MCP9804

±0.25°C Typical Accuracy Digital Temperature Sensor

Features

- **Accuracy:**
 - ±0.25°C (typical) from -40°C to +125°C
 - ±1°C (maximum) from -40°C to +125°C
 - +0.05°C (typical) lifetime drift
 - ±0.0625°C or ±1 LSb (typical) repeatability
- **User-Selectable Measurement Resolution:**
 - +0.5°C, +0.25°C, +0.125°C, +0.0625°C
- **User-Programmable Temperature Limits:**
 - Temperature Window Limit
 - Critical Temperature Limit
- **User-Programmable Temperature Alert Output**
- Operating Voltage Range: 2.7V to 5.5V
- Operating Current: 200 µA (typical)
- Shutdown Current: 0.1 µA (typical)
- 2-wire Interface: I²C™/SMBus Compatible
- Available Packages: 2x3 DFN-8, MSOP-8

Typical Applications

- General Purpose
- Industrial Applications
- Industrial Freezers and Refrigerators
- Food Processing
- Personal Computers and Servers
- PC Peripherals
- Consumer Electronics
- Handheld/Portable Devices

Temperature Accuracy

- Temperature Accuracy:
 - TA = -40°C to +125°C
 - VDD = 3.3V
 - 2787 units

Description

Microchip Technology Inc.’s MCP9804 digital temperature sensor converts temperatures between -40°C and +125°C to a digital word with ±0.25°C/±1°C (typical/maximum) accuracy.

The MCP9804 comes with user-programmable registers that provide flexibility to temperature sensing applications. The registers allow user-selectable settings such as Shutdown or Low-Power modes and the specification of temperature Alert window limits and critical output limits. When the temperature changes beyond the specified boundary limits, the MCP9804 outputs an Alert signal. The user has the option of setting the Alert output signal polarity as an active-low or active-high comparator output for thermostat operation, or as a temperature Alert interrupt output for microprocessor-based systems. The Alert output can also be configured as a critical temperature output only.

This sensor has an industry standard 100 kHz, 2-wire, SMBus/I²C compatible serial interface, allowing up to eight or sixteen sensors to be controlled with a single serial bus (see Table 3-2 for available Address codes). These features make the MCP9804 ideal for sophisticated, multi-zone, temperature-monitoring applications.

Package Types

<table>
<thead>
<tr>
<th>8-Pin 2x3 DFN *</th>
<th>8-Pin MSOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA 1</td>
<td>8</td>
</tr>
<tr>
<td>SCL 2</td>
<td>EP</td>
</tr>
<tr>
<td>Alert 3</td>
<td>9</td>
</tr>
<tr>
<td>GND 4</td>
<td>5</td>
</tr>
</tbody>
</table>

* Includes Exposed Thermal Pad (EP); see Table 3-1.
FIGURE 1: Functional Block Diagram.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>6.0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage at All Input/Output Pins</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature with Power Applied</td>
<td>-40°C to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature (TJ)</td>
<td>+150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Protection on All Pins (HBM:MM)</td>
<td>±400V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latch-up Current at Each Pin (25°C)</td>
<td>±200 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TEMPERATURE SENSOR DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground and TA = -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Sensor Accuracy</td>
<td></td>
<td>TACY</td>
<td>±0.25</td>
<td>+1.0</td>
<td>°C</td>
<td>VDD = 3.3V (Note 1)</td>
</tr>
<tr>
<td>Accuracy Drift</td>
<td></td>
<td>TDRIFT</td>
<td>+0.05</td>
<td></td>
<td>°C</td>
<td>VDD = 3.3V (Note 2)</td>
</tr>
<tr>
<td>Accuracy Repeatability</td>
<td></td>
<td>TREPEAT</td>
<td>±0.0625</td>
<td></td>
<td>°C</td>
<td>48 hours at 55°C, VDD = 3.3V</td>
</tr>
<tr>
<td>Temperature Conversion Time</td>
<td></td>
<td>tCONV</td>
<td>30</td>
<td></td>
<td>ms</td>
<td>33s/sec (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td>ms</td>
<td>15s/sec (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td></td>
<td></td>
<td>ms</td>
<td>7s/sec (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>ms</td>
<td>4s/sec (typical)</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td>VDD</td>
<td>2.7</td>
<td></td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Current</td>
<td></td>
<td>IDD</td>
<td>200</td>
<td></td>
<td>400</td>
<td>µA</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td></td>
<td>ISHDN</td>
<td>0.1</td>
<td></td>
<td>2</td>
<td>µA</td>
</tr>
<tr>
<td>Power-on Reset (POR)</td>
<td></td>
<td>VPOR</td>
<td>2.2</td>
<td></td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Power Supply Rejection</td>
<td></td>
<td>Δ°C/ΔVDD</td>
<td>-0.1</td>
<td></td>
<td>°C/V</td>
<td>VDD = 2.7V to 5.5V, TA = +25°C</td>
</tr>
<tr>
<td>Alert Output (open-drain output, external pull-up resistor required), see Section 5.2.3 “Alert Output Configuration”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Level Current (leakage)</td>
<td></td>
<td>IOH</td>
<td>1</td>
<td></td>
<td>µA</td>
<td>VOH = VDD (Active-Low, Pull-up Resistor)</td>
</tr>
<tr>
<td>Low-Level Voltage</td>
<td></td>
<td>VIL</td>
<td>0.4</td>
<td></td>
<td>V</td>
<td>IOL = 3 mA (Active-Low, Pull-up Resistor)</td>
</tr>
<tr>
<td>Thermal Response, from +25°C (air) to +125°C (oil bath)</td>
<td></td>
<td>IRES</td>
<td>0.7</td>
<td></td>
<td>s</td>
<td>Time to 63% (+89°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
<td>s</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Accuracy specification includes life time drift.

2: Using Accelerated Life Cycle, equivalent of 12 years of operation at 55°C.

© 2009-2012 Microchip Technology Inc.
DIGITAL INPUT/OUTPUT PIN CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = 2.7V to 5.5V, GND = Ground and T_{A} = -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Input/Output (SCL, SDA, A0, A1, A2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Level Voltage</td>
<td>V_{IH}</td>
<td>0.7 V_{DD}</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low-Level Voltage</td>
<td>V_{IL}</td>
<td></td>
<td></td>
<td>0.3 V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>I_{IN}</td>
<td></td>
<td></td>
<td>±5 µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output (SDA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Level Voltage</td>
<td>V_{OL}</td>
<td></td>
<td></td>
<td>0.4 V</td>
<td>I_{OL} = 3 mA</td>
<td></td>
</tr>
<tr>
<td>High-Level Current (leakage)</td>
<td>I_{OH}</td>
<td></td>
<td></td>
<td>1 µA</td>
<td>V_{OH} = 5.5V</td>
<td></td>
</tr>
<tr>
<td>Low-Level Current</td>
<td>I_{OL}</td>
<td>6 mA</td>
<td></td>
<td></td>
<td>V_{OL} = 0.6V</td>
<td></td>
</tr>
<tr>
<td>SDA and SCL Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis</td>
<td>V_{HYST}</td>
<td></td>
<td>0.05 V_{DD}</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Spike Suppression</td>
<td>t_{SP}</td>
<td></td>
<td></td>
<td>50 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>C_{IN}</td>
<td></td>
<td>5 pF</td>
<td></td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

