Features:

- Ideally suited to drive low Figure-of-Merit (FOM) MOSFETs such as Microchip’s MCP87000 MOSFET family
- Independent PWM Input Control for High-Side and Low-Side Gate Drive
- Input Logic Level Threshold 3.0V TTL Compatible
- Dual Output MOSFET Drive for Synchronous Applications
- High Peak Output Current: 2A (typical)
- Internal Bootstrap Blocking Device
- +36V BOOT Pin Maximum Rating
- Low Supply Current: 45 µA (typical)
- High Capacitive Load Drive Capability:
 - 3300 pF in 10.0 ns (typical)
- Input Voltage Undervoltage Lockout Protection
- Overtemperature Protection
- Space Saving Packages:
 - 8-Lead SOIC
 - 8-Lead 3x3 DFN

Applications:

- 3-Phase BLDC Motor Control
- High Efficient Synchronous DC/DC Buck Converters
- High-Current Low Output Voltage Synchronous DC/DC Buck Converters
- High Input Voltage Synchronous DC/DC Buck Converters
- Core Voltage Supplies for Microprocessors

General Description:

The MCP14700 is a high-speed synchronous MOSFET driver designed to optimally drive a high-side and low-side N-Channel MOSFET. It is particularly well suited for driving low-FOM MOSFETs, including Microchip’s MCP87000 family of high-speed MOSFETs. The MCP14700 has two PWM inputs to allow independent control of the external N-Channel MOSFETs. Since there is no internal cross conduction protection circuitry the external MOSFET dead time can be tightly controlled allowing for more efficient systems or unique motor control algorithms.

The transition thresholds for the PWM inputs are typically 1.6V on a rising PWM input signal and typically 1.2V on a falling PWM input signal. This makes the MCP14700 ideally suited for controllers that utilize 3.0V TTL/CMOS logic. The PWM inputs are internally pulled low ensuring the output drive signals are low if the inputs are floating.

The HIGHDR and LOWDR peak source current capability of the MCP14700 device is typically 2A. While the HIGHDR can sink 2A peak typically, the LOWDR can sink 3.5A peak typically. The low resistance pull-up and pull-down drive allow the MCP14700 to quickly transition a 3300 pF load in typically 10 ns. Bootstrapping for the high-side drive is internally implemented which allows for a reduced system cost and design complexity.

The MCP14700 features undervoltage lockout (UVLO) with a typical hysteresis of 500 mV. Overtemperature protection with hysteresis is also featured on the device.

Package Types

MCP14700

SOIC

PHASE 1

PWMHi 2

PWMLO 3

GND 4

HIGHDR 6

BOOT 7

VCC 8

LOWDR 5

MCP14700

3x3 DFN*

PHASE 1

PWMHi 2

PWMLO 3

GND 4

HIGHDR 6

BOOT 7

VCC 8

LOWDR 5

* Includes Exposed Thermal Pad (EP); see Table 3-1.
Typical Application Schematic

