25LC1024

1 Mbit SPI Bus Serial EEPROM

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Vcc Range</th>
<th>Page Size</th>
<th>Temp. Ranges</th>
<th>Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25LC1024</td>
<td>2.5-5.5V</td>
<td>256 Byte</td>
<td>I,E</td>
<td>P, SM, MF</td>
</tr>
</tbody>
</table>

Features:
- 20 MHz max. Clock Speed
- Byte and Page-level Write Operations:
 - 256 byte page
 - 6 ms max. write cycle time
 - No page or sector erase required
- Low-Power CMOS Technology:
 - Max. Write current: 5 mA at 5.5V, 20 MHz
 - Read current: 7 mA at 5.5V, 20 MHz
 - Standby current: 1μA at 2.5V
 (Deep power-down)
- Electronic Signature for Device ID
- Self-Timed Erase and Write Cycles:
 - Page Erase (6 ms max.)
 - Sector Erase (10 ms max.)
 - Chip Erase (10 ms max.)
- Sector Write Protection (32K byte/sector):
 - Protect none, 1/4, 1/2 or all of array
- Built-In Write Protection:
 - Power-on/off data protection circuitry
 - Write enable latch
 - Write-protect pin
- High Reliability:
 - Endurance: 1M erase/write cycles
 - Data Retention: >200 years
 - ESD Protection: >4000V
- Temperature Ranges Supported:
 - Industrial (I): -40°C to +85°C
 - Automotive (E): -40°C to +125°C
- Pb-Free and RoHS Compliant

Description:
The Microchip Technology Inc. 25LC1024 is a 1024 Kbit serial EEPROM memory with byte-level and page-level serial EEPROM functions. It also features Page, Sector and Chip erase functions typically associated with Flash-based products. These functions are not required for byte or page write operations. The memory is accessed via a simple Serial Peripheral Interface (SPI) compatible serial bus. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled by a Chip Select (CS) input.

Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts.

The 25LC1024 is available in standard packages including 8-lead PDIP and SOJ, and advanced 8-lead DFN package. All devices are Pb-free.

Package Types (not to scale)
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All inputs and outputs w.r.t. Vss</td>
<td></td>
<td>-0.6 V to Vcc +1.0 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td></td>
<td>-65°C to 150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature under bias</td>
<td></td>
<td>-40°C to 125°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD protection on all pins</td>
<td></td>
<td>4 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>Vih1</td>
<td>High-level input voltage</td>
<td>.7 Vcc</td>
<td>Vcc +1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D002</td>
<td>Vil1</td>
<td>Low-level input voltage</td>
<td>-0.3</td>
<td>0.3 Vcc</td>
<td>V</td>
<td>Vcc ≥ 2.7V</td>
</tr>
<tr>
<td>D003</td>
<td>Vil2</td>
<td>Low-level input voltage</td>
<td>-0.3</td>
<td>0.2 Vcc</td>
<td>V</td>
<td>Vcc < 2.7V</td>
</tr>
<tr>
<td>D004</td>
<td>Vol</td>
<td>Low-level output voltage</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
<td>IOL = 2.1 mA</td>
</tr>
<tr>
<td>D005</td>
<td>Voh</td>
<td>High-level output voltage</td>
<td>Vcc -0.2</td>
<td>—</td>
<td>V</td>
<td>IoH = -400 µA</td>
</tr>
<tr>
<td>D006</td>
<td>Il</td>
<td>Input leakage current</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td>C<sub>S</sub> = Vcc, VIN = VSS or Vcc</td>
</tr>
<tr>
<td>D007</td>
<td>Ilo</td>
<td>Output leakage current</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td>C<sub>SS</sub> = Vcc, VOUT = VSS or Vcc</td>
</tr>
<tr>
<td>D008</td>
<td>Cint</td>
<td>Internal capacitance (all inputs and outputs)</td>
<td>—</td>
<td>7</td>
<td>pF</td>
<td>TA = 25°C, CLK = 1.0 MHz, Vcc = 5.0V (Note)</td>
</tr>
<tr>
<td>D009</td>
<td>ICC Read</td>
<td>Operating current</td>
<td>—</td>
<td>10</td>
<td>mA</td>
<td>Vcc = 5.5V; FCLK = 20.0 MHz; SO = Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>5</td>
<td>mA</td>
<td>Vcc = 2.5V; FCLK = 10.0 MHz; SO = Open</td>
</tr>
<tr>
<td>D010</td>
<td>ICC Write</td>
<td>Operating current</td>
<td>—</td>
<td>7</td>
<td>mA</td>
<td>Vcc = 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>5</td>
<td>mA</td>
<td>Vcc = 2.5V</td>
</tr>
<tr>
<td>D011</td>
<td>ICCS</td>
<td>Standby current</td>
<td>—</td>
<td>20</td>
<td>µA</td>
<td>C<sub>S</sub> = Vcc = 5.5V, Inputs tied to Vcc or Vss, 125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>12</td>
<td>µA</td>
<td>C<sub>S</sub> = Vcc = 5.5V, Inputs tied to Vcc or Vss, 85°C</td>
</tr>
<tr>
<td>D012</td>
<td>ICCSPD</td>
<td>Deep power-down current</td>
<td>—</td>
<td>1</td>
<td>µA</td>
<td>C<sub>S</sub> = Vcc = 2.5V, Inputs tied to Vcc or Vss, 85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>2</td>
<td>µA</td>
<td>C<sub>S</sub> = Vcc = 2.5V, Inputs tied to Vcc or Vss, 125°C</td>
</tr>
</tbody>
</table>

