특징:
• EEPROM 메모리 용량은 1K ~ 16K 비트이다
• 저 전력 CMOS 기술을 채택 하였다
• ORG핀을 이용하여 통신 비트를 선택 할 수도 있고 또는 고정 되어 있는 소자를 이용 가능하다
ORG핀이 있는 EEPROM
- 그라운드를 연결 하는 경우 : 8 비트 통신
- VDD 를 연결 하는 경우 : 16 비트 통신
ORG핀이 없는 EEPROM
- ‘A’버전 : 8 비트, ‘B’버전 : 16 비트 통신
• 프로그램 인에이블 핀을 가지고 있다
- 93XX76C와 93XX86C EEPROM은 내부 메모리에 쓰기를 금지 하는 핀을 가지고 있다
• 자동 Erase/Write 사이클 가능하다
• WRAL(Write All) 명령이 수행이 되면 자동적으로 ERAL(Erase All) 기능이 수행이 된다
• 전원 on/off 시 자동적으로 쓰기 동작이 금지된다
• 병렬적으로 사용 되는 3 바이어 통신이 가능하다
• 현재 EEPROM의 상태를 Ready/Busy 신호를 통하여 파악 할 수 있다
• 연속적으로 데이터를 읽을 수 있다
• Erase/Write는 백만번 가능하다
• EEPROM의 데이터 유지는 200 년 보장 된다
• 다양한 온도 범위의 EEPROM이 지원이 된다
 - Industrial (I) -40°C ~ +85°C
 - Automotive (E) -40°C ~ +125°C

EEPROM 핀 별 기능 테이블

<table>
<thead>
<tr>
<th>핀 이름</th>
<th>핀 기능</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>EEPROM 선택 입력 핀</td>
</tr>
<tr>
<td>CLK</td>
<td>시리얼 클럭 입력 핀</td>
</tr>
<tr>
<td>DI</td>
<td>시리얼 데이터 입력 핀</td>
</tr>
<tr>
<td>DO</td>
<td>시리얼 데이터 출력 핀</td>
</tr>
<tr>
<td>VSS</td>
<td>그라운드</td>
</tr>
<tr>
<td>PE</td>
<td>프로그램 인에이블 핀</td>
</tr>
<tr>
<td>ORG</td>
<td>8비트/16비트 통신 선택 핀</td>
</tr>
<tr>
<td>VCC</td>
<td>전원 입력 핀</td>
</tr>
</tbody>
</table>

주로: ORG과 PE 핀들은 모든 EEPROM에 작동이 되지 않는다. 자체한 사항은 데이터 1-1을 참조 하기를 바란다

주로: Pb-free에 최신의 정보는 www.microchip.com/Pbfree에서 확인 하길 바란다.

기능 설명:
마이크로чист 데크놀로지는 3 바이어 통신 방식을 채택하고 내부 용량이 16K 비트 까지의 저 전력 용 EEPROM(Electrically Erasable PROM)을 지원하고 있다. 각각의 소자는 ORG 핀을 이용 할 수도 하지 않을 수도 있으며 이러한 기능은 지원 되는 과트 - 넘어를 통하여 선택 할 수 있다. 새로운 출시된 EEPROM은 전보된 CMOS 기술을 채택 하였으므로 저전력이 필요한 엠폴리에이션에 적합하며 또한 다양한 패키지를 지원하고 있으므로 사용자는 필요에 따라서 자신의 엠폴리에이션에 맞게 선택 할 수 있다.

지원 되는 패키지는 8핀 DIP 패키지, 8핀 SOIC 패키지, 8핀 TSSOP 패키지, 8핀 SOT-23 패키지, 8핀 DFN(2x3) 등이 있으며 이러한 모든 패키지는 Pb-free(Pure Matte Sn : 납 성분이 없는 소자) 를 지원 하고 있다.

Pb-free의 보다 자세한 사항은 www.microchip.com에서 확인 하길 바란다.

전 다이어그램(실제 사이즈는 아님)

<table>
<thead>
<tr>
<th>PDIP/SOIC</th>
<th>ROTATED SOIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1</td>
<td>VCC 8</td>
</tr>
<tr>
<td>CLK 2</td>
<td>NC 7</td>
</tr>
<tr>
<td>DI 3</td>
<td>ORG 6 (1,3)</td>
</tr>
<tr>
<td>DO 4</td>
<td>Vss 5</td>
</tr>
<tr>
<td>ORG 1</td>
<td>PE (2,3)</td>
</tr>
<tr>
<td>VCC 8</td>
<td></td>
</tr>
<tr>
<td>CS 1</td>
<td>Vcc 8</td>
</tr>
<tr>
<td>CLK 2</td>
<td>PE (2,3)</td>
</tr>
<tr>
<td>DI 3</td>
<td>ORG (1,3)</td>
</tr>
<tr>
<td>DO 4</td>
<td>Vss 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSSOP/MSOP</th>
<th>SOT-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1</td>
<td>Vcc 8</td>
</tr>
<tr>
<td>CLK 2</td>
<td>PE (2,3)</td>
</tr>
<tr>
<td>DI 3</td>
<td>ORG (1,3)</td>
</tr>
<tr>
<td>DO 4</td>
<td>Vss 5</td>
</tr>
<tr>
<td>SOT-23 1</td>
<td>CS 6</td>
</tr>
<tr>
<td>SOT-23 2</td>
<td>ORG (1,3)</td>
</tr>
<tr>
<td>SOT-23 3</td>
<td>Vss 5</td>
</tr>
<tr>
<td>SOT-23 4</td>
<td>CLK 2</td>
</tr>
</tbody>
</table>