Synchronous Buck Application

V\text{CC} = 5.0V

CURRENT SENSE

dsPIC33FJ06GS101

PWM1L AN0

PWM1H AN1

CURRENT SENSE

3-Phase BLDC Motor Control Application

V\text{CC}

PWM1

PWM2

PWM3

PWM4

PWM5

PWM6

V\text{REF}

dsPIC®
Functional Block Diagram

```
[Diagram showing MCP14700 circuitry with labels: VCC, BOOT, HIGHDR, PHASE, LOWDR, PWM_HI, PWM_LO, GND, Input Circuitry, Logic, Level Shift, Protection Circuitry.]
```
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>V_CC</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Bias Supply Voltage</td>
<td>I_VCC</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>µA</td>
</tr>
<tr>
<td>UVLO (Rising VCC)</td>
<td>V_UVLO</td>
<td>—</td>
<td>3.50</td>
<td>4.00</td>
<td>V</td>
</tr>
<tr>
<td>UVLO Hysteresis</td>
<td>V_HYS</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td>PWM Input Current</td>
<td>I_PWM</td>
<td>—</td>
<td>7.0</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>PWMHI Rising Threshold</td>
<td>PWMHIPHI</td>
<td>1.40</td>
<td>1.60</td>
<td>1.80</td>
<td>V</td>
</tr>
<tr>
<td>PWMLO Rising Threshold</td>
<td>PWMLO</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
<td>V</td>
</tr>
<tr>
<td>PWM Input Hysteresis</td>
<td>PWMHYS</td>
<td>—</td>
<td>400</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td>Output Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage (HIGHDR and LOWDR)</td>
<td>V_OH</td>
<td>V_CC - 0.025</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Low Output Voltage (HIGHDR and LOWDR)</td>
<td>V_OH</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V</td>
</tr>
<tr>
<td>High Drive Source Resistance</td>
<td>R_HI_SRC</td>
<td>—</td>
<td>1.0</td>
<td>2.5</td>
<td>Ω</td>
</tr>
<tr>
<td>High Drive Sink Resistance</td>
<td>R_HI_SINK</td>
<td>—</td>
<td>1.0</td>
<td>2.5</td>
<td>Ω</td>
</tr>
<tr>
<td>High Drive Source Current</td>
<td>I_HI_SRC</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>A</td>
</tr>
<tr>
<td>High Drive Sink Current</td>
<td>I_HI_SINK</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>A</td>
</tr>
<tr>
<td>Low Drive Source Resistance</td>
<td>R_LO_SRC</td>
<td>—</td>
<td>1.0</td>
<td>2.5</td>
<td>Ω</td>
</tr>
<tr>
<td>Low Drive Sink Resistance</td>
<td>R_LO_SINK</td>
<td>—</td>
<td>0.5</td>
<td>1.0</td>
<td>Ω</td>
</tr>
<tr>
<td>Low Drive Source Current</td>
<td>I_LO_SRC</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>A</td>
</tr>
<tr>
<td>Low Drive Sink Current</td>
<td>I_LO_SINK</td>
<td>—</td>
<td>3.5</td>
<td>—</td>
<td>A</td>
</tr>
</tbody>
</table>

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, V_CC = 5.0V, T_J = -40°C to +125°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC Supply Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC Operating Range</td>
<td>V_CC</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
<td>PWM_HI and PWM_LO pin floating</td>
</tr>
<tr>
<td>Bias Supply Voltage</td>
<td>I_VCC</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>UVLO (Rising VCC)</td>
<td>V_UVLO</td>
<td>—</td>
<td>3.50</td>
<td>4.00</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>UVLO Hysteresis</td>
<td>V_HYS</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>PWM Input Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM Input Current</td>
<td>I_PWM</td>
<td>—</td>
<td>7.0</td>
<td>10</td>
<td>µA</td>
<td>V_PWM = 3.0V</td>
</tr>
<tr>
<td>PWMHI Rising Threshold</td>
<td>PWMHIPHI</td>
<td>1.40</td>
<td>1.60</td>
<td>1.80</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>PWMLO Rising Threshold</td>
<td>PWMLO</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>PWM Input Hysteresis</td>
<td>PWMHYS</td>
<td>—</td>
<td>400</td>
<td>—</td>
<td>mV</td>
<td>V_CC = 5.0V</td>
</tr>
<tr>
<td>Output Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage (HIGHDR and LOWDR)</td>
<td>V_OH</td>
<td>V_CC - 0.025</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low Output Voltage (HIGHDR and LOWDR)</td>
<td>V_OH</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High Drive Source Resistance</td>
<td>R_HI_SRC</td>
<td>—</td>
<td>1.0</td>
<td>2.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>High Drive Sink Resistance</td>
<td>R_HI_SINK</td>
<td>—</td>
<td>1.0</td>
<td>2.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>High Drive Source Current</td>
<td>I_HI_SRC</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>High Drive Sink Current</td>
<td>I_HI_SINK</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Low Drive Source Resistance</td>
<td>R_LO_SRC</td>
<td>—</td>
<td>1.0</td>
<td>2.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Low Drive Sink Resistance</td>
<td>R_LO_SINK</td>
<td>—</td>
<td>0.5</td>
<td>1.0</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Low Drive Source Current</td>
<td>I_LO_SRC</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Low Drive Sink Current</td>
<td>I_LO_SINK</td>
<td>—</td>
<td>3.5</td>
<td>—</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Parameter ensured by characterization, not production tested.