Note: This parameter is periodically sampled and not 100% tested.
TABLE 1-2: AC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FCLK</td>
<td>Clock frequency</td>
<td>—</td>
<td>20</td>
<td>MHz</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>10</td>
<td>MHz</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>2</td>
<td>TCSS</td>
<td>CS setup time</td>
<td>25</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>3</td>
<td>TCSH</td>
<td>CS hold time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>4</td>
<td>TCSD</td>
<td>CS disable time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Tsu</td>
<td>Data setup time</td>
<td>5</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>6</td>
<td>THD</td>
<td>Data hold time</td>
<td>10</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>7</td>
<td>TR</td>
<td>CLK rise time</td>
<td>—</td>
<td>20</td>
<td>ns</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>8</td>
<td>TF</td>
<td>CLK fall time</td>
<td>—</td>
<td>20</td>
<td>ns</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>9</td>
<td>THI</td>
<td>Clock high time</td>
<td>25</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>10</td>
<td>TLO</td>
<td>Clock low time</td>
<td>25</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>11</td>
<td>TLC</td>
<td>Clock delay time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>TCE</td>
<td>Clock enable time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td>TV</td>
<td>Output valid from clock low</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>50</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>14</td>
<td>THO</td>
<td>Output hold time</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>15</td>
<td>TDIS</td>
<td>Output disable time</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>50</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>16</td>
<td>THS</td>
<td>HOLD setup time</td>
<td>10</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>17</td>
<td>THH</td>
<td>HOLD hold time</td>
<td>10</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>18</td>
<td>THZ</td>
<td>HOLD low to output High-Z</td>
<td>15</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>19</td>
<td>THV</td>
<td>HOLD high to output</td>
<td>15</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valid</td>
<td>30</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 5.5V (I, E)</td>
</tr>
<tr>
<td>20</td>
<td>TREL</td>
<td>CS High to Standby mode</td>
<td>—</td>
<td>100</td>
<td>μs</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>TPD</td>
<td>CS High to Deep power-down</td>
<td>—</td>
<td>100</td>
<td>μs</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>TCE</td>
<td>Chip erase cycle time</td>
<td>—</td>
<td>10</td>
<td>ms</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>TSE</td>
<td>Sector erase cycle time</td>
<td>—</td>
<td>10</td>
<td>ms</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>TW</td>
<td>Internal write cycle time</td>
<td>—</td>
<td>6</td>
<td>ms</td>
<td>Byte or Page mode and Page Erase</td>
</tr>
</tbody>
</table>

Note 1: This parameter is periodically sampled and not 100% tested.