GRAPHICAL SYMBOL DESCRIPTION

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = 2.7V to 5.5V and GND = Ground.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_{A}</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_{A}</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{A}</td>
<td>-65</td>
<td></td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-DFN</td>
<td>\theta_{JA}</td>
<td></td>
<td>41</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>\theta_{JA}</td>
<td></td>
<td>206</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Operation in this range must not cause T_{J} to exceed Maximum Junction Temperature (+150°C).
SEVEN SERIAL INTERFACE TIMING SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 2.7V$ to 5.5V, $T_A = -40^\circ C$ to $+125^\circ C$, GND = Ground and $C_L = 80 \text{ pF}$ (Note 1).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial port frequency</td>
<td>f_{SCL}</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>400</td>
<td>kHz</td>
<td>(Note 2, Note 4)</td>
</tr>
<tr>
<td>Low Clock</td>
<td>t_{LOW}</td>
<td>4700</td>
<td>—</td>
<td>1300</td>
<td>—</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>High Clock</td>
<td>t_{HIGH}</td>
<td>4000</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_R</td>
<td>—</td>
<td>1000</td>
<td>20</td>
<td>300</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_F</td>
<td>20</td>
<td>300</td>
<td>20</td>
<td>300</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Data in Setup Time</td>
<td>t_{SU-DI}</td>
<td>250</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>(Note 3)</td>
</tr>
<tr>
<td>Data in Hold Time</td>
<td>t_{HD-DI}</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>(Note 5)</td>
</tr>
<tr>
<td>Data out Hold Time</td>
<td>t_{HD-DO}</td>
<td>300</td>
<td>—</td>
<td>200</td>
<td>900</td>
<td>ns</td>
<td>(Note 4)</td>
</tr>
<tr>
<td>Start Condition Setup Time</td>
<td>$t_{SU-START}$</td>
<td>4700</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Start Condition Hold Time</td>
<td>$t_{HD-START}$</td>
<td>4000</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Stop Condition Setup Time</td>
<td>$t_{SU-STOP}$</td>
<td>4000</td>
<td>—</td>
<td>600</td>
<td>—</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Bus Free</td>
<td>t_{B-FREE}</td>
<td>4700</td>
<td>—</td>
<td>1300</td>
<td>—</td>
<td>ns</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>Time-out</td>
<td>t_{OUT}</td>
<td>25</td>
<td>50</td>
<td>25</td>
<td>50</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Bus Capacitive load</td>
<td>C_D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>400</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: All values referred to $V_{IL \text{ MAX}}$ and $V_{IH \text{ MIN}}$ levels.

2: If $t_{LOW} > t_{OUT}$ or $t_{HIGH} > t_{OUT}$, the temperature sensor i²C interface will time-out. A Repeat Start command is required for communication.

3: This device can be used in a Standard-mode i²C-bus system, but the requirement $t_{SU-DI \text{ MIN}}$ must be met. This device does not stretch SCL Low time.

4: As a transmitter, the device provides internal minimum delay time $t_{HD-DO \text{ MIN}}$, to bridge the undefined region of the falling edge of SCL $t_{F \text{ MAX}}$ to avoid unintended generation of Start or Stop conditions.

5: As a receiver, SDA should not be sampled at the falling edge of SCL. SDA can transition t_{HD-DI} after SCL toggles Low.

6: The i²C Fast Mode specification, or timing for bus frequency up to 400KHz, applies to devices starting with date code of 1145.

TIMING DIAGRAM

© 2009-2012 Microchip Technology Inc.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{DD} = 2.7$V to 5.5V, GND = Ground, SDA/SCL pulled-up to V_{DD} and $T_A = -40^\circ$C to $+125^\circ$C.

FIGURE 2-1: Temperature Accuracy.

FIGURE 2-2: Temperature Accuracy Histogram, $T_A = -40^\circ$C to $+125^\circ$C.

FIGURE 2-3: Temperature Accuracy Histogram, $T_A = +25^\circ$C.

FIGURE 2-4: Temperature Accuracy Histogram, $T_A = +45^\circ$C.

FIGURE 2-5: Temperature Accuracy Histogram, $T_A = +125^\circ$C.

FIGURE 2-6: Temperature Accuracy Histogram, $T_A = -40^\circ$C.
Note: Unless otherwise indicated, \(V_{DD} = 2.7V \) to 5.5V, GND = Ground, SDA/SCL pulled-up to \(V_{DD} \) and \(T_A = -40^\circ C \) to +125°C.

FIGURE 2-7: Supply Current vs. Temperature.

FIGURE 2-8: Shutdown Current vs. Temperature.

FIGURE 2-9: Power-on Reset Threshold Voltage vs. Temperature.

FIGURE 2-10: Temperature Accuracy vs. Supply Voltage.

FIGURE 2-11: Power Supply Rejection vs. Frequency.

FIGURE 2-12: Temperature Conversion Time vs. Temperature.
Note: Unless otherwise indicated, $V_{DD} = 2.7V$ to 5.5V, GND = Ground, SDA/SCL pulled-up to V_{DD} and $T_A = -40^\circ C$ to $+125^\circ C$.

FIGURE 2-13: SDA and Alert Output V_{OL} vs. Temperature.

FIGURE 2-14: SDA I_{OL} vs. Temperature.

FIGURE 2-15: Package Thermal Response.

FIGURE 2-16: SMBus Time-out vs. Temperature.
3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>DFN</th>
<th>MSOP</th>
<th>Symbol</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>SDA</td>
<td>Serial Data Line</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>SCL</td>
<td>Serial Clock Line</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Alert</td>
<td>Temperature Alert Output</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>A2</td>
<td>Slave Address</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>A1</td>
<td>Slave Address</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>A0</td>
<td>Slave Address</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>VDD</td>
<td>Power Pin</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>EP</td>
<td>Exposed Thermal Pad (EP); must be connected to GND</td>
</tr>
</tbody>
</table>

3.1 Address Pins (A0, A1, A2)

These pins are device address input pins.

The address pins correspond to the Least Significant bits (LSbs) of the address bits and the Most Significant bits (MSbs): A6, A5, A4, A3. This is shown in Table 3-2.

TABLE 3-2: MCP9804 ADDRESS BYTE

<table>
<thead>
<tr>
<th>Device</th>
<th>Address Code</th>
<th>Slave Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A6</td>
<td>A5</td>
</tr>
<tr>
<td>MCP9804</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MCP9804(2)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note 1: User-selectable address is shown by ‘x’. A2, A1 and A0 must match the corresponding device pin configuration.

Note 2: Contact factory for this address code.

3.2 Ground Pin (GND)

The GND pin is the system ground pin.

3.3 Serial Data Line (SDA)

SDA is a bidirectional input/output pin, used to serially transmit data to/from the host controller. This pin requires a pull-up resistor. (See Section 4.0 “Serial Communication”.)

3.4 Serial Clock Line (SCL)

The SCL is a clock input pin. All communication and timing is relative to the signal on this pin. The clock is generated by the host or master controller on the bus. (See Section 4.0 “Serial Communication”.)

3.5 Temperature Alert, Open-Drain Output (Alert)

The MCP9804 temperature Alert output pin is an open-drain output. The device outputs a signal when the ambient temperature goes beyond the user-programmed temperature limit. (See Section 5.2.3 “Alert Output Configuration”.)

3.6 Power Pin (VDD)

VDD is the power pin. The operating voltage range, as specified in the DC electrical specification table, is applied on this pin.

3.7 Exposed Thermal Pad (EP)

There is an internal electrical connection between the Exposed Thermal Pad (EP) and the GND pin. The EP may be connected to the system ground on the Printed Circuit Board (PCB).
4.0 SERIAL COMMUNICATION

4.1 2-Wire Standard Mode I²C™ Protocol Compatible Interface

The MCP9804 Serial Clock (SCL) input and the bidirectional Serial Data (SDA) line form a 2-wire bidirectional, Standard mode, I²C compatible communication port (refer to the Digital Input/Output Pin Characteristics and Sensor Serial Interface Timing Specifications tables).

