Access Speed**

 $70 = 70$ ns

- **Hardware Block Protection**

 $1 = \text{Bottom Boot-Block}$

 $2 = \text{Top Boot-Block}$

- **Device Density**

 $160 = 16$ Mbit

 $320 = 32$ Mbit

- **Voltage**

 $V = 2.7-3.6V$

- **Product Series**

 $39 = \text{Multi-Purpose Flash}$

1. Environmental suffix “E” denotes non-Pb solder.
 SST non-Pb solder devices are “RoHS Compliant”.

©2011 Silicon Storage Technology, Inc.
Valid Combinations for SST39VF1601

SST39VF1601-70-4C-EKE SST39VF1601-70-4C-B3KE
SST39VF1601-90-4C-EKE SST39VF1601-90-4C-B3KE
SST39VF1601-70-4I-EKE SST39VF1601-70-4I-B3KE

Valid Combinations for SST39VF1602

SST39VF1602-70-4C-EKE SST39VF1602-70-4C-B3KE
SST39VF1602-90-4C-EKE SST39VF1602-90-4C-B3KE
SST39VF1602-70-4I-EKE SST39VF1602-70-4I-B3KE

Valid Combinations for SST39VF3201

SST39VF3201-70-4C-EKE SST39VF3201-70-4C-B3KE
SST39VF3201-90-4C-EKE SST39VF3201-90-4C-B3KE
SST39VF3201-70-4I-EKE SST39VF3201-70-4I-B3KE

Valid Combinations for SST39VF3202

SST39VF3202-70-4C-EKE SST39VF3202-70-4C-B3KE
SST39VF3202-90-4C-EKE SST39VF3202-90-4C-B3KE
SST39VF3202-70-4I-EKE SST39VF3202-70-4I-B3KE

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.
Packaging Diagrams

Figure 25: 48-lead Thin Small Outline Package (TSOP) 12mm x 20mm
SST Package Code: EK

Note:
1. Complies with JEDEC publication 95 MO-142 DD dimensions, although some dimensions may be more stringent.
2. All linear dimensions are in millimeters (max/min).
3. Coplanarity: 0.1 mm
4. Maximum allowable mold flash is 0.15 mm at the package ends, and 0.25 mm between leads.
Figure 26: 48-ball Thin-profile, Fine-pitch Ball Grid Array (TFBGA) 6mm x 8mm
SST Package Code: B3K

Note: 1. Complies with JEDEC Publication 95, MO-210, variant AB-1, although some dimensions may be more stringent.
2. All linear dimensions are in millimeters.
3. Coplanarity: 0.12 mm
4. Ball opening size is 0.38 mm (0.05 mm)
Table 19: Revision History

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Initial release</td>
<td>Mar 2003</td>
</tr>
<tr>
<td>01</td>
<td>Corrected Pin 15 from A20 to NC for SST39VF160x in Figure 2 on page 4</td>
<td>Apr 2003</td>
</tr>
<tr>
<td>02</td>
<td>Changed data sheet title</td>
<td>Jun 2003</td>
</tr>
</tbody>
</table>
| 03 | 2004 Data Book
• Updated the B3K and B1K package diagrams
• Added non-Pb MPNs and removed footnote. (See page 31) | Nov 2003 |
| 04 | Added RoHS compliance information on page 1 and in the “Product Ordering Information” on page 30
• Corrected the solder temperature profile in “Absolute Maximum Stress Ratings” on page 15
• Changed product status from “Preliminary Specifications” to “Data Sheet” | Nov 2005 |
| 05 | Removed 90 ns Read Access Time globally
• EOLed all lead (Pb) valid combinations. See S71223(02)
• EOLed SST39VF6401 and SST39VF6402. See S71223(03) | June 2008 |
| A | Changed document status to “Not Recommended for New Designs”
• Applied new document format
• Released document under letter revision system
• Updated Spec number from S71223 to DS25028 | Aug 2011 |