Note 2: This parameter is not tested but established by characterization and qualification. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site at www.microchip.com.
TABLE 1-2: AC CHARACTERISTICS (CONTINUED)

<table>
<thead>
<tr>
<th>AC CHARACTERISTICS</th>
<th>Industrial (I): $T_A = -40^\circ C$ to $+85^\circ C$</th>
<th>$V_{CC} = 2.5V$ to $5.5V$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automotive (E): $T_A = -40^\circ C$ to $+125^\circ C$</td>
<td>$V_{CC} = 2.5V$ to $5.5V$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>—</td>
<td>Endurance</td>
<td>1M</td>
<td>—</td>
<td>E/W Cycles</td>
<td>Page mode, $25^\circ C$, $5.5V$ (Note 2)</td>
</tr>
</tbody>
</table>

Note 1: This parameter is periodically sampled and not 100% tested.

2: This parameter is not tested but established by characterization and qualification. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site at www.microchip.com.

TABLE 1-3: AC TEST CONDITIONS

<table>
<thead>
<tr>
<th>AC Waveform:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{LO} = 0.2V$</td>
<td>—</td>
</tr>
<tr>
<td>$V_{HI} = V_{CC} - 0.2V$</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>$V_{HI} = 4.0V$</td>
<td>(Note 2)</td>
</tr>
<tr>
<td>$CL = 30 \text{ pF}$</td>
<td>—</td>
</tr>
</tbody>
</table>

Timing Measurement Reference Level

| Input | 0.5 V_{CC} |
| Output | 0.5 V_{CC} |

Note 1: For $V_{CC} \leq 4.0V$ | |

2: For $V_{CC} > 4.0V$ | |
FIGURE 1-1: HOLD TIMING

FIGURE 1-2: SERIAL INPUT TIMING

FIGURE 1-3: SERIAL OUTPUT TIMING
2.0 FUNCTIONAL DESCRIPTION

2.1 Principles of Operation

The 25LC1024 is a 131,072 byte Serial EEPROM designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today's popular microcontroller families, including Microchip's PIC® microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol.

The 25LC1024 contains an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the rising edge of SCK. The CS pin must be low and the HOLD pin must be high for the entire operation.

Table 2-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses and data are transferred MSB first, LSB last.

Data (SI) is sampled on the first rising edge of SCK after CS goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the HOLD input and place the 25LC1024 in 'HOLD' mode. After releasing the HOLD pin, operation will resume from the point when the HOLD was asserted.

<table>
<thead>
<tr>
<th>Instruction Name</th>
<th>Instruction Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>0000 0011</td>
<td>Read data from memory array beginning at selected address</td>
</tr>
<tr>
<td>WRITE</td>
<td>0000 0010</td>
<td>Write data to memory array beginning at selected address</td>
</tr>
<tr>
<td>WREN</td>
<td>0000 0110</td>
<td>Set the write enable latch (enable write operations)</td>
</tr>
<tr>
<td>WRDI</td>
<td>0000 0100</td>
<td>Reset the write enable latch (disable write operations)</td>
</tr>
<tr>
<td>RDSR</td>
<td>0000 0101</td>
<td>Read STATUS register</td>
</tr>
<tr>
<td>WRSR</td>
<td>0000 0001</td>
<td>Write STATUS register</td>
</tr>
<tr>
<td>PE</td>
<td>0100 0010</td>
<td>Page Erase – erase one page in memory array</td>
</tr>
<tr>
<td>SE</td>
<td>1101 1000</td>
<td>Sector Erase – erase one sector in memory array</td>
</tr>
<tr>
<td>CE</td>
<td>1100 0111</td>
<td>Chip Erase – erase all sectors in memory array</td>
</tr>
<tr>
<td>RDID</td>
<td>1010 1011</td>
<td>Release from Deep power-down and read electronic signature</td>
</tr>
<tr>
<td>DPD</td>
<td>1011 1001</td>
<td>Deep Power-Down mode</td>
</tr>
</tbody>
</table>
Read Sequence

The device is selected by pulling CS low. The 8-bit READ instruction is transmitted to the 25LC1024 followed by the 24-bit address, with seven MSBs of the address being "don't care" bits. After the correct READ instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin.