2: See Figure 4-1 and Figure 4-2 for parameter definition.
DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, \(V_{CC} = 5.0\) V, \(T_J = -40^\circ\)C to +125°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HighDR Rise Time</td>
<td>(t_{RH})</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>LowDR Rise Time</td>
<td>(t_{RL})</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>HighDR Fall Time</td>
<td>(t_{FH})</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>LowDR Fall Time</td>
<td>(t_{FL})</td>
<td>—</td>
<td>6.0</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>HighDR Turn-off Propagation Delay</td>
<td>(t_{PD_{DLH}})</td>
<td>20</td>
<td>27</td>
<td>36</td>
<td>ns</td>
<td>No Load, Note 1, Note 2</td>
</tr>
<tr>
<td>LowDR Turn-off Propagation Delay</td>
<td>(t_{PD_{DLL}})</td>
<td>10</td>
<td>17</td>
<td>25</td>
<td>ns</td>
<td>No Load, Note 1, Note 2</td>
</tr>
<tr>
<td>HighDR Turn-on Propagation Delay</td>
<td>(t_{PD_{DHH}})</td>
<td>20</td>
<td>27</td>
<td>36</td>
<td>ns</td>
<td>No Load, Note 1, Note 2</td>
</tr>
<tr>
<td>LowDR Turn-on Propagation Delay</td>
<td>(t_{PD_{DHL}})</td>
<td>10</td>
<td>17</td>
<td>25</td>
<td>ns</td>
<td>No Load, Note 1, Note 2</td>
</tr>
</tbody>
</table>

Protection Requirements

| Thermal Shutdown | \(T_{SHDN} \) | — | 147 | — | °C | Note 1 |
| Thermal Shutdown Hysteresis | \(T_{SHDN_HYS} \) | — | 20 | — | °C | Note 1 |

Note 1: Parameter ensured by characterization, not production tested.

Note 2: See Figure 4-1 and Figure 4-2 for parameter definition.

TEMPERATURE CHARACTERISTICS

Unless otherwise noted, all parameters apply with \(V_{CC} = 5.0\) V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>(T_J)</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_A)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-3x3 DFN</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>°C/W</td>
<td>Typical four-layer board with vias to ground plane</td>
</tr>
<tr>
<td></td>
<td>(\theta_{JC})</td>
<td>—</td>
<td>12</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>163</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\theta_{JC})</td>
<td>—</td>
<td>42</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $V_{CC} = 5.0$V.

FIGURE 2-1: Rise Time vs. Capacitive Load.

FIGURE 2-2: HIGHDR Rise and Fall Time vs. Temperature.

FIGURE 2-3: HIGHDR Propagation Delay vs. Temperature.

FIGURE 2-4: Fall Time vs. Capacitive Load.

FIGURE 2-5: LOWDR Rise and Fall Time vs. Temperature.

FIGURE 2-6: LOWDR Propagation Delay vs. Temperature.
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $V_{CC} = 5.0V$.

FIGURE 2-7: Supply Current vs. Frequency.

FIGURE 2-8: Supply Current vs. Temperature.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE</td>
<td>Switch Node</td>
</tr>
<tr>
<td>PWM_H</td>
<td>High-Side PWM Control Input Signal</td>
</tr>
<tr>
<td>PWM_L</td>
<td>Low-Side PWM Control Input Signal</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>LOWDR</td>
<td>Low-side Gate Drive</td>
</tr>
<tr>
<td>V_CC</td>
<td>Supply Input Voltage</td>
</tr>
<tr>
<td>BOOT</td>
<td>Floating Bootstrap Supply</td>
</tr>
<tr>
<td>HIGHDR</td>
<td>High-Side Gate Drive</td>
</tr>
<tr>
<td>EP</td>
<td>Exposed Metal Pad</td>
</tr>
</tbody>
</table>

3.1 Switch Node (PHASE)

The PHASE pin provides a return path for the high-side gate driver. The source of the high-side and the drain of the low-side power MOSFETs are connected to this pin.