The following bus protocol has been defined:

TABLE 4-1: MCP9804 SERIAL BUS PROTOCOL DESCRIPTIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>The device that controls the serial bus, typically a microcontroller.</td>
</tr>
<tr>
<td>Slave</td>
<td>The device addressed by the master, such as the MCP9804.</td>
</tr>
<tr>
<td>Transmitter</td>
<td>Device sending data to the bus.</td>
</tr>
<tr>
<td>Receiver</td>
<td>Device receiving data from the bus.</td>
</tr>
<tr>
<td>START</td>
<td>A unique signal from the master to initiate serial interface with a slave.</td>
</tr>
<tr>
<td>STOP</td>
<td>A unique signal from the master to terminate serial interface from a slave.</td>
</tr>
<tr>
<td>Read/Write</td>
<td>A read or write to the MCP9804 registers.</td>
</tr>
<tr>
<td>ACK</td>
<td>A receiver Acknowledges (ACK) the reception of each byte by polling the bus.</td>
</tr>
<tr>
<td>NAK</td>
<td>A receiver Not-Acknowledges (NAK) or releases the bus to show End-of-Data</td>
</tr>
<tr>
<td>Busy</td>
<td>Communication is not possible because the bus is in use.</td>
</tr>
<tr>
<td>Not Busy</td>
<td>The bus is in the Idle state; both SDA and SCL remain high.</td>
</tr>
<tr>
<td>Data Valid</td>
<td>SDA must remain stable before SCL becomes high in order for a data bit to</td>
</tr>
<tr>
<td></td>
<td>be considered valid. During normal data transfers, SDA only changes state</td>
</tr>
<tr>
<td></td>
<td>while SCL is low.</td>
</tr>
</tbody>
</table>

4.1.1 DATA TRANSFER

Data transfers are initiated by a Start condition (START), followed by a 7-bit device address and a read/write bit. An Acknowledge (ACK) from the slave confirms the reception of each byte. Each access must be terminated by a Stop condition (STOP). Repeated communication is initiated after tB-FREE.

This device does not support sequential register read/write. Each register needs to be addressed using the Register Pointer.

This device supports the receive protocol. The register can be specified using the pointer for the initial read. Each repeated read or receive begins with a Start condition and address byte. The MCP9804 retains the previously selected register. Therefore, it outputs data from the previously specified register (repeated pointer specification is not necessary).

4.1.2 MASTER/SLAVE

The bus is controlled by a master device (typically a microcontroller) that controls the bus access and generates the Start and Stop conditions. The MCP9804 is a slave device and does not control other devices in the bus. Both master and slave devices can operate as either transmitter or receiver. However, the master device determines which mode is activated.

4.1.3 START/STOP CONDITION

A high-to-low transition of the SDA line (while SCL is high) is the Start condition. All data transfers must be preceded by a Start condition from the master. A low-to-high transition of the SDA line (while SCL is high) signifies a Stop condition.

If a Start or Stop condition is introduced during data transmission, the MCP9804 releases the bus. All data transfers are ended by a Stop condition from the master.
4.1.4 ADDRESS BYTE
Following the Start condition, the host must transmit an 8-bit address byte to the MCP9804. The address for the MCP9804 temperature sensor is ‘0011, A2, A1, A0’ in binary, where the A2, A1 and A0 bits are set externally by connecting the corresponding pins to VDD ‘1’ or GND ‘0’. The 7-bit address, transmitted in the serial bit stream, must match the selected address for the MCP9804 to respond with an ACK. Bit 8 in the address byte is a read/write bit. Setting this bit to ‘1’ commands a read operation, while ‘0’ commands a write operation (see Figure 4-1).

FIGURE 4-1: Device Addressing.

4.1.5 DATA VALID
After the Start condition, each bit of data in the transmission needs to be settled for a time specified by tSU-DATA before SCL toggles from low-to-high (see the Sensor Serial Interface Timing Specifications section).

4.1.6 ACKNOWLEDGE (ACK/NAK)
Each receiving device, when addressed, must generate an ACK bit after the reception of each byte. The master device must generate an extra clock pulse for ACK to be recognized.

The Acknowledging device pulls down the SDA line for tSU-DATA before the low-to-high transition of SCL from the master. SDA also needs to remain pulled down for tH-DATA after a high-to-low transition of SCL.

During read, the master must signal an End-of-Data (EOD) to the slave by not generating an ACK bit (NAK), once the last bit has been clocked out of the slave. In this case, the slave will leave the data line released to enable the master to generate the Stop condition.

4.1.7 TIME-OUT
If the SCL stays low or high for the time specified by tOUT, the MCP9804 temperature sensor resets the serial interface. This dictates the minimum clock speed as outlined in the specification.
5.0 FUNCTIONAL DESCRIPTION

The MCP9804 temperature sensors consist of a band-gap-type temperature sensor, a Delta-Sigma Analog-to-Digital Converter (ΔΣ ADC), user-programmable registers and a 2-wire SMBus/I2C protocol compatible serial interface. Figure 5-1 shows a block diagram of the register structure.
5.1 Registers

The MCP9804 has several registers that are user-accessible. These registers include the Temperature register, Configuration register, Temperature Alert Upper Boundary and Lower Boundary Limit registers, Critical Temperature Limit register, Manufacturer Identification register and Device Identification register.

The Temperature register is read-only, used to access the ambient temperature data. This register is double-buffered and it is updated every \(t_{CONV} \). The Temperature Alert Upper Boundary and Lower Boundary Limit registers are read/write registers. If the ambient temperature drifts beyond the user-specified limits, the MCP9804 outputs a signal using the Alert pin (refer to Section 5.2.3 “Alert Output Configuration”). In addition, the Critical Temperature Limit register is used to provide an additional critical temperature limit.

The Configuration register provides access to configure the MCP9804 device’s various features. These registers are described in further detail in the following sections.

The registers are accessed by sending a Register Pointer to the MCP9804, using the serial interface. This is an 8-bit write-only pointer. However, the four Least Significant bits are used as pointers and all unused bits (Register Pointer<7:4>) need to be cleared or set to ‘0’. Register 5-1 describes the pointer or the address of each register.

REGISTER 5-1: REGISTER POINTER (WRITE-ONLY)

<table>
<thead>
<tr>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pointer bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointer bits</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- \(R \) = Readable bit
- \(W \) = Writable bit
- \(U \) = Unimplemented bit, read as ‘0’
- \(-n \) = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- \(x \) = Bit is unknown

bit 7-4

W: Writable bits

Write ‘0’.

Bits 7-4 must always be cleared or written to ‘0’. This device has additional registers that are reserved for test and calibration. If these registers are accessed, the device may not perform according to the specification.

bit 3-0

Pointer bits

- 0000 = RFU, Reserved for Future Use (Read-Only register)
- 0001 = Configuration register (CONFIG)
- 0010 = Alert Temperature Upper Boundary Trip register (\(T_{UPPER} \))
- 0011 = Alert Temperature Lower Boundary Trip register (\(T_{LOWER} \))
- 0100 = Critical Temperature Trip register (\(T_{CRIT} \))
- 0101 = Temperature register (\(T_A \))
- 0110 = Manufacturer ID register
- 0111 = Device ID/Revision register
- 1000 = Resolution register
- 1xxx = Reserved\(^{(1)}\)

Note 1: Some registers contain calibration codes and should not be accessed.
TABLE 5-1: BIT ASSIGNMENT SUMMARY FOR ALL REGISTERS (See Section 5.3 “Summary of Power-on Default” for Power-on Defaults)