The data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal Address Pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached (1FFFFh), the address counter rolls over to address, 00000h, allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the CS pin (Figure 2-1).

FIGURE 2-1: READ SEQUENCE

The diagram shows the timing sequence for the read operation, including the transmission of the instruction and address, and the shift out of data on the SO pin.
2.2 Write Sequence

Prior to any attempt to write data to the 25LC1024, the write enable latch must be set by issuing the WREN instruction (Figure 2-4). This is done by setting CS low and then clocking out the proper instruction into the 25LC1024. After all eight bits of the instruction are transmitted, the CS must be brought high to set the write enable latch. If the write operation is initiated immediately after the WREN instruction without CS being brought high, the data will not be written to the array because the write enable latch will not have been properly set.

A write sequence includes an automatic, self timed erase cycle. It is not required to erase any portion of the memory prior to issuing a Write command.

Once the write enable latch is set, the user may proceed by setting the CS low, issuing a WRITE instruction, followed by the 24-bit address, with seven MSBs of the address being “don’t care” bits, and then the data to be written. Up to 256 bytes of data can be sent to the device before a write cycle is necessary. The only restriction is that all of the bytes must reside in the same page.

Note: When doing a write of less than 256 bytes the data in the rest of the page is refreshed along with the data bytes being written. This will force the entire page to endure a write cycle, for this reason endurance is specified per page.

For the data to be actually written to the array, the CS must be brought high after the Least Significant bit (D0) of the \(n \)th data byte has been clocked in. If CS is brought high at any other time, the write operation will not be completed. Refer to Figure 2-2 and Figure 2-3 for more detailed illustrations on the byte write sequence and the page write sequence, respectively. While the write is in progress, the STATUS register may be read to check the status of the WPEN, WIP, WEL, BP1 and BP0 bits (Figure 2-6). A read attempt of a memory array location will not be possible during a write cycle. When the write cycle is completed, the write enable latch is reset.

FIGURE 2-2: BYTE WRITE SEQUENCE

![Byte Write Sequence Diagram]

Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’), and end at addresses that are integer multiples of page size – 1. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.
FIGURE 2-3: PAGE WRITE SEQUENCE

CS ___ ... ____________________________ /

SCK 0 1 2 3 4 5 6 7 8 9 10 11 ... 29 30 31 32 33 34 35 36 37 38 39 ...

SI 0 0 0 0 0 0 0 1 0 23 22 21 20 ... 2 1 0 7 6 5 4 3 2 1 0 ...

___ ... ____________________________ /

CS ... ____________________________ ... ____________________________

SCK 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 ...

SI ... 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 ... 7 6 5 4 3 2 1 0 ...

Instruction 24-bit Address Data Byte 1

Data Byte 2 Data Byte 3 Data Byte n (256 max)
2.3 Write Enable (WREN) and Write Disable (WRDI)

The 25LC1024 contains a write enable latch. See Table 2-4 for the Write-Protect Functionality Matrix. This latch must be set before any write operation will be completed internally. The WREN instruction will set the latch, and the WRDI will reset the latch.

The following is a list of conditions under which the write enable latch will be reset:
- Power-up
- WRDI instruction successfully executed
- WRSR instruction successfully executed
- WRITE instruction successfully executed
- PE instruction successfully executed
- SE instruction successfully executed
- CE instruction successfully executed

FIGURE 2-4: WRITE ENABLE SEQUENCE (WREN)

FIGURE 2-5: WRITE DISABLE SEQUENCE (WRDI)
2.4 Read Status Register Instruction (RDSR)

The Read Status Register instruction (RDSR) provides access to the STATUS register. The STATUS register may be read at any time, even during a write cycle. The STATUS register is formatted as follows:

<table>
<thead>
<tr>
<th>Table 2-2: STATUS REGISTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>W/R – – – W/R W/R R R</td>
</tr>
<tr>
<td>WPEN X X X BP1 BP0 WEL WIP</td>
</tr>
</tbody>
</table>

W/R = writable/readable. R = read-only.

