MCP2036

Inductive Sensor Analog Front End Device

Features
- Complete Inductance Measurement System:
 - Low-Impedance Current Driver
 - Sensor/Reference Coil Multiplexer
 - High-Frequency Detector
- Operating Voltage: 2.7 to 5.5V
- Low-Power Standby Mode
- Gain and Frequency set by external passive components

Typical Applications
- Harsh environment inductive keyboards
- Inductive rotational sensor interface
- Inductive displacement sensor interface
- Inductive force sensor interface

Description
The MCP2036 Inductive Sensor Analog Front End (AFE) combines all the necessary analog functions for a complete inductance measurement system.

The device includes:
- High-frequency, current-mode coil driver for exciting the sensor coil.
- Synchronous detector for converting AC sense voltages into DC levels.
- Output amplifier/filter to improve resolution and limit noise.
- Virtual ground reference generator for single supply operation.

The device is available in 14-pin PDIP, SOIC and 16-pin QFN packages:

Package Types

<table>
<thead>
<tr>
<th>MCP2036 14-pin PDIP, SOIC</th>
<th>MCP2036 16-pin QFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREF 1</td>
<td>VREF 1</td>
</tr>
<tr>
<td>LREF 2</td>
<td>VDET+ 14</td>
</tr>
<tr>
<td>LBTN 3</td>
<td>VDET- 13</td>
</tr>
<tr>
<td>VDD 4</td>
<td>VDETOUT 12</td>
</tr>
<tr>
<td>DRVOUT 5</td>
<td>VSS 11</td>
</tr>
<tr>
<td>DRVIN 6</td>
<td>Reserved 10</td>
</tr>
<tr>
<td>CLK 7</td>
<td>CS 9</td>
</tr>
<tr>
<td></td>
<td>REFSEL 8</td>
</tr>
</tbody>
</table>

© 2009 Microchip Technology Inc. DS22186A-page 1
1.0 FUNCTIONAL DESCRIPTION

The MCP2036 measures a sensor coil's impedance by exciting the coil with a pulsed DC current and measuring the amplitude of the resulting AC voltage waveform. The drive current is generated by the on-chip current amplifier/driver which takes the high-frequency triangular waveform present on the DRVIN input, and amplifies it into the pulsed DC current for exciting the series combination of the sensor coils. The AC voltages generated across the coils, are then capacitively coupled into the LBTN and LREF inputs. An input resistance of 2K between the inputs and the virtual ground offsets the AC input voltages up to the signal ground generated by the reference voltage generator, as shown in Figure 1-1.

FIGURE 1-1: MCP2036 Block Diagram
The coil voltages are then multiplexed into the Synchronous Detector section by the LBTN/LREF multiplexer. This allows the microcontroller to select which signal is sampled by the detector. The detector converts the coil voltages into a DC level using a frequency mixer, amplifier, and filter.

The mixer is composed of two switches driven by the clock present on the CLK signal input. The switches toggle the amplifier/filter between an inverting and non-inverting topology, at a rate equal to the clock input frequency. This inverts and amplifies the negative side of the signal, while amplifying the positive side. The result is a pulsed DC signal with a peak voltage, proportional to the amplitude of the AC coil voltage.

The gain of the detector is set by two pairs of resistors; one pair are the internal fixed series resistors between the frequency mixer and the amplifier. The second resistor pair are the two external gain set resistors (R_GAIN). The two capacitors (C_FILTER) in parallel with the external gain setting resistors form a low pass filter which converts the pulsed DC output signal into a smooth DC voltage which is proportional to the AC sensor voltage input. The output of the system is present on the V_DETOUT pin, which drives the microcontroller’s ADC input for conversion into a digital value.

The virtual ground reference for the detector/amplifier is generated by a second internal op amp which produces a virtual ground equal to \(\frac{1}{2} \) the supply voltage. The virtual ground is available externally at the VREF output and used internally throughout the detector circuit, allowing single supply operation. A small external capacitance is required to stabilize this output and limit noise.
1.1 Coil Driver

The coil driver produces the excitation current for the sensor coils.

The coil driver input is derived from the digital clock supplied to the CLK input. The digital signal is first filtered through a low-pass filter, composed of R_{IN} and C_{IN}, and passed to the DRVIN input. The driver will create a triangular current in phase and proportional with the input voltage. Because the digital drive into the R_{IN}-C_{IN} filter has a 50% duty cycle, the voltage on the DRVIN input will be centered at $V_{DD}/2$. The relationship between voltage, current, inductance and frequency is shown in Equation 1-1.