<table>
<thead>
<tr>
<th>Register Pointer (Hex)</th>
<th>MSB/LSB</th>
<th>Bit Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>0x00</td>
<td>MSB</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>0 0 0 1 1 1 1 1</td>
</tr>
<tr>
<td>0x01</td>
<td>MSB</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>Crt Loc Win Loc Int Clr Alt Stat Alt Cnt Alt Sel Alt Pol Alt Mod</td>
</tr>
<tr>
<td>0x02</td>
<td>MSB</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>27°C 26°C 25°C 24°C 23°C 22°C 21°C 20°C</td>
</tr>
<tr>
<td>0x03</td>
<td>MSB</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>27°C 26°C 25°C 24°C 23°C 22°C 21°C 20°C</td>
</tr>
<tr>
<td>0x04</td>
<td>MSB</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>27°C 26°C 25°C 24°C 23°C 22°C 21°C 20°C</td>
</tr>
<tr>
<td>0x05</td>
<td>MSB</td>
<td>T_a > T_CRIT T_a > T_UPPER T_a < T_LOWER SIGN</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>27°C 26°C 25°C 24°C 23°C 22°C 21°C 20°C</td>
</tr>
<tr>
<td>0x06</td>
<td>MSB</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>0 1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>0x07</td>
<td>MSB</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>0 0 0 0 0 0 1 1</td>
</tr>
<tr>
<td>0x08</td>
<td>LSB</td>
<td>0 0 0 0 0 0 1 1</td>
</tr>
</tbody>
</table>
5.1.1 SENSOR CONFIGURATION REGISTER (CONFIG)

The MCP9804 has a 16-bit Configuration register (CONFIG) that allows the user to set various functions for a robust temperature monitoring system. Bits 10 through 0 are used to select the temperature alert output hysteresis, device shutdown or Low-Power mode, temperature boundary and critical temperature lock, and temperature Alert output enable/disable. In addition, Alert output condition (output set for \(T_{\text{UPPER}}\) and \(T_{\text{LOWER}}\) temperature boundary or \(T_{\text{CRIT}}\) only), Alert output status and Alert output polarity and mode (Comparator Output or Interrupt Output mode) are user-configurable.

The temperature hysteresis bits 10 and 9 can be used to prevent output chatter when the ambient temperature gradually changes beyond the user-specified temperature boundary (see Section 5.2.2 “Temperature Hysteresis (\(T_{\text{HYST}}\))”). The Continuous Conversion or Shutdown mode is selected using bit 8. In Shutdown mode, the band gap temperature sensor circuit stops converting temperature and the Ambient Temperature register (\(T_A\)) holds the previous temperature data (see Section 5.2.1 “Shutdown Mode”). Bits 7 and 6 are used to lock the user-specified boundaries \(T_{\text{UPPER}}, T_{\text{LOWER}}\) and \(T_{\text{CRIT}}\) to prevent an accidental rewrite. The Lock bits are cleared by resetting the power. Bits 5 through 0 are used to configure the temperature Alert output pin. All functions are described in Register 5-2 (see Section 5.2.3 “Alert Output Configuration”).

REGISTER 5-2: CONFIG: CONFIGURATION REGISTER (→ ADDRESS ‘0000 0001’ b)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Legend</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>U-0 U-0 U-0 U-0 U-0</td>
<td>R/W-0 R/W-0 R/W-0 R/W-0 R/W-0</td>
</tr>
<tr>
<td></td>
<td>— — — — —</td>
<td>— — — — —</td>
</tr>
<tr>
<td></td>
<td>bit 15</td>
<td>Unimplemented: Read as ‘0’</td>
</tr>
<tr>
<td>11</td>
<td>Unimplemented: Read as ‘0’</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(T_{\text{HYST}}): (T_{\text{UPPER}}) and (T_{\text{LOWER}}) Limit Hysteresis bits</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>0°C (power-up default)</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>+1.5°C</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+3.0°C</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+6.0°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Refer to Section 5.2.3 “Alert Output Configuration”.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This bit can not be altered when either of the Lock bits are set (bit 6 and bit 7).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This bit can be programmed in Shutdown mode.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(\text{SHDN}): Shutdown Mode bit</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Continuous conversion (power-up default)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Shutdown (Low-Power mode)</td>
<td></td>
</tr>
</tbody>
</table>

In shutdown, all power-consuming activities are disabled, though all registers can be written to or read. This bit cannot be set to ‘1’ when either of the Lock bits is set (bit 6 and bit 7). However, it can be cleared to ‘0’ for continuous conversion while locked (refer to Section 5.2.1 “Shutdown Mode”).
REGISTER 5-2: CONFIG: CONFIGURATION REGISTER (→ ADDRESS ‘0000 0001’B)

bit 7 Crit. Lock: TCRIT Lock bit
0 = Unlocked. TCRIT register can be written (power-up default)
1 = Locked. TCRIT register can not be written
When enabled, this bit remains set to ‘1’ or locked until cleared by an internal Reset (Section 5.3 “Summary of Power-on Default”). This bit does not require a double-write.
This bit can be programmed in Shutdown mode.

bit 6 Win. Lock: TUPPER and TCLower Window Lock bit
0 = Unlocked; TUPPER and TCLower registers can be written (power-up default)
1 = Locked; TUPPER and TCLower registers can not be written
When enabled, this bit remains set to ‘1’ or locked until cleared by a Power-on Reset (Section 5.3 “Summary of Power-on Default”). This bit does not require a double-write.
This bit can be programmed in Shutdown mode.

bit 5 Int. Clear: Interrupt Clear bit
0 = No effect (power-up default)
1 = Clear interrupt output; when read, this bit returns to ‘0’
This bit can not be set to ‘1’ in Shutdown mode, but it can be cleared after the device enters Shutdown mode.

bit 4 Alert Stat.: Alert Output Status bit
0 = Alert output is not asserted by the device (power-up default)
1 = Alert output is asserted as a comparator/Interrupt or critical temperature output
This bit can not be set to ‘1’ or cleared to ‘0’ in Shutdown mode. However, if the Alert output is configured as Interrupt mode, and if the host controller clears to ‘0’, the interrupt, using bit 5 while the device is in Shutdown mode, then this bit will also be cleared ‘0’.

bit 3 Alert Cnt.: Alert Output Control bit
0 = Disabled (power-up default)
1 = Enabled
This bit can not be altered when either of the Lock bits are set (bit 6 and bit 7).
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.

bit 2 Alert Sel.: Alert Output Select bit
0 = Alert output for TUPPER, TCLower and TCRIT (power-up default)
1 = TA > TCRIT only (TUPPER and TCLower temperature boundaries are disabled)
When the Alarm Window Lock bit is set, this bit cannot be altered until unlocked (bit 6).
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.

bit 1 Alert Pol.: Alert Output Polarity bit
0 = Active-low (power-up default; pull-up resistor required)
1 = Active-high
This bit can not be altered when either of the Lock bits are set (bit 6 and bit 7).
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.

bit 0 Alert Mod.: Alert Output Mode bit
0 = Comparator output (power-up default)
1 = Interrupt output
This bit can not be altered when either of the Lock bits are set (bit 6 and bit 7).
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.
Writing to the CONFIG Register to Enable the Event Output Pin \(<0000\ 0000\ 0000\ 1000>b\):

FIGURE 5-2: Timing Diagram for Writing to the Configuration Register (see Section 4.0 “Serial Communication”).

Note: This is an example routine (see Appendix A: “Source Code”).

```c
i2c_start(); // send START command
i2c_write(AddressByte & 0xFE); // WRITE Command (see Section 4.1.4 “Address Byte”)  
// also, make sure bit 0 is cleared '0'
i2c_write(0x01); // Write CONFIG Register
i2c_write(0x00); // Write data
i2c_write(0x08); // Write data
i2c_stop(); // send STOP command
```
Reading the CONFIG Register:

![Timing Diagram for Reading from the Configuration Register](image)

Note: It is not necessary to select the Register Pointer if it was set from the previous read/write.