The Write-In-Process (WIP) bit indicates whether the 25LC1024 is busy with a write operation. When set to a '1', a write is in progress, when set to a '0', no write is in progress. This bit is read-only.

The Write Enable Latch (WEL) bit indicates the status of the write enable latch and is read-only. When set to a '1', the latch allows writes to the array, when set to a '0', the latch prohibits writes to the array. The state of this bit can always be updated via the WREN or WRDI commands regardless of the state of write protection on the STATUS register. These commands are shown in Figure 2-4 and Figure 2-5.

The Block Protection (BP0 and BP1) bits indicate which blocks are currently write-protected. These bits are set by the user issuing the WRSR instruction. These bits are nonvolatile and are shown in Table 2-3.

See Figure 2-6 for the RDSR timing sequence.
2.5 Write Status Register Instruction (WRSR)

The Write Status Register instruction (WRSR) allows the user to write to the nonvolatile bits in the STATUS register as shown in Table 2-2. The user is able to select one of four levels of protection for the array by writing to the appropriate bits in the STATUS register. The array is divided up into four segments. The user has the ability to write-protect none, one, two, or all four of the segments of the array. The partitioning is controlled as shown in Table 2-3.

The Write-Protect Enable (WPEN) bit is a nonvolatile bit that is available as an enable bit for the WP pin. The Write-Protect (WP) pin and the Write-Protect Enable (WPEN) bit in the STATUS register control the programmable hardware write-protect feature. Hardware write protection is enabled when WP pin is low and the WPEN bit is high. Hardware write protection is disabled when either the WP pin is high or the WPEN bit is low. When the chip is hardware write-protected, only writes to nonvolatile bits in the STATUS register are disabled. See Table 2-4 for a matrix of functionality on the WPEN bit.

See Figure 2-7 for the WRSR timing sequence.

TABLE 2-3: ARRAY PROTECTION

<table>
<thead>
<tr>
<th>BP1</th>
<th>BP0</th>
<th>Array Addresses Write-Protected</th>
<th>Array Addresses Unprotected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>none</td>
<td>All (Sectors 0, 1, 2 & 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(00000h-1FFFFh)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Upper 1/4 (Sector 3) (18000h-1FFFFh)</td>
<td>Lower 3/4 (Sectors 0, 1 & 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(00000h-17FFFh)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Upper 1/2 (Sectors 2 & 3) (10000h-1FFFFh)</td>
<td>Lower 1/2 (Sectors 0 & 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(00000h-0FFFFh)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>All (Sectors 0, 1, 2 & 3) (00000h-1FFFFh)</td>
<td>none</td>
</tr>
</tbody>
</table>

FIGURE 2-7: WRITE STATUS REGISTER TIMING SEQUENCE (WRSR)

The timing sequence for the WRSR instruction includes the following steps:

- **CS**: Chip Select
- **SCK**: Serial Clock
- **SI**: Serial In
- **SO**: Serial Out
- **Instruction**: Data to STATUS register
- **High-Impedance**: Data line is in a high-impedance state.
2.6 Data Protection

The following protection has been implemented to prevent inadvertent writes to the array:

- The write enable latch is reset on power-up
- A write enable instruction must be issued to set the write enable latch
- After a byte write, page write or STATUS register write, the write enable latch is reset
- CS must be set high after the proper number of clock cycles to start an internal write cycle
- Access to the array during an internal write cycle is ignored and programming is continued

2.7 Power-On State

The 25LC1024 powers on in the following state:

- The device is in low-power Standby mode (CS = 1)
- The write enable latch is reset
- SO is in high-impedance state
- A high-to-low-level transition on CS is required to enter active state