EQUATION 1-1:

\[
\Delta V_{OUT} = (\Delta I_{DRV} \cdot L_{COIL} \cdot 2 \cdot F_{DRV})
\]

V_{OUT}: Pulsed Output Voltage
ΔI_{DRV}: AC Drive Current Amplitude
F_{DRV}: AC Drive Current Frequency
L_{COIL}: Inductance of the Sensor Coil

Note: These equations assume a 50% duty cycle.

1.2 Synchronous Detector and Output Amplifier

The Synchronous Detector has two inputs, LREF and LBTN, selectable by REFSEL. This routes either signal into the frequency mixer of the detector. The frequency mixer then converts the AC waveform into a pulsed DC signal which is amplified and filtered.

The gain of the amplifier is user-settable, using an external resistor, R_{GAIN} (see Equation 1-2).

EQUATION 1-2:

\[
Gain \sim R_{GAIN}/10k\text{Ohm}
\]

An ADC plus firmware algorithm then digitizes the detector output voltage and uses the resulting data to detect a key press event.

Note: The output amplifier/filter uses a differential connection, so its output is centered to V_{REF} ($V_{DD}/2$). The amplitude of the detected signal should be calculated as the difference between voltages at the output of the detector and the reference voltage.

1.3 Virtual Ground Voltage Reference Circuit

To create both an inverting and non-inverting amplifier topology, a pseudo split supply design is required. To generate the dual supplies required, a rail splitter is included, which generates the virtual ground by creating a voltage output at $V_{DD}/2$. The output is used by the external passive network of the Detector/Amplifier section as a reference on the non-inverting input. A bypass capacitor of 0.1μF is required to ensure the stability of the output. For reference accuracy, no more than 3mA should be supplied to, or drawn from the reference output pin.
2.0 PIN DESCRIPTION

Descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pad Name</th>
<th>Pin Number</th>
<th>I/O</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 Pins</td>
<td>16</td>
<td>OUT</td>
<td>AN Voltage Reference</td>
</tr>
<tr>
<td>VREF</td>
<td>1</td>
<td>16</td>
<td>OUT</td>
<td>AN Voltage Reference</td>
</tr>
<tr>
<td>LREF</td>
<td>2</td>
<td>1</td>
<td>IN</td>
<td>AN Reference Inductor Input</td>
</tr>
<tr>
<td>LBTN</td>
<td>3</td>
<td>2</td>
<td>IN</td>
<td>AN Active Inductor Input</td>
</tr>
<tr>
<td>VDD</td>
<td>4</td>
<td>3</td>
<td>PWR</td>
<td>AN Power Supply</td>
</tr>
<tr>
<td>DRVOUT</td>
<td>5</td>
<td>4</td>
<td>OUT</td>
<td>AN Current Driver Output for Inductors</td>
</tr>
<tr>
<td>DRVIN</td>
<td>6</td>
<td>5</td>
<td>IN</td>
<td>AN Current Driver Input</td>
</tr>
<tr>
<td>CLK</td>
<td>7</td>
<td>6</td>
<td>IN</td>
<td>CMOS Clock Signal</td>
</tr>
<tr>
<td>REFSEL</td>
<td>8</td>
<td>7</td>
<td>IN</td>
<td>CMOS Detector Select Input</td>
</tr>
<tr>
<td>CS</td>
<td>9</td>
<td>8</td>
<td>IN</td>
<td>CMOS Chip Select, Active low</td>
</tr>
<tr>
<td>Reserved</td>
<td>10</td>
<td>9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VSS</td>
<td>11</td>
<td>10</td>
<td>PWR</td>
<td>AN Power Supply Return</td>
</tr>
<tr>
<td>VDETOUT</td>
<td>12</td>
<td>11</td>
<td>OUT</td>
<td>AN Detector Output Voltage</td>
</tr>
<tr>
<td>VDET-</td>
<td>13</td>
<td>12</td>
<td>IN</td>
<td>AN Negative Input for Output Detector</td>
</tr>
<tr>
<td>VDET+</td>
<td>14</td>
<td>13</td>
<td>IN</td>
<td>AN Positive Input for Output Detector</td>
</tr>
<tr>
<td>NC</td>
<td>14</td>
<td>14</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NC</td>
<td>15</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

2.1 Chip Select (CS)

The circuit is fully enabled when a logic-low is applied to the CS input. The circuit enters in Low-Power mode when a logic-high is applied to this input. During Low-Power mode, the detector output voltage falls to VREF and the supply current is reduced to 0.5 μA (typ.). This pin has an internal pull-up resistor to ensure proper selection of the circuit.