주로: ORG핀은 93XX46C/56C/66C/76C/86C만 적용 됨
주로: PE핀은 93XX76C/86C만 적용됨
주로: 93XXA/B의 ORG/PE 핀은 내부 연결이 없다

주로: Pb-free에 최신의 정보는 www.microchip.com/Pbfree에서 확인 하길 바란다.
테이블 1-1: EEPROM 선택 테이블

<table>
<thead>
<tr>
<th>파트 넘버</th>
<th>용량 (Kbits)</th>
<th>전압 범위</th>
<th>ORG 빈</th>
<th>통신 규칙 (Words)</th>
<th>PE 빈</th>
<th>온도 범위</th>
<th>패키지</th>
</tr>
</thead>
<tbody>
<tr>
<td>93XX46A/B/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93AA46A</td>
<td>1</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>128 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA46B</td>
<td>1</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>64 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA46C</td>
<td>1</td>
<td>1.8-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93LC46A</td>
<td>1</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>128 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC46B</td>
<td>1</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>64 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC46C</td>
<td>1</td>
<td>2.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93C46A</td>
<td>1</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>128 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C46B</td>
<td>1</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>64 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C46C</td>
<td>1</td>
<td>4.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93AA46AX/BX/CX, 93LC46AX/BX/CX, 93C46AX/BX/CX (다이어 90° 돌려진 다른 빈 - 아웃을 가진다)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93AA46AX</td>
<td>1</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>128 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA46BX</td>
<td>1</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>64 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA46CX</td>
<td>1</td>
<td>1.8-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93LC46AX</td>
<td>1</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>128 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC46BX</td>
<td>1</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>64 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC46CX</td>
<td>1</td>
<td>2.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93C46AX</td>
<td>1</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>128 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C46BX</td>
<td>1</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>64 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C46CX</td>
<td>1</td>
<td>4.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93XX56A/B/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93AA56A</td>
<td>2</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>256 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA56B</td>
<td>2</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>128 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA56C</td>
<td>2</td>
<td>1.8-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93LC56A</td>
<td>2</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>256 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC56B</td>
<td>2</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>128 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC56C</td>
<td>2</td>
<td>2.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93C56A</td>
<td>2</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>256 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C56B</td>
<td>2</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>128 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C56C</td>
<td>2</td>
<td>4.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93XX66A/B/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93AA66A</td>
<td>4</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>512 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA66B</td>
<td>4</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>256 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93AA66C</td>
<td>4</td>
<td>1.8-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93LC66A</td>
<td>4</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>512 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC66B</td>
<td>4</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>256 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93LC66C</td>
<td>4</td>
<td>2.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93C66A</td>
<td>4</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>512 x 8 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C66B</td>
<td>4</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>256 x 16 비트</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, OT, MC</td>
<td></td>
</tr>
<tr>
<td>93C66C</td>
<td>4</td>
<td>4.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>없음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
</tbody>
</table>
테이블 1-1: EEPROM 선택 테이블 (앞페이지에 이어 계속 됨)

<table>
<thead>
<tr>
<th>파트 넘버</th>
<th>용량 (Kbits)</th>
<th>전압 범위</th>
<th>ORG 펀</th>
<th>통신 규칙 (Words)</th>
<th>PE 펀</th>
<th>온도 범위</th>
<th>패키지</th>
</tr>
</thead>
<tbody>
<tr>
<td>93XX76A/B/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93AA76A</td>
<td>8</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>1024 x 8 비트</td>
<td>없음</td>
<td>I</td>
<td>OT</td>
</tr>
<tr>
<td>93AA76B</td>
<td>8</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>512 x 16 비트</td>
<td>없음</td>
<td>I</td>
<td>OT</td>
</tr>
<tr>
<td>93AA76C</td>
<td>8</td>
<td>1.8-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>있음</td>
<td>I, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93LC76A</td>
<td>8</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>1024 x 8 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93LC76B</td>
<td>8</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>512 x 16 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93LC76C</td>
<td>8</td>
<td>2.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>있음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93C76A</td>
<td>8</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>1024 x 8 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93C76B</td>
<td>8</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>512 x 16 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93C76C</td>
<td>8</td>
<td>4.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>있음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93XX86A/B/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93AA86A</td>
<td>16</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>2048 x 8 비트</td>
<td>없음</td>
<td>I</td>
<td>OT</td>
</tr>
<tr>
<td>93AA86B</td>
<td>16</td>
<td>1.8-5.5</td>
<td>없음</td>
<td>1024 x 16 비트</td>
<td>없음</td>
<td>I</td>
<td>OT</td>
</tr>
<tr>
<td>93AA86C</td>
<td>16</td>
<td>1.8-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>있음</td>
<td>I, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93LC86A</td>
<td>16</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>2048 x 8 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93LC86B</td>
<td>16</td>
<td>2.5-5.5</td>
<td>없음</td>
<td>1024 x 16 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93LC86C</td>
<td>16</td>
<td>2.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>있음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
<tr>
<td>93C86A</td>
<td>16</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>2048 x 8 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93C86B</td>
<td>16</td>
<td>4.5-5.5</td>
<td>없음</td>
<td>1024 x 16 비트</td>
<td>없음</td>
<td>I, E</td>
<td>OT</td>
</tr>
<tr>
<td>93C86C</td>
<td>16</td>
<td>4.5-5.5</td>
<td>있음</td>
<td>8 비트, 16 비트 선택</td>
<td>있음</td>
<td>I, E, P, SN, ST, MS, MC</td>
<td></td>
</tr>
</tbody>
</table>
2.0 전기적 특성