Note: This is an example routine (see Appendix A: “Source Code”).

```c
i2c_start(); // send START command
i2c_write(AddressByte & 0xFE); //WRITE Command (see Section 4.1.4 “Address Byte”)  
//also, make sure bit 0 is cleared '0'
i2c_write(0x01); // Write CONFIG Register
i2c_start(); // send Repeat START command
i2c_write(AddressByte | 0x01); //READ Command  
//also, make sure bit 0 is set '1'
UpperByte = i2c_read(ACK); // READ 8 bits  
//and Send ACK bit
LowerByte = i2c_read(NAK); // READ 8 bits  
//and Send NAK bit
i2c_stop(); // send STOP command
```

FIGURE 5-3: Timing Diagram for Reading from the Configuration Register (see Section 4.0 “Serial Communication”).
5.1.2 UPPER/LOWER/CRITICAL TEMPERATURE LIMIT REGISTERS (T\text{UPPER}/T\text{LOWER}/T\text{CRIT})

The MCP9804 has a 16-bit read/write Alert Output Temperature Upper Boundary register (T\text{UPPER}), a 16-bit Lower Boundary register (T\text{LOWER}) and a 16-bit Critical Boundary register (T\text{CRIT}) that contain 11-bit data in two's complement format (0.25°C). This data represents the maximum and minimum temperature boundary or temperature window that can be used to monitor ambient temperature. If this feature is enabled (Section 5.1.1 “Sensor Configuration Register (CONFIG)”) and the ambient temperature exceeds the specified boundary or window, the MCP9804 asserts an Alert output. (Refer to Section 5.2.3 “Alert Output Configuration”).

REGISTER 5-3: T\text{UPPER}/T\text{LOWER}/T\text{CRIT}: UPPER/LOWER/CRITICAL TEMPERATURE LIMIT REGISTER

\[\rightarrow \text{ADDRESS '0000 0010'b/ '0000 0011'b/ '0000 0100'b} \] (1)

<table>
<thead>
<tr>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Sign</td>
<td>2°C</td>
<td>2\text{5}°C</td>
<td>2\text{6}°C</td>
<td>2\text{7}°C</td>
</tr>
</tbody>
</table>

bit 15

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2\text{5}°C</td>
<td>2\text{6}°C</td>
<td>2\text{7}°C</td>
<td>2\text{8}°C</td>
<td>2\text{9}°C</td>
<td>2\text{10}°C</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

bit 7

Legend:

- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12 Sign: Sign bit

0 = T_A \geq 0°C
1 = T_A < 0°C

bit 11-2 T\text{UPPER}/T\text{LOWER}/T\text{CRIT}: Temperature Boundary bits

Temperature boundary trip data in two's complement format.

bit 1-0 Unimplemented: Read as '0'

Note 1: This table shows two 16-bit registers for T\text{UPPER}, T\text{LOWER} and T\text{CRIT}, located at '0000 0010b', '0000 0011b' and '0000 0100b', respectively.
FIGURE 5-4: Timing Diagram for Writing and Reading from the T_{UPPER} Register (see Section 4.0 “Serial Communication”).

Writing +90°C to the T_{UPPER} Register $<0000 0101 1010 0000>_b$:

Reading from the T_{UPPER} Register:

Note: It is not necessary to select the Register Pointer if it was set from the previous read/write.
5.1.3 AMBIENT TEMPERATURE REGISTER (TA)

The MCP9804 uses a band gap temperature sensor circuit to output analog voltage proportional to absolute temperature. An internal ΔΣ ADC is used to convert the analog voltage to a digital word. The digital word is loaded to a 16-bit read-only Ambient Temperature register (TA) that contains 13-bit temperature data in two’s complement format.

The TA register bits (TA<12:0>) are double-buffered. Therefore, the user can access the register, while in the background, the MCP9804 performs an Analog-to-Digital conversion. The temperature data from the ΔΣ ADC is loaded in parallel to the TA register at tCONV refresh rate.

In addition, the TA register uses three bits (TA<15:13>) to reflect the Alert pin state. This allows the user to identify the cause of the Alert output trigger (see Section 5.2.3 “Alert Output Configuration”); bit 15 is set to ‘1’ if TA is greater than or equal to TCRIT, bit 14 is set to ‘1’ if TA is greater than TUPPER and bit 13 is set to ‘1’ if TA is less than TLOWER.

The TA register bit assignment and boundary conditions are described in Register 5-4.

In addition, the TA register uses three bits (TA<15:13>) to reflect the Alert pin state. This allows the user to identify the cause of the Alert output trigger (see Section 5.2.3 “Alert Output Configuration”); bit 15 is set to ‘1’ if TA is greater than or equal to TCRIT, bit 14 is set to ‘1’ if TA is greater than TUPPER and bit 13 is set to ‘1’ if TA is less than TLOWER.

The TA register bit assignment and boundary conditions are described in Register 5-4.

REGISTER 5-4: TA: AMBIENT TEMPERATURE REGISTER (ADDRESS ‘0000 0101’)(1)

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA vs. TCRIT(1)</td>
<td>TA vs. TUPPER(1)</td>
<td>TA vs. TLOWER(1)</td>
<td>SIGN</td>
<td>TA: Ambient Temperature bits(2)</td>
</tr>
<tr>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
</tr>
<tr>
<td>2°C</td>
<td>2°C</td>
<td>2°C</td>
<td>2°C</td>
<td>2°C</td>
</tr>
<tr>
<td>bit 15</td>
<td>bit 14</td>
<td>bit 13</td>
<td>bit 12</td>
<td>bit 11-0</td>
</tr>
</tbody>
</table>

Legend:

R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

1. TA vs. TCRIT bit(1)

 0 = TA < TCRIT
 1 = TA ≥ TCRIT

2. TA vs. TUPPER bit(1)

 0 = TA ≤ TUPPER
 1 = TA > TUPPER

3. TA vs. TLOWER bit(1)

 0 = TA ≥ TLOWER
 1 = TA < TLOWER

4. SIGN bit

 0 = TA ≥ 0°C
 1 = TA < 0°C

5. TA: Ambient Temperature bits(2)

 12-bit ambient temperature data in two’s complement format.

Note 1: Bits 15, 14 and 13 are not affected by the status of the Alert Output Configuration (CONFIG<5:0>) bits, Register 5-2).

2. Bits 2, 1 and 0 may remain clear at ‘0’ depending on the status of the Resolution register (Register 5-7).

 The power-up default is 0.25°C/bit; bits 1 and 0 remain clear ‘0’.
5.1.3.1 T_A Bits to Temperature Conversion

To convert the T_A bits to decimal temperature, the upper three boundary bits ($T_A<15:13>$) must be masked out. Then, determine the SIGN bit (bit 12) to check positive or negative temperature, shift the bits accordingly, and combine the upper and lower bytes of the 16-bit register. The upper byte contains data for temperatures greater than +32°C while the lower byte contains data for temperature less than +32°C, including fractional data. When combining the upper and lower bytes, the upper byte must be right-shifted by 4 bits (or multiply by 2^4) and the lower byte must be left-shifted by 4 bits (or multiply by 2^{-4}). Adding the results of the shifted values provides the temperature data in decimal format (see Equation 5-1).

The temperature bits are in two’s complement format, therefore, positive temperature data and negative temperature data are computed differently. Equation 5-1 shows the temperature computation. The example instruction code, outlined in Example 5-1, shows the communication flow; also see Figure 5-5 for the timing diagram.