2.2 Voltage Reference (VREF)

VREF is a mid-scale reference output. It can source and sink small currents and has low output impedance. A load capacitor between 100nF and 1μF needs to be located close to this pin.

2.3 Power Supply (VDD, VSS)

The VDD pin is the power supply pin for the analog and digital circuitry within the MCP2036. This pin requires an appropriate bypass capacitor of 100nF. The voltage on this pin should be maintained in the 2.7V-5.5V range for specified operation.

The VSS pin is the ground pin and the current return path for both analog and digital circuitry of the MCP2036. If an analog ground plane is available, it is recommended that this device be tied to the analog ground plane of the PCB.

2.4 Inductor Inputs (LREF, LBTN)

These pins are inputs for the external coils (reference and sensor). The inputs should be AC coupled to the coils by a 10nF ceramic capacitor.

2.5 Input Selection (REFSEL)

Digital input that is used to select between coil inputs (reference and sensor).

2.6 Clock (CLK)

The external clock input is used for synchronous detection of the AC waveforms on the coils. The clock signal is also used to generate a triangular waveform applied to coil driver input.

2.7 Inductor Driver Input (DRVIN)

The analog input to the coil driver. The triangular waveform applied to this input should be in phase with the clock signal for best performance.

2.8 Inductor Driver Output (DRVOUT)

Driver output used to excite the sensor coils. It is a current-mode output designed to drive small inductive loads.
2.9 Detector Output Voltage (V_{DETOUT})

The amplifier/filter output from the detector. This is a low-impedance analog output pin (V_{OUT}) for driving the microcontroller ADC. The detector output is rail-to-rail.

2.10 Inputs for Output Detector ($V_{\text{DET}+}$, $V_{\text{DET}-}$)

The non-inverting and inverting inputs for the amplifier/filter op amp. The two inputs are connected to the output of the mixer circuit through two internal 10KΩ resistors.
3.0 APPLICATIONS

The MCP2036 is an Analog Front End device that uses the electromagnetic interaction between a conductive target and a sensing coil to detect the pressure applied by the user on the surface of a touch panel. The device incorporates all analog blocks for a simple inductor impedance measurement circuit.

For an inductive touch system, two methods are used for switching the driver and measurement circuitry between the different sensor coils: analog multiplexers and GPIO grounding (see Figure 3-1 and Figure 3-2). The MCP2036 is designed to work with both configurations.

FIGURE 3-1: Using Analog-Multiplexer for Key Selection (Example)

![Diagram of using analog multiplexer for key selection](image-url)
3.1 Application example

Figure 3-3 shows an example for a 4-key Inductive Touch keyboard with key controlled by the IO pins of the PIC® MCU.

The PIC® microcontroller is used to generate a square wave signal and to do all the necessary operations for proper detection of the key press event.

Then, \(R_{IN}C_{IN} \) filter converts the square wave output of the PWM into a quasi-triangular waveform.

To calculate the amplitude of the triangular signal, the standard charging time equation for an RC network will be used, as shown in Equation 3-1:

EQUATION 3-1:

\[
V(t) = V_{step} \cdot \left[1 - \exp\left(-t/RC\right)\right]
\]

For the first half of the square wave, the capacitor \(C_{IN} \) is charged through \(R_{IN} \), for the second half, it is discharged through \(R_{IN} \), and assuming that clock signal has a 50% duty cycle factor, we can consider:

EQUATION 3-2:

\[
\begin{align*}
V_{start} &= \frac{V_{DD}}{2} - \Delta V \\
V_{stop} &= \frac{V_{DD}}{2} + \Delta V
\end{align*}
\]
When the PWM signal switches from low-to-high or from high-to-low, the step voltage applied to the capacitor \(C_{IN}\) will be:

EQUATION 3-3:

\[
V_{step} = \left(\frac{V_{DD}}{2} + \Delta V \right)
\]

Substituting in the equation for an RC network:

EQUATION 3-4:

\[
\begin{align*}
2\Delta V &= \left(\frac{V_{DD}}{2} + \Delta V \right) \cdot \left[1 - \exp(-t/RC) \right] \\
\Delta V &= \frac{V_{DD}}{2} \cdot \frac{1 - \exp\left(-\frac{t}{R_{IN}C_{IN}} \right)}{1 + \exp\left(-\frac{t}{R_{IN}C_{IN}} \right)}
\end{align*}
\]
The peak to peak amplitude of the resulting triangular waveform, at the coil driver input, is shown in Equation 3-5:

EQUATION 3-5:

\[
V_{PKPK} = 2\Delta V \\
V_{PKPK} = V_{DD} \cdot \frac{1 - \exp\left(-\frac{t}{R_{IN}C_{IN}}\right)}{1 + \exp\left(-\frac{t}{R_{IN}C_{IN}}\right)}
\]

Note: \(V_{PKPK} \) should not exceed specified value (600mV) for best performance.

From the previous equation, the designer should choose values for \(V_{PKPK} \) and \(R_{IN} \). Using the equation above, the value of \(C_{IN} \) will be:

EQUATION 3-6:

\[
C_{IN} = \frac{t \ln(V_{DD} - V_{PKPK})}{R_{IN} \cdot 2 \cdot F \cdot R_{IN} \cdot \ln(V_{DD} - V_{PKPK})}
\]

Note: Assuming a power supply of 5V and \(V_{PKPK}=500\text{mV} \), for \(R_{IN}=3.9\text{K} \), \(C_{IN} \) should have about 320pF. A 330pF capacitor will be used.

The amplitude of the pulsed current applied to key inductors will be:

EQUATION 3-7:

\[
\Delta I = V_{PKPK} \cdot G_{DRV}
\]

\(G_{DRV} \) - Gain of Coil Driver

This current produces a pulsed voltage to key inductors ends. The amplitude of this voltage will be:

EQUATION 3-8:

\[
\Delta U = L \cdot \frac{\Delta I}{\Delta t} = L \cdot V_{PKPK} \cdot G_{DRV} \cdot 2F
\]

\(F \) - PWM Frequency

\(L \) - Inductance of Key Inductor

Note: For a PWM frequency of 2 MHz and inductor value of 2.7\(\mu \)H, the amplitude of pulsed voltage will be:

\[
\Delta U = 10.8\text{mV}
\]

The total voltage across both the reference and sensor coils would be double (two series inductors). For a specific power supply voltage, half of this power supply, relative to the voltage reference, is available for output amplifier/detector. Assuming a 30% margin, the desired gain for the detector should be about:

EQUATION 3-9:

\[
Gain = \frac{70\% \cdot \left(\frac{V_{DD}}{2}\right)}{2 \cdot \Delta U}
\]

The gain of the amplifier is user-settable, using an external resistor, \(R_{GAIN} \). The value of that resistor will be determined using the following equation:

EQUATION 3-10:

\[
Gain \sim R_{GAIN}/10\text{KOhm}
\]

With a 10-bit ADC, using oversampling and averaging techniques, the effective resolution is close to 11 bits. As shown in AN1239, “Inductive Touch Sensor Design”, the typical shift in sensor impedance is typically 3-4\%, so the actual number of counts per press is typically between 20 and 40 counts. In this way, the microcontroller firmware could easily detect press event.

Note: For a power supply of 5V and \(\Delta U = 10\text{mV} \), the resulted gain is 81. To obtain this gain, \(R_{GAIN} = 820\text{KOhm} \) should be used.
4.0 ELECTRICAL CHARACTERISTICS

4.1 Absolute Maximum Ratings

Ambient temperature under bias -40°C to +125°C
Storage temperature -65°C to +150°C
Voltage on VDD with respect to VSS -0.3V to +6.5V
Analog Inputs (VDET+, VDET-) VSS-1.0V to VDD+1.0V
Voltage on all other pins with respect to VSS -0.3V to (VDD + 0.3V)
Current at Output and Supply Pins ±30 mA
Human Body ESD Rating 2000 V
Machine Model ESD Rating 200 V
Maximum Junction Temperature +150°C