3.2 High-Side PWM Control Input Signal (PWM_H)

The PWM input signal to control the high-side power MOSFET is applied to the PWM_H pin. A logic high on the PWM_H pin causes the HIGHDR pin to also transition high.

3.3 Low-Side PWM Control Input Signal (PWM_L)

The PWM input signal to control the low-side power MOSFET is applied to the PWM_L pin. A logic high on the PWM_L pin causes the LOWDR pin to also transition high.

3.4 Ground (GND)

The GND pin provides ground for the MCP14700 circuitry. It should have a low-impedance connection to the bias supply source return. High peak currents will flow out the GND pin when the low-side power MOSFET is being turned off.

3.5 Low-side Gate Drive (LOWDR)

The LOWDR pin provides the gate drive signal to control the low-side power MOSFET. The gate of the low-side power MOSFET is connected to this pin.

3.6 Supply Input Voltage (V_CC)

The V_CC pin provides bias to the MCP14700 device. A bypass capacitor is to be placed between this pin and the GND pin. This capacitor should be placed as close to the MCP14700 as possible.

3.7 Floating Bootstrap Supply (BOOT)

The BOOT pin is the floating bootstrap supply pin for the high-side gate drive. A capacitor is connected between this pin and the PHASE pin to provide the necessary charge to turn on the high-side power MOSFET.

3.8 High-Side Gate Drive (HIGHDR)

The HIGHDR pin provides the gate drive signal to control the high-side power MOSFET. The gate of the high-side power MOSFET is connected to this pin.

3.9 Exposed Metal Pad (EP)

The exposed metal pad of the DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board to aid in heat removal from the package.
4.0 DETAILED DESCRIPTION

4.1 Device Overview

The MCP14700 is a synchronous MOSFET driver with dual independent PWM inputs capable of controlling both a ground referenced and floating N-Channel MOSFET. The PWM input threshold levels are truly 3.0V logic tolerant and have 400 mV of typical hystereses making the MCP14700 ideal for use with low-voltage controllers.

The MCP14700 is capable of suppling 2A (typical) peak current to the floating high-side MOSFET that is connected to the HIGHDR. With the exception of a capacitor, all of the circuitry needed to drive this high-side N-channel MOSFET is internal to the MCP14700. A blocking device is placed between the VCC and BOOT pins that allows the bootstrap capacitor to be charged to VCC when the low-side power MOSFET is conducting. Refer to the application section, Section 5.1 "Bootstrap Capacitor Select", for information on determining the proper size of the bootstrap capacitor. The HIGHDR is also capable of sinking 2A (typical) peak current.

The LOWDR is capable of sourcing 2A (typical) peak current and sinking 3.5A (typical) peak current. This helps ensure that the low-side MOSFET stays turned off during the high dv/dt of the PHASE node.

4.2 PWM Inputs

A logic high on either PWM pin causes the corresponding output drive signal to be high. See Figure 4-1 and Figure 4-2 for a graphical representation of the MCP14700 operation. Internally the PWM pins are pulled to ground to ensure there is no drive signal to the external MOSFETs if the pins are left floating. For reliable operation, it is recommended that the rising and falling slew rate of the PWM signal be faster than 1V/50 ns.

When designing with the MCP14700 in applications where cross conduction of the external MOSFETs is not desired, care must be taken to ensure the PWM inputs have the proper timing. There is no internal cross conduction protection in the MCP14700.

4.3 Under Voltage Lockout (UVLO)

The UVLO feature of the MCP14700 does not allow the HIGHDR or LOWDR output to function when the input voltage, VCC, is below the UVLO threshold regardless of the state of the PWMHI and PWMLO pins.

Once VCC reaches the UVLO threshold, the HIGHDR and LOWDR outputs will respond to the state of the PWMHI or PWMLO pins. There is a 500 mV hystereses on the UVLO threshold.