EQUATION 5-1: BYTES TO TEMPERATURE CONVERSION

\[
T_A \geq 0°C \\
T_A = (UpperByte \times 2^4 + LowerByte \times 2^{-4})
\]

Temperature $<0°C$

\[
T_A = 256 - (UpperByte \times 2^4 + LowerByte \times 2^{-4})
\]

Where:

$T_A = \text{Ambient Temperature} (°C)$

UpperByte = T_A bit 15 to bit 8

LowerByte = T_A bit 7 to bit 0

EXAMPLE 5-1: SAMPLE INSTRUCTION CODE

This example routine assumes the variables and I2C™ communication subroutines are predefined (see Appendix A: “Source Code”):

```c
// Send START command
i2c_start();

// WRITE Command (see Section 4.1.4 “Address Byte”)  
// also, make sure bit 0 is cleared ‘0’
if((AddressByte & 0xFE) == 0xFE) 
{
    i2c_write(AddressByte & 0xFE);
}

// Write $T_A$ Register Address
i2c_write(0x05);

// Repeat START
i2c_start();

// READ Command (see Section 4.1.4 “Address Byte”)  
// also, make sure bit 0 is set ‘1’
if((AddressByte | 0x01) == 0x06) 
{
    i2c_write(AddressByte | 0x01);
}

// READ 8 bits and Send ACK bit
UpperByte = i2c_read(ACK);

// READ 8 bits and Send NAK bit
LowerByte = i2c_read(NAK);

// Send STOP command
i2c_stop();

// Convert the temperature data
// First Check flag bits
if ((UpperByte & 0x80) == 0x80) // $T_A \geq TC\text{RIT}$
{
    UpperByte = UpperByte & 0x1F; // Clear flag bits
}
if ((UpperByte & 0x40) == 0x40) // $T_A > T\text{UPPER}$
{
    UpperByte = UpperByte & 0x0F; // Clear SIGN
    Temperature = 256 - (UpperByte x 16 + LowerByte / 16);
}
else // $T_A \geq 0°C$
{
    Temperature = (UpperByte x 16 + LowerByte / 16);
    // Temperature = Ambient Temperature (°C)
}
```
FIGURE 5-5: Timing Diagram for Reading +25.25°C Temperature from the T_A Register (see Section 4.0 “Serial Communication”).

Note: It is not necessary to select the Register Pointer if it was set from the previous read/write.
5.1.4 MANUFACTURER ID REGISTER

This register is used to identify the manufacturer of the device in order to perform manufacturer-specific operation. The Manufacturer ID for the MCP9804 is 0x0054 (hexadecimal).

REGISTER 5-5: MANUFACTURER ID REGISTER – READ-ONLY (→ ADDRESS ‘0000 0110’b)

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 15</td>
<td>bit 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-1</th>
<th>R-0</th>
<th>R-1</th>
<th>R-0</th>
<th>R-1</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td>bit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 Device Manufacturer Identification bits

FIGURE 5-6: Timing Diagram for Reading the Manufacturer ID Register (see Section 4.0 “Serial Communication”).
5.1.5 DEVICE ID AND REVISION REGISTER

The upper byte of this register is used to specify the device identification and the lower byte is used to specify the device revision. The Device ID for the MCP9804 is 0x02 (hex).

The revision begins with 0x00 (hex) for the first release, with the number being incremented as revised versions are released.

REGISTER 5-6: DEVICE ID AND DEVICE REVISION – READ-ONLY (→ ADDRESS ‘0000 0111’b)

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-1</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 15</td>
<td>bit 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-1</td>
</tr>
<tr>
<td>Device Revision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td>bit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 15-8 Device ID: Bit 15 to bit 8 are used for device ID
bit 7-0 Device Revision: Bit 7 to bit 0 are used for device revision

Note: It is not necessary to select the Register Pointer if it was set from the previous read/write.

FIGURE 5-7: Timing Diagram for Reading Device ID and Device Revision Register (see Section 4.0 “Serial Communication”).
5.1.6 RESOLUTION REGISTER

This register allows the user to change the sensor resolution (see Section 5.2.4 “Temperature Resolution”). The POR default resolution is +0.0625°C. The selected resolution is also reflected in the Capability register (see Register 5-2).

REGISTER 5-7: RESOLUTION REGISTER (→ ADDRESS ‘0000 1000’b)

<table>
<thead>
<tr>
<th>bit 7-2</th>
<th>bit 1-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimplemented: Read as ‘0’</td>
<td>Resolution bits</td>
</tr>
</tbody>
</table>

- 00 = LSB = +0.5°C (t\text{CONV} = 30 ms typical)
- 01 = LSB = +0.25°C (t\text{CONV} = 65 ms typical)
- 10 = LSB = +0.125°C (t\text{CONV} = 130 ms typical)
- 11 = LSB = +0.0625°C (power-up default, t\text{CONV} = 250 ms typical)

FIGURE 5-8: Timing Diagram for Changing \(T_A \) Resolution to +0.0625°C <0000 0011>b (see Section 4.0 “Serial Communication”).
5.2 SENSOR FEATURE DESCRIPTION

5.2.1 SHUTDOWN MODE
Shutdown mode disables all power consuming activities (including temperature sampling operations) while leaving the serial interface active. This mode is selected by setting bit 8 of CONFIG to ‘1’. In this mode, the device consumes I_{SHDN}. It remains in this mode until bit 8 is cleared to ‘0’ to enable Continuous Conversion mode or until power is recycled.

The Shutdown bit (bit 8) cannot be set to ‘1’ while the CONFIG<7:6> bits (Lock bits) are set to ‘1’. However, it can be cleared to ‘0’ or returned to Continuous Conversion mode while locked.

In Shutdown mode, all registers can be read or written. However, the serial bus activity increases the shutdown current. In addition, if the device is in shutdown while the Alert pin is asserted, the device will retain the active state during shutdown. This increases the shutdown current due to the additional Alert output current.

5.2.2 TEMPERATURE Hysteresis (T_{HYST})
A hysteresis of 0°C, +1.5°C, +3°C or +6°C can be selected for the T_{UPPER}, T_{LOWER} and T_{CRIT} temperate boundaries, using bits 10 and 9 of CONFIG. The hysteresis applies for decreasing temperature only (hot to cold) or as temperature drifts below the specified limit.

The Hysteresis bits can not be changed if either of the Lock bits (CONFIG<7:6>) are set to ‘1’.

The T_{UPPER}, T_{LOWER} and T_{CRIT} boundary conditions are described graphically in Figure 5-10.

5.2.3 ALERT OUTPUT CONFIGURATION
The Alert output can be enabled by using bit 3 of the CONFIG register (Alert Output Control bit) and can be configured as either a comparator output or as an Interrupt Output mode using bit 0 of CONFIG (Alert Output Mode bit). The polarity can also be specified as active-high or active-low using bit 1 of CONFIG (Alert Polarity bit). This is an open-drain output and requires a pull-up resistor.

When the ambient temperature increases above the critical temperature limit, the Alert output is forced to a comparator output (regardless of CONFIG<0>). When the temperature drifts below the critical temperature limit minus hysteresis, the Alert output automatically returns to the state specified by CONFIG<0> bit.

The status of the Alert output can be read using CONFIG<4> (Alert Output Status bit). This bit cannot be set to ‘1’ in Shutdown mode.

Bits 7 and 6 of the CONFIG register can be used to lock the T_{UPPER}, T_{LOWER} and T_{CRIT} registers. These bits prevent false triggers at the Alert output due to an accidental rewrite to these registers.

The Alert output can also be used as a critical temperature output using bit 2 of CONFIG (Alert Output Select bit). When this feature is selected, the Alert output becomes a comparator output. In this mode, the interrupt output configuration (Alert Output Mode bit, CONFIG<0>) is ignored.