4.2 Specifications

TABLE 4-1: DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Supply Voltage</td>
</tr>
<tr>
<td>Power Down Current</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quiescent Current</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Active Current</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Digital Input High Voltage</td>
</tr>
<tr>
<td>Digital Input Low Voltage</td>
</tr>
<tr>
<td>Input Pins Leakage Current</td>
</tr>
<tr>
<td>System Parameters</td>
</tr>
<tr>
<td>DC Open Loop Gain</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
</tr>
<tr>
<td>Amplifier Input Characteristics</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
</tr>
<tr>
<td>Input Bias Current</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
</tr>
<tr>
<td>Input Impedance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Amplifier Output Characteristics</td>
</tr>
<tr>
<td>Minimum Output Voltage</td>
</tr>
<tr>
<td>Maximum Output Voltage</td>
</tr>
</tbody>
</table>
TABLE 4-2: AC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Amplifier/Filter Specific Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>GBWP</td>
<td></td>
<td>1</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>SR</td>
<td></td>
<td>0.6</td>
<td></td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td>Coil Driver Amplifier Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>GBWP</td>
<td></td>
<td>17.8</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Voltage Reference Specific Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>GBWP</td>
<td></td>
<td>1</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>SR</td>
<td></td>
<td>0.6</td>
<td></td>
<td>V/μs</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4-3: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, \(V_{DD} = +2.7\, \text{V to } +5.5\, \text{V}, \text{and } V_{SS} = \text{GND}. \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Extended Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_A)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-PDIP</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-SOIC</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>120</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 16L-QFN</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>47</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4-4: TIMING DIAGRAM

Electrical Characteristics: Unless otherwise indicated, \(V_{DD} = +2.7\, \text{V to } +5.5\, \text{V}, \text{and } V_{SS} = \text{GND}. \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Clock Frequency</td>
<td>(F_{CLK})</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Duty Factor</td>
<td>(D)</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Device Turn-On Time</td>
<td>(t_{ON})</td>
<td>—</td>
<td>4</td>
<td>10</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Device Power-Down Time</td>
<td>(t_{OFF})</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Not tested in production but it is characterized.
5.0 TYPICAL PERFORMANCE CURVES

5.1 Performance Plots

FIGURE 5-1: Driver Input Waveforms
FIGURE 5-2: Inductor Driver Transfer Function (Rload = 100Ohm)

FIGURE 5-3: Pulsed Voltage on Active Key Inductor (IO Configuration)
FIGURE 5-4: Pulsed voltage on Reference Inductor Series with Active Inductor
FIGURE 5-5: Output Detector Response Time
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

14-Lead PDIP

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP2036-I/P</td>
</tr>
<tr>
<td>☐ 0610017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14-Lead SOIC (.150")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>MCP2036</td>
</tr>
<tr>
<td>-I/SL</td>
</tr>
<tr>
<td>☐ 0610017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16-Lead QFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
</tr>
<tr>
<td>MCP2036</td>
</tr>
<tr>
<td>-I/ML</td>
</tr>
<tr>
<td>0610017</td>
</tr>
</tbody>
</table>

Legend:
- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week '01')
- NNN Alphanumeric traceability code
- E3 Pb-free JEDEC designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (E3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
6.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td></td>
<td>.100 BSC</td>
<td></td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>–</td>
<td>–</td>
<td>.210</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
<td>.130</td>
<td>.195</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.290</td>
<td>.310</td>
<td>.325</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
<td>.250</td>
<td>.280</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.735</td>
<td>.750</td>
<td>.775</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.115</td>
<td>.130</td>
<td>.150</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
<td>.010</td>
<td>.015</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
<td>.045</td>
<td>.060</td>
<td>.070</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
<td>.014</td>
<td>.018</td>
<td>.022</td>
</tr>
<tr>
<td>Overall Row Spacing §</td>
<td>eB</td>
<td>–</td>
<td>–</td>
<td>.430</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-127B
APPENDIX A: REVISION HISTORY

Revision A (05/2009)

Original release of the document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

MCP2036 - I/P 301 = Industrial temp., PDIP package, QTP pattern #301.

Device:

- **MCP2036**
- VCC range 2.7V to 5.5V

Temperature Range:

- **I** = -40°C to +85°C (Industrial)
- **E** = -40°C to +125°C (Extended)

Package:

- **ML** = QFN
- **SL** = SOIC
- **P** = PDIP

Pattern:

- QTP, SQTP, Code or Special Requirements
- (blank otherwise)
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Microchip makes no representations or warranties of any kind whether express or implied, written or oral, statutory or otherwise, related to the information, including but not limited to its condition, quality, performance, merchantability or fitness for purpose. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELog, KEELog logo, MPLAB, PIC, PICmicro, PICSTART, rPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAKE, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, Omniscient Code Generation, PICC, PICC-18, PICkit, PICDEM, PICDEM.net, PICtail, PIC18 logo, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088
- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- **Cleveland**
 Independence, OH
 Tel: 216-447-0046
 Fax: 216-447-0043
- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924
- **Detroit**
 Farmington Hills, MI
 Tel: 248-538-2250
 Fax: 248-538-2260
- **Kokomo**
 Kokomo, IN
 Tel: 765-864-8360
 Fax: 765-864-8387
- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
- **Santa Clara**
 Santa Clara, CA
 Tel: 408-961-6444
 Fax: 408-961-6445
- **Toronto**
 Mississauga, Ontario, Canada
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC

- **Asia Pacific Office**
 Suites 3707-14, 37th Floor
 Tower 6, The Gateway Harbour City, Kowloon
 Hong Kong
 Tel: 852-2401-1200
 Fax: 852-2401-3431
- **Australia - Sydney**
 Tel: 61-2-9868-6733
 Fax: 61-2-9868-6755
- **China - Beijing**
 Tel: 86-10-8528-2100
 Fax: 86-10-8528-2104
- **China - Chengdu**
 Tel: 86-28-8665-5511
 Fax: 86-28-8665-7889
- **China - Hong Kong SAR**
 Tel: 852-2401-1200
 Fax: 852-2401-3431
- **China - Nanjing**
 Tel: 86-25-8473-2460
 Fax: 86-25-8473-2470
- **China - Qingdao**
 Tel: 86-532-8502-7355
 Fax: 86-532-8502-7205
- **China - Shanghai**
 Tel: 86-21-5407-5533
 Fax: 86-21-5407-5066
- **China - Shenyang**
 Tel: 86-24-2334-2829
 Fax: 86-24-2334-2393
- **China - Shenzhen**
 Tel: 86-755-8203-2660
 Fax: 86-755-8203-1760
- **China - Wuhan**
 Tel: 86-27-5980-5300
 Fax: 86-27-5980-5118
- **China - Xiamen**
 Tel: 86-592-2388138
 Fax: 86-592-2388130
- **China - Xian**
 Tel: 86-29-8833-7252
 Fax: 86-29-8833-7256
- **China - Zhuhai**
 Tel: 86-756-3210040
 Fax: 86-756-3210049

ASIA/PACIFIC

- **India - Bangalore**
 Tel: 91-80-3090-4444
 Fax: 91-80-3090-4080
- **India - New Delhi**
 Tel: 91-11-4160-8631
 Fax: 91-11-4160-8632
- **India - Pune**
 Tel: 91-20-2566-1512
 Fax: 91-20-2566-1513
- **Japan - Yokohama**
 Tel: 81-45-471-6166
 Fax: 81-45-471-6122
- **Korea - Daegu**
 Tel: 82-53-744-4301
 Fax: 82-53-744-4302
- **Korea - Seoul**
 Tel: 82-2-554-7200
 Fax: 82-2-558-5932 or 82-2-558-5934
- **Malaysia - Kuala Lumpur**
 Tel: 60-3-6201-9857
 Fax: 60-3-6201-9859
- **Malaysia - Penang**
 Tel: 60-4-227-8870
 Fax: 60-4-227-4068
- **Philippines - Manila**
 Tel: 63-2-634-9065
 Fax: 63-2-634-9069
- **Singapore**
 Tel: 65-6334-8870
 Fax: 65-6334-8850
- **Taiwan - Hsin Chu**
 Tel: 886-3-6578-300
 Fax: 886-3-6578-370
- **Taiwan - Kaohsiung**
 Tel: 886-7-536-4818
 Fax: 886-7-536-4803
- **Taiwan - Taipei**
 Tel: 886-2-2500-6610
 Fax: 886-2-2508-0102
- **Thailand - Bangkok**
 Tel: 66-2-694-1351
 Fax: 66-2-694-1350

EUROPE

- **Austria - Wels**
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-393
- **Denmark - Copenhagen**
 Tel: 45-4450-2828
 Fax: 45-4485-2829
- **France - Paris**
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-39-00-79
- **Germany - Munich**
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
- **Italy - Milan**
 Tel: 39-0331-742611
 Fax: 39-0331-466781
- **Netherlands - Drunen**
 Tel: 31-416-690399
 Fax: 31-416-690340
- **Spain - Madrid**
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91
- **UK - Wokingham**
 Tel: 44-118-921-5869
 Fax: 44-118-921-5820

03/26/09