4.4 Overtemperature Protection

The MCP14700 is protected from an overtemperature condition by an internal thermal shutdown feature. When the internal temperature of the MCP14700 reaches 147°C typically, the HIGHDR and LOWDR outputs will transition to a low state regardless of the state of the PWMHI or PWMLO pins. Once the internal temperature is reduced by 20°C typically, the MCP14700 will automatically respond to the states of the PWMHI and PWMLO pins.

4.5 Timing Diagram

The PWM signal applied to the MCP14700 is supplied by a controller IC. The timing diagram in Figure 4-1 graphically depicts the PWM signal and the output signals of the MCP14700.

![MCP14700 LOWDR Timing Diagram](image-url)
FIGURE 4-2: MCP14700 HIGHDR Timing Diagram.
5.0 APPLICATION INFORMATION

5.1 Bootstrap Capacitor Select

The selection of the bootstrap capacitor is based upon the total gate charge of the high-side power MOSFET and the allowable droop in gate drive voltage while the high-side power MOSFET is conducting.

EQUATION 5-1:

\[C_{BOOT} \geq \frac{Q_{GATE}}{\Delta V_{DROOP}} \]

Where:
- \(C_{BOOT} \) = Bootstrap capacitor value
- \(Q_{GATE} \) = Total gate charge of the high-side MOSFET
- \(\Delta V_{DROOP} \) = Allowable gate drive voltage droop

For example:
- \(Q_{GATE} = 30 \text{ nC} \)
- \(\Delta V_{DROOP} = 200 \text{ mV} \)
- \(C_{BOOT} \geq 0.15 \text{ uF} \)

A low ESR ceramic capacitor is recommended with a maximum voltage rating that exceeds the maximum input voltage, \(V_{CC} \), plus the maximum supply voltage, \(V_{SUPPLY} \). It is also recommended that the capacitance of \(C_{BOOT} \) does not exceed 1.2 uF.

5.2 Decoupling Capacitor

Proper decoupling of the MCP14700 is highly recommended to help ensure reliable operation. This decoupling capacitor should be placed as close to the MCP14700 as possible. The large currents required to quickly charge the capacitive loads are provided by this capacitor. A low ESR ceramic capacitor is recommended.

5.3 Power Dissipation

The power dissipated in the MCP14700 consists of the power loss associated with the quiescent power and the gate charge power.

The quiescent power loss can be calculated by the following equation and is typically negligible compared to the gate drive power loss.

EQUATION 5-2:

\[P_Q = I_{VCC} \times V_{CC} \]

Where:
- \(P_Q \) = Quiescent power loss
- \(I_{VCC} \) = No Load Bias Current
- \(V_{CC} \) = Bias Voltage

The main power loss occurs from the gate charge power loss. This power loss can be defined in terms of both the high-side and low-side power MOSFETs.

EQUATION 5-3:

\[P_{GATE} = P_{HIGHDR} + P_{LOWDR} \]
\[P_{HIGHDR} = V_{CC} \times Q_{HIGH} \times F_{SW} \]
\[P_{LOWDR} = V_{CC} \times Q_{LOW} \times F_{SW} \]

Where:
- \(P_{GATE} \) = Total Gate Charge Power Loss
- \(P_{HIGHDR} \) = High-Side Gate Charge Power Loss
- \(P_{LOWDR} \) = Low-Side Gate Charge Power Loss
- \(V_{CC} \) = Bias Supply Voltage
- \(Q_{HIGH} \) = High-Side MOSFET Total Gate Charge
- \(Q_{LOW} \) = Low-Side MOSFET Total Gate Charge
- \(F_{SW} \) = Switching Frequency
5.4 PCB Layout

Proper PCB layout is important in a high current, fast switching circuit to provide proper device operation. Improper component placement may cause errant switching, excessive voltage ringing, or circuit latch-up. There are two important states of the MCP14700 outputs, high and low. Figure 5-1 depicts the current flow paths when the outputs of the MCP14700 are high and the power MOSFETs are turned on. The charge needed to turn on the low-side power MOSFET comes from the decoupling capacitor C_{VCC}. The current flows from this capacitor through the internal LOWDR circuitry, into the gate of the low-side power MOSFET, out the source, into the ground plane, and back to C_{VCC}. To reduce any excess voltage ringing or spiking, the inductance and area of this current loop must be minimized.