5.2.3.1 Comparator Mode
Comparator mode is selected using bit 0 of CONFIG. In this mode, the Alert output is asserted as active-high or active-low, using bit 1 of CONFIG. Figure 5-10 shows the conditions that toggle the Alert output.

If the device enters Shutdown mode with asserted Alert output, the output remains asserted during Shutdown mode. The device must be operating in Continuous Conversion mode for t_{CONV}. The T_A vs. T_{UPPER}, T_{LOWER} and T_{CRIT} boundary conditions need to be satisfied in order for the Alert output to deassert.

Comparator mode is useful for thermostat type applications, such as turning on a cooling fan or triggering a system shutdown when the temperature exceeds a safe operating range.
5.2.3.2 Interrupt Mode

In Interrupt mode, the Alert output is asserted as active-high or active-low (depending on the polarity configuration) when T_A drifts above or below T_{UPPER} and T_{LOWER} limits. The output is deasserted by setting bit 5 (Interrupt Clear bit) of CONFIG. Shutting down the device will not reset or deassert the Alert output. This mode can not be selected when the Alert output is used as a critical temperature output only, using bit 2 of CONFIG.

This mode is designed for interrupt driven microcontroller-based systems. The microcontroller receiving the interrupt will have to Acknowledge the interrupt by setting bit 5 of the CONFIG register from the MCP9804.

5.2.4 TEMPERATURE RESOLUTION

The MCP9804 is capable of providing temperature data with +0.5°C to +0.0625°C resolution. The resolution can be selected using the Resolution register (Register 5-7). It is located at address, '00001000'b, and it provides measurement flexibility. A +0.0625°C resolution is set as a POR default by the factory.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>t_{CONV} (ms)</th>
<th>Samples/sec (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.5°C</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>+0.25°C</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>+0.125°C</td>
<td>130</td>
<td>7</td>
</tr>
<tr>
<td>+0.0625°C</td>
<td>250</td>
<td>4</td>
</tr>
<tr>
<td>(Power-up Default)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-10: Alert Output Conditions.

<table>
<thead>
<tr>
<th>Notes</th>
<th>Alert Output Boundary Conditions</th>
<th>Comparator</th>
<th>Interrupt</th>
<th>Critical</th>
<th>TA Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alert Output (Active-Low/High)</td>
<td></td>
<td></td>
<td></td>
<td>Alert Output (Active-Low/High)</td>
</tr>
<tr>
<td>1</td>
<td>$T_A \geq T_{LOWER}$</td>
<td>High/Low</td>
<td>Low/High</td>
<td>High/Low</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>$T_A < T_{LOWER} - T_{HYST}$</td>
<td>Low/High</td>
<td>Low/High</td>
<td>High/Low</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>$T_A > T_{UPPER}$</td>
<td>Low/High</td>
<td>Low/High</td>
<td>High/Low</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>$T_A \leq T_{UPPER} - T_{HYST}$</td>
<td>High/Low</td>
<td>Low/High</td>
<td>High/Low</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$T_A \geq T_{CRIT}$</td>
<td>Low/High</td>
<td>Low/High</td>
<td>Low/High</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>When $T_A \geq T_{CRIT}$, the Alert output is forced to Comparator mode and the CONFIG<0> (Alert Output Mode bit) is ignored until $T_A < T_{CRIT} - T_{HYST}$. In the Interrupt mode, if the interrupt is not cleared (bit 5 of CONFIG), as shown in the diagram at Note 6, then Alert will remain asserted at Note 7 until the interrupt is cleared by the controller.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$T_A < T_{CRIT} - T_{HYST}$</td>
<td>Low/High</td>
<td>High/Low</td>
<td>High/Low</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. $T_A \geq T_{LOWER}$
2. $T_A < T_{LOWER} - T_{HYST}$
3. $T_A > T_{UPPER}$
4. $T_A \leq T_{UPPER} - T_{HYST}$
5. $T_A \geq T_{CRIT}$
6. When $T_A \geq T_{CRIT}$, the Alert output is forced to Comparator mode and the CONFIG<0> (Alert Output Mode bit) is ignored until $T_A < T_{CRIT} - T_{HYST}$. In the Interrupt mode, if the interrupt is not cleared (bit 5 of CONFIG), as shown in the diagram at Note 6, then Alert will remain asserted at Note 7 until the interrupt is cleared by the controller.
7. $T_A < T_{CRIT} - T_{HYST}$
5.3 Summary of Power-on Default

The MCP9804 has an internal Power-on Reset (POR) circuit. If the power supply voltage, \(V_{DD}\), glitches below the \(V_{POR}\) threshold, the device resets the registers to the power-on default settings.

Table 5-3 shows the power-on default summary for the Temperature Sensor registers.

<table>
<thead>
<tr>
<th>Registers</th>
<th>Default Register Data (Hexadecimal)</th>
<th>Power-Up Default Register Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Register Name</td>
<td></td>
</tr>
<tr>
<td>(Hexadecimal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>CONFIG</td>
<td>0x0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparator Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active-Low Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alert and Critical Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alert Not Asserted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interrupt Cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alert Limits Unlocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical Limit Unlocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous Conversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0°C Hysteresis</td>
</tr>
<tr>
<td>0x02</td>
<td>T_UPPER</td>
<td>0x0000</td>
</tr>
<tr>
<td>0x03</td>
<td>T_LOWER</td>
<td>0x0000</td>
</tr>
<tr>
<td>0x04</td>
<td>T_CRIT</td>
<td>0x0000</td>
</tr>
<tr>
<td>0x05</td>
<td>T_A</td>
<td>0x0000</td>
</tr>
<tr>
<td>0x06</td>
<td>Manufacturer ID</td>
<td>0x0054</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x0054 (hex)</td>
</tr>
<tr>
<td>0x07</td>
<td>Device ID/Device Revision</td>
<td>0x0201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x0201 (hex)</td>
</tr>
<tr>
<td>0x08</td>
<td>Resolution</td>
<td>0x03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x03 (hex)</td>
</tr>
</tbody>
</table>
6.0 APPLICATIONS INFORMATION

6.1 Layout Considerations

The MCP9804 does not require any additional components besides the master controller in order to measure temperature. However, it is recommended that a decoupling capacitor of 0.1 µF to 1 µF be used between the VDD and GND pins. A high-frequency ceramic capacitor is recommended. It is necessary for the capacitor to be located as close as possible to the power and ground pins of the device in order to provide effective noise protection.

In addition, good PCB layout is key for better thermal conduction from the PCB temperature to the sensor die. For good temperature sensitivity, add a ground layer under the device pins, as shown in Figure 6-1.

6.2 Thermal Considerations

A potential for self-heating errors can exist if the MCP9804 SDA, SCL and Event lines are heavily loaded with pull-ups (high current). Typically, the self-heating error is negligible because of the relatively small current consumption of the MCP9804. A temperature accuracy error of approximately +0.5°C could result from self-heating if the communication pins sink/source the maximum current specified.

For example, if the event output is loaded to maximum IOL, Equation 6-1 can be used to determine the effect of self-heating.

EQUATION 6-1: EFFECT OF SELF-HEATING

\[
T_{\Delta} = \theta_{JA}(V_{DD}I_{DD} + V_{OL_Alert}I_{OL_Alert} + V_{OL_SDA}I_{OL_SDA})
\]

Where:

- \(T_{\Delta} \) = Junction Temperature
- \(T_A \) = Ambient Temperature
- \(\theta_{JA} \) = Package Thermal Resistance
- \(V_{OL_Alert, SDA} \) = Alert and SDA Output \(V_{OL} \)
 - \((0.4 \ V_{max}) \)
- \(I_{OL_Alert, SDA} \) = Alert and SDA Output \(I_{OL} \)
 - \((3 \ mA_{max}) \)

At room temperature (\(T_A = +25^\circ C \)) with maximum \(I_{DD} = 500 \ \mu A \) and \(V_{DD} = 3.6V \), the self-heating due to power dissipation \(T_{\Delta} \) is +0.2°C for the DFN-8 package and +0.5°C for the TSSOP-8 package.