TABLE 2-4: WRITE-PROTECT FUNCTIONALITY MATRIX

<table>
<thead>
<tr>
<th>WEL (SR bit 1)</th>
<th>WPEN (SR bit 7)</th>
<th>WP (pin 3)</th>
<th>Protected Blocks</th>
<th>Unprotected Blocks</th>
<th>STATUS Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
<td>Protected</td>
<td>Protected</td>
<td>Protected</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
<td>Protected</td>
<td>Writable</td>
<td>Writable</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0 (low)</td>
<td>Protected</td>
<td>Writable</td>
<td>Protected</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 (high)</td>
<td>Protected</td>
<td>Writable</td>
<td>Writable</td>
</tr>
</tbody>
</table>

x = don’t care
2.8 PAGE ERASE

The Page Erase function will erase all bits (FFh) inside the given page. A Write Enable (WREN) instruction must be given prior to attempting a Page Erase. This is done by setting CS low and then clocking out the proper instruction into the 25LC1024. After all eight bits of the instruction are transmitted, the CS must be brought high to set the write enable latch.

The Page Erase function is entered by driving CS low, followed by the instruction code (Figure 2-8), and three address bytes. Any address inside the page to be erased is a valid address. CS must then be driven high after the last bit if the address or the Page Erase will not execute. Once the CS is driven high, the self-timed Page Erase cycle is started. The WIP bit in the STATUS register can be read to determine when the Page Erase cycle is complete.

If a Page Erase function is given to an address that has been protected by the Block Protect bits (BP0, BP1) then the sequence will be aborted and no erase will occur.

FIGURE 2-8: PAGE ERASE SEQUENCE

![Page Erase Sequence Diagram](image-url)
2.9 SECTOR ERASE

The Sector Erase function will erase all bits (FFh) inside the given sector. A Write Enable (WREN) instruction must be given prior to attempting a Sector Erase. This is done by setting \(\overline{CS} \) low and then clocking out the proper instruction into the 25LC1024. After all eight bits of the instruction are transmitted, the \(\overline{CS} \) must be brought high to set the write enable latch.

The Sector Erase function is entered by driving \(\overline{CS} \) low, followed by the instruction code (Figure 2-9), and three address bytes. Any address inside the sector to be erased is a valid address.

\(\overline{CS} \) must then be driven high after the last bit if the address or the Sector Erase will not execute. Once the \(\overline{CS} \) is driven high, the self-timed Sector Erase cycle is started. The WIP bit in the STATUS register can be read to determine when the Sector Erase cycle is complete.

If a SECTOR ERASE instruction is given to an address that has been protected by the Block Protect bits (BP0, BP1) then the sequence will be aborted and no erase will occur.

See Table 2-3 for Sector Addressing.

FIGURE 2-9: SECTOR ERASE SEQUENCE

![Sector Erase Sequence Diagram](image-url)
2.10 CHIP ERASE

The Chip Erase function will erase all bits (FFh) in the array. A Write Enable (WREN) instruction must be given prior to executing a Chip Erase. This is done by setting CS low and then clocking out the proper instruction into the 25LC1024. After all eight bits of the instruction are transmitted, the CS must be brought high to set the write enable latch.

The Chip Erase function is entered by driving the CS low, followed by the instruction code (Figure 2-10) onto the SI line.

The CS pin must be driven high after the eighth bit of the instruction code has been given or the Chip Erase function will not be executed. Once the CS pin is driven high, the self-timed Chip Erase function begins. While the device is executing the Chip Erase function the WIP bit in the STATUS register can be read to determine when the Chip Erase function is complete.

The Chip Erase function is ignored if either of the Block Protect bits (BP0, BP1) are not 0, meaning ¼, ½, or all of the array is protected.

FIGURE 2-10: CHIP ERASE SEQUENCE

![Chip Erase Sequence Diagram](image-url)
2.11 DEEP POWER-DOWN MODE

Deep Power-Down mode of the 25LC1024 is its lowest power consumption state. The device will not respond to any of the Read or Write commands while in Deep Power-Down mode, and therefore it can be used as an additional software write protection feature.

The Deep Power-Down mode is entered by driving CS low, followed by the instruction code (Figure 2-11) onto the SI line, followed by driving CS high.