![Figure 5-1: Turn On Current Paths.](image)

The charge needed to turn on the high-side power MOSFET comes from the bootstrap capacitor C_{BOOT}. Current flows from C_{BOOT} through the internal HIGHDR circuitry, into the gate of the high-side power MOSFET, out the source and back to C_{BOOT}. The printed circuit board traces that construct this current loop need to have a small area and low inductance. To control the inductance, short and wide traces must be used.

![Figure 5-2: Turn Off Current Paths.](image)

The following recommendations should be followed for optimal circuit performance:

- The components that construct the high current paths previously mentioned should be placed close the MCP14700 device. The traces used to construct these current loops should be wide and short to keep the inductance and impedance low.
- A ground plane should be used to keep both the parasitic inductance and impedance minimized. The MCP14700 device is capable of sourcing and sinking high peaks current and any extra parasitic inductance or impedance will result in non-optimal performance.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

- **XX...X**: Customer-specific information
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week ‘01’)
- **NNN**: Alphanumeric traceability code
- **Pb-free JEDEC designator for Matte Tin (Sn)**
- **Note**: Applies to 8-Lead 3x3 DFN
- *****: This package is Pb-free. The Pb-free JEDEC designator (e³) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

Example: 8-Lead DFN (3x3)

<table>
<thead>
<tr>
<th>Device</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP14700</td>
<td>DABR</td>
</tr>
</tbody>
</table>

8-Lead SOIC (150 mil)

Example: 8-Lead DFN (3x3)
MCP14700

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated
4. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-062C Sheet 2 of 2
8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN NOM</td>
</tr>
<tr>
<td>Contact Pitch E</td>
<td>0.65 BSC</td>
</tr>
<tr>
<td>Optional Center Pad Width W2</td>
<td>2.40</td>
</tr>
<tr>
<td>Optional Center Pad Length T2</td>
<td>1.55</td>
</tr>
<tr>
<td>Contact Pad Spacing C1</td>
<td>3.10</td>
</tr>
<tr>
<td>Contact Pad Width (X8) X1</td>
<td>0.35</td>
</tr>
<tr>
<td>Contact Pad Length (X8) Y1</td>
<td>0.65</td>
</tr>
<tr>
<td>Distance Between Pads G</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2062B
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td>1.27 BSC</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td>5.40</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
<td>1.55</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A
APPENDIX A: REVISION HISTORY

Revision B (January 2013)

The following is the list of modifications:
1. Updated the Features: list on page 1.
2. Updated the Typical Application Schematic.

Revision A (September 2009)

• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td>E = -40°C to +125°C (Extended)</td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) MCP14700-E/MF: Extended Temperature, 8LD DFN package.
b) MCP14700T-E/MF: Tape and Reel, Extended Temperature, 8LD DFN package.
a) MCP14700-E/SN: Extended Temperature, 8LD SOIC package.
b) MCP14700T-E/SN: Tape and Reel, Extended Temperature, 8LD SOIC package.

Device: MCP14700: Dual Input Synchronous MOSFET Driver
 MCP14700T: Dual Input Synchronous MOSFET Driver - Tape and Reel (DFN and SOIC)

Temperature Range: E = -40°C to +125°C (Extended)

Package: MF = Plastic Dual Flat, No Lead (3x3 DFN), 8-lead
 SN = Plastic Small Outline, (3.90 mm), 8-lead
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MFP, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rFLAB, Select Mode, SIG, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769782

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC\textregistered MCUs and dsPIC\textregistered DSCs, Keeloo\textregistered code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kwoloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9866-6733
Fax: 61-2-9866-8755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8865-5511
Fax: 86-28-8865-7889

China - Chongqing
Tel: 86-23-8890-9588
Fax: 86-23-8890-9900

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-23881338
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

11/29/12