![FIGURE 6-1: DFN Package Layout (Top View).](image)
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Legend:

XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
e3 Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

MILLIMETERS

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.50 BSC</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
<td>0.20 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>2.00 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>3.00 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>1.30</td>
<td>–</td>
<td>1.55</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>1.50</td>
<td>–</td>
<td>1.75</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
<td>0.20</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing D04-123C
8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>W2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>T2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
MCP9804

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>ϕ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2
MCP9804

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch E</td>
<td>0.85 BSC</td>
</tr>
<tr>
<td>Contact Pad Spacing C</td>
<td>4.40</td>
</tr>
<tr>
<td>Overall Width Z</td>
<td>5.85</td>
</tr>
<tr>
<td>Contact Pad Width (X8) X1</td>
<td>0.45</td>
</tr>
<tr>
<td>Contact Pad Length (X8) Y1</td>
<td>1.45</td>
</tr>
<tr>
<td>Distance Between Pads G1</td>
<td>2.95</td>
</tr>
<tr>
<td>Distance Between Pads GX</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A
Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Company’s customer, for use solely and exclusively with products manufactured by the Company. The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX A: SOURCE CODE

/**
 FileName: I2C.c
 Processor: PIC18 Microcontrollers
 Compiler: Microchip C18 (for PIC18) or C30 (for PIC24)
 Company: Microchip Technology, Inc.

 #include <p18cxxx.h> // This code is developed for PIC18F2550
 //It can be modified to be used with any PICmicro with MSSP module

 /** PRIVATE PROTOTYPES **/
 void i2c_init(void);
 void i2c_start(void);
 void i2c_repStart(void);
 void i2c_stop(void);
 unsigned char i2c_write(unsigned char i2cWriteData);
 unsigned char i2c_read(unsigned char ack);

 /**
 * Function Name: i2c_init
 * Return Value: void
 * Parameters: Enable SSP
 * Description: This function sets up the SSP1 module on a
 * PIC18CXXX device for use with a Microchip I2C
 **/
 void i2c_init(void) {
 TRISBbits.TRISB0 = 1; // Digital Output (make it input only when reading data)
 TRISBbits.TRISB1 = 1; // Digital Output
 SSPCON1 = 0x28; // enable I2C Master mode
 SSPCON2 = 0x00; // clear control bits
 SSPSTAT = 0x80; // disable slew rate control; disable SMBus
 SSPADD = 19; // set baud rate to 100 kHz (Fosc = 48 MHz)
 PIR1bits.SSPIF = 0;
 PIR2bits.BCLIF = 0;
 SSPCON2bits.SEN = 0; // force idle condition
 }

}
/**
* Function Name: i2c_start
* Return Value: void
* Parameters: void
* Description: Send I2C Start Command
 **/
void i2c_start(void) {
 PIR1bits.SSPIF = 0; //clear flag
 while (SSPSTATbits.BF); // wait for idle condition
 SSPCON2bits.SEN = 1; // initiate START condition
 while (!PIR1bits.SSPIF) ; // wait for a flag to be set
 PIR1bits.SSPIF = 0; // clear flag
}

/**
* Function Name: i2c_repStart
* Return Value: void
* Parameters: void
* Description: Resend I2C Start Command
 **/
void i2c_repStart(void) {
 PIR1bits.SSPIF = 0; //clear flag
 while (SSPSTATbits.BF); // wait for idle condition
 SSPCON2bits.RSEN = 1; // initiate Repeated START condition
 while (!PIR1bits.SSPIF) ; // wait for a flag to be set
 PIR1bits.SSPIF = 0; // clear flag
}

/**
* Function Name: i2c_stop
* Return Value: void
* Parameters: void
* Description: Send I2C Stop command
 **/
void i2c_stop(void) {
 PIR1bits.SSPIF = 0; //clear flag
 while (SSPSTATbits.BF); // wait for idle condition
 SSPCON2bits.PEN = 1; // Initiate STOP condition
 while (!PIR1bits.SSPIF) ; // wait for a flag to be set
 PIR1bits.SSPIF = 0; // clear flag
}
/**
 * Function Name: i2c_write
 * Return Value: Status byte for WCOL detection.
 * Parameters: Single data byte for I2C2 bus.
 * Description: This routine writes a single byte to the I2C2 bus.
 */
unsigned char i2c_write(unsigned char i2cWriteData) {
 PIR1bits.SSPIF = 0; // clear interrupt
 while (SSPSTATbits.BF) ; // wait for idle condition
 SSPBUF = i2cWriteData; // Load SSPBUF with i2cWriteData (the value to be transmitted)
 while (!PIR1bits.SSPIF) ; // wait for a flag to be set
 PIR1bits.SSPIF = 0; // clear flag
 return (!SSPCON2bits.ACKSTAT); // function returns '1' if transmission is acknowledged
}

/**
 * Function Name: i2c_read
 * Return Value: contents of SSP2BUF register
 * Parameters: ack = 1 and nak = 0
 * Description: Read a byte from I2C bus and ACK/NAK device
 */
unsigned char i2c_read(unsigned char ack) {
 unsigned char i2cReadData;
 PIR1bits.SSPIF = 0;// clear interrupt
 while (SSPSTATbits.BF) ; // wait for idle condition
 SSPCON2bits.RCEN = 1; // enable receive mode
 while (!PIR1bits.SSPIF) ; // wait for a flag to be set
 PIR1bits.SSPIF = 0; // clear flag
 i2cReadData = SSPBUF; // Read SSPBUF and put it in i2cReadData
 if (ack) { // if ack=1
 SSPCON2bits.ACKDT = 0; // then transmit an Acknowledge
 } else { // otherwise transmit a Not Acknowledge
 SSPCON2bits.ACKDT = 1;
 }
 SSPCON2bits.ACKEN = 1; // send acknowledge sequence
 while (!PIR1bits.SSPIF) ; // wait for a flag to be set
 PIR1bits.SSPIF = 0; // clear flag
 return(i2cReadData); // return the value read from SSPBUF
}
APPENDIX B: REVISION HISTORY

Revision C (January 2012)
The following is the list of modifications:
1. Typographical edits were made to the “Digital Input/Output Pin Characteristics” table.
2. The “Sensor Serial Interface Timing Specifications” table is updated with the 400 kHz timing specification.
3. Added typical specifications for accuracy drift and repeatability.

Revision B (December 2009)
The following is the list of modifications:
1. Updated the resolution parameter in the “Temperature Sensor DC Characteristics” table.
2. Updated Figure 5-7.
3. Updated Figure 5-10.
4. Updated Source Code in Appendix A.

Revision A (September 2009)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>-X</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td>Tape and Reel</td>
<td>and/or Alternate Pinout</td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>MC = Plastic Dual Flat No-Lead (DFN) 2x3, 8-lead</td>
<td>MS = Plastic Micro Small Outline (MSOP), 8-lead</td>
<td></td>
</tr>
</tbody>
</table>

Device: MCP9804: Digital Temperature Sensor
MCP9804T: Digital Temperature Sensor (Tape and Reel)

Temperature Range: E = -40°C to +125°C

Examples:

a) MCP9804-E/MC: Extended Temperature, 8LD DFN package
b) MCP9804-E/MS: Extended Temperature, 8LD MSOP package
c) MCP9804T-E/MC: Tape and Reel, Extended Temperature, 8LD DFN package
d) MCP9804T-E/MS: Tape and Reel, Extended Temperature, 8LD MSOP package.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8596-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

11/29/11