If the CS pin is not driven high after the eighth bit of the instruction code has been given, the device will not execute Deep power-down. Once the CS line is driven high, there is a delay (TDP) before the current settles to its lowest consumption.

All instructions given during Deep Power-Down mode are ignored except the Read Electronic Signature Command (RDID). The RDID command will release the device from Deep power-down and outputs the electronic signature on the SO pin, and then returns the device to Standby mode after delay (TREL)

Deep Power-Down mode automatically releases at device power-down. Once power is restored to the device, it will power-up in the Standby mode.

FIGURE 2-11: DEEP POWER-DOWN SEQUENCE
2.12 RELEASE FROM DEEP POWER-DOWN AND READ ELECTRONIC SIGNATURE

Once the device has entered Deep Power-Down mode all instructions are ignored except the release from Deep Power-down and Read Electronic Signature command. This command can also be used when the device is not in Deep Power-down, to read the electronic signature out on the SO pin unless another command is being executed such as Erase, Program or Write STATUS register.

Release from Deep Power-Down mode and Read Electronic Signature is entered by driving CS low, followed by the RDID instruction code (Figure 2-12) and then a dummy address of 24 bits (A23-A0). After the last bit of the dummy address is clocked in, the 8-bit Electronic signature is clocked out on the SO pin.

After the signature has been read out at least once, the sequence can be terminated by driving CS high. The device will then return to Standby mode and will wait to be selected so it can be given new instructions. If additional clock cycles are sent after the electronic signature has been read once, it will continue to output the signature on the SO line until the sequence is terminated.

FIGURE 2-12: RELEASE FROM DEEP POWER-DOWN AND READ ELECTRONIC SIGNATURE

![Diagram showing CS, SCK, SI, SO signals and their timing](image)

Driving CS high after the 8-bit RDID command, but before the Electronic Signature has been transmitted, will still ensure the device will be taken out of Deep Power-Down mode. However, there is a delay TREL that occurs before the device returns to Standby mode (ICCS), as shown in Figure 2-13.

FIGURE 2-13: RELEASE FROM DEEP POWER-DOWN AND READ ELECTRONIC SIGNATURE

![Diagram showing CS, SCK, SI, SO signals and their timing](image)
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>1</td>
<td>Chip Select Input</td>
</tr>
<tr>
<td>SO</td>
<td>2</td>
<td>Serial Data Output</td>
</tr>
<tr>
<td>WP</td>
<td>3</td>
<td>Write-Protect Pin</td>
</tr>
<tr>
<td>Vss</td>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>SI</td>
<td>5</td>
<td>Serial Data Input</td>
</tr>
<tr>
<td>SCK</td>
<td>6</td>
<td>Serial Clock Input</td>
</tr>
<tr>
<td>HOLD</td>
<td>7</td>
<td>Hold Input</td>
</tr>
<tr>
<td>Vcc</td>
<td>8</td>
<td>Supply Voltage</td>
</tr>
</tbody>
</table>

3.1 Chip Select (CS)

A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. However, a programming cycle which is already initiated or in progress will be completed, regardless of the CS input signal. If CS is brought high during a program cycle, the device will go into Standby mode as soon as the programming cycle is complete. When the device is deselected, SO goes to the high-impedance state, allowing multiple parts to share the same SPI bus. A low-to-high transition on CS after a valid write sequence initiates an internal write cycle. After power-up, a low level on CS is required prior to any sequence being initiated.

3.2 Serial Output (SO)

The SO pin is used to transfer data out of the 25LC1024. During a read cycle, data is shifted out on this pin after the falling edge of the serial clock.

3.3 Write-Protect (WP)

This pin is used in conjunction with the WPEN bit in the STATUS register to prohibit writes to the nonvolatile bits in the STATUS register. If WP is low and WPEN is high, writing to the nonvolatile bits in the STATUS register is disabled. All other operations function normally. If WP is high, all functions, including writes to the nonvolatile bits in the STATUS register, operate normally. If WP is low during a STATUS register write sequence will disable writing to the STATUS register. If an internal write cycle has already begun, WP going low will have no effect on the write.

The WP pin function is blocked when the WPEN bit in the STATUS register is low. This allows the user to install the 25LC1024 in a system with WP pin grounded and still be able to write to the STATUS register. The WP pin functions will be enabled when the WPEN bit is set high.

3.4 Serial Input (SI)

The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data is latched on the rising edge of the serial clock.

3.5 Serial Clock (SCK)

The SCK is used to synchronize the communication between a master and the 25LC1024. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input.

3.6 Hold (HOLD)

The HOLD pin is used to suspend transmission to the 25LC1024 while in the middle of a serial sequence without having to retransmit the entire sequence again. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high-to-low transition. The 25LC1024 must remain selected during this sequence. The SI, SCK and SO pins are in a high-impedance state during the time the device is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume. Pulling the HOLD line low at any time will tri-state the SO line.
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend:
XX...X Part number or part number code
T Temperature (I, E)
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ’01’)
NNN Alphanumeric traceability code (2 characters for small packages)
@3 Pb-free JEDEC designator for Matte Tin (Sn)

Note: For very small packages with no room for the Pb-free JEDEC designator @3, the marking will only appear on the outer carton or reel label.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated.
4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
8-Lead Plastic Dual Flat, No Lead Package (MF) - 6x5 mm Body [DFN-S]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Table: Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>W2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>T2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2122A
8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B
8-Lead Plastic Small Outline (SM) - Medium, 5.28 mm Body [SOIJ]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-056C Sheet 1 of 2
8-Lead Plastic Small Outline (SM) - Medium, 5.28 mm Body [SOIJ]

Notes:
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Table: Package Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>MIN 8</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>1.27 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>1.77 - 2.03</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>0.05 - 0.25</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>1.75 - 1.98</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>7.94 BSC</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>5.25 BSC</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>5.26 BSC</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.51 - 0.76</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.15 - 0.25</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>0.36 - 0.51</td>
</tr>
<tr>
<td>Mold Draft Angle</td>
<td>Ø1</td>
<td>- - 15°</td>
</tr>
<tr>
<td>Lead Angle</td>
<td>Ø2</td>
<td>0° - 8°</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>Ø3</td>
<td>0° - 8°</td>
</tr>
</tbody>
</table>

Notes:
1. SOIJ, JEITA/EIAJ Standard, Formerly called SOIC
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

Microchip Technology Drawing No. C04-056C Sheet 2 of 2

© 2010 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2056C
APPENDIX A:

REVISION HISTORY

Revision A (10/2007)
Original release.

Revision B (5/2008)
Modified parameter D006 in Table 1-1; Revised Package Marking Information; Replaced Package Drawings.

Revision C (10/08)
Updated Package Drawings.

Revision D (05/10)
Revised Table 1-2, Param. No. 25 Conditions; Revised Section 2.2, added note; Updated SOIJ package drawings.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager
RE: Reader Response

From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_____) _________ - _________
FAX: (_____) _________ - _________

Application (optional):

Would you like a reply? Y N

Device: 25LC1024
Literature Number: DS22064D

Questions:
1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>-</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Tape & Reel</td>
<td>Temp Range</td>
<td>Package</td>
<td></td>
</tr>
</tbody>
</table>

Device: 25LC1024 1 Mbit, 2.5V, SPI Serial EEPROM
Tape & Reel: Blank = Standard packaging (tube)
T = Tape & Reel
Temperature Range: I = -40°C to +85°C
E = -40°C to +125°C
Package: MF = Micro Lead Frame (6 x 5 mm body), 8-lead
P = Plastic DIP (300 mil body), 8-lead
SM = Plastic SOJ (5.28 mm), 8-lead

Examples:

a) 25LC1024-I/P = 1 Mbit, 2.5V Serial EEPROM, Industrial temp., P-DIP package
b) 25LC1024T-E/MF = 1 Mbit, 2.5V Serial EEPROM, Extended temp., Tape & Reel, DFN package
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-228-1
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0087
Fax: 216-447-0088

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5053
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xi'an
Tel: 86-29-8333-7252
Fax: 86-29-8333-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820