절대적 최대치 (†)

전압 .. 7.0V
모든 입력, 출력 w.r.t. Vss ... -0.6V to VCC +1.0V
저장 온도 ...-65°C to +150°C
전원이 공급 되는 경우의 온도 범위 ..-40°C to +125°C
모든 핀의 ESD protection...≥ 4k V

† 주의: 위에서 제시한 스트레스의 절대적 최대치의 값들은 EEPROM 에 치명적인 파손을 가져 올 수 있다. 위에서 제시한 값들은 EEPROM 이 기능적으로만 동작이 되는 경우에 한하며 스펙에서 제시 되지 않은 다른 조건에서는 해당되지 않으며 그 이상의 조건에서는 디바이스의 신뢰성에 영향을 미칠수 있다.

데이터 2-1: DC 특성

모든 파라미터 값들은 다른 공지 사항이 없으면 명시된 값으로 적용 된다.
전압 = 1.8V to 5.5V
Industrial (I): TA = -40°C to +85°C
Automotive (E): TA = -40°C to +125°C

<table>
<thead>
<tr>
<th>Param. 넘버</th>
<th>심볼</th>
<th>파라미터</th>
<th>최소</th>
<th>평균</th>
<th>최대</th>
<th>단위</th>
<th>조건</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>ViH1</td>
<td>입력 전압 하이 레벨</td>
<td>2.0</td>
<td>-</td>
<td>Vcc+1</td>
<td>V</td>
<td>Vcc ≥ 2.7V</td>
</tr>
<tr>
<td></td>
<td>ViH2</td>
<td></td>
<td>0.7</td>
<td>Vcc</td>
<td>Vcc+1</td>
<td>V</td>
<td>Vcc ≤ 2.7V</td>
</tr>
<tr>
<td>D2</td>
<td>ViL1</td>
<td>입력 전압 로우 레벨</td>
<td>-0.3</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
<td>Vcc ≥ 2.7V</td>
</tr>
<tr>
<td></td>
<td>ViL2</td>
<td></td>
<td>-0.3</td>
<td>-</td>
<td>0.2</td>
<td>Vcc</td>
<td>Vcc ≤ 2.7V</td>
</tr>
<tr>
<td>D3</td>
<td>Vol1</td>
<td>출력 전압 로우 레벨</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
<td>IOL = 2.1 mA, VCC = 4.5V</td>
</tr>
<tr>
<td></td>
<td>Vol2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>Vcc</td>
<td>IOL = 100 μA, VCC = 2.5V</td>
</tr>
<tr>
<td>D4</td>
<td>VoH1</td>
<td>출력 전압 하이 레벨</td>
<td>2.4</td>
<td>Vcc-0.2</td>
<td>-</td>
<td>V</td>
<td>IOL = -400 μA, VCC = 4.5V</td>
</tr>
<tr>
<td></td>
<td>VoH2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Vcc</td>
<td>IOL = -100 μA, VCC = 2.5V</td>
</tr>
<tr>
<td>D5</td>
<td>IIL</td>
<td>입력 누설 전류</td>
<td>-</td>
<td>-</td>
<td>±1</td>
<td>μA</td>
<td>Vin = Vss to Vcc</td>
</tr>
<tr>
<td>D6</td>
<td>IIO</td>
<td>출력 누설 전류</td>
<td>-</td>
<td>-</td>
<td>±1</td>
<td>μA</td>
<td>Vout = Vss to Vcc</td>
</tr>
<tr>
<td>D7</td>
<td>Cin</td>
<td>입력 캐패시턴스</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>pF</td>
<td>Vin/Vout = 0V (노트 1)</td>
</tr>
<tr>
<td></td>
<td>COUT</td>
<td>(모든 입력 / 출력)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Vcc</td>
<td>TA = 25°C, Fclk = 1 MHz</td>
</tr>
<tr>
<td>D8</td>
<td>icc_w</td>
<td>쓰기 모드 전류</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>mA</td>
<td>Fclk = 3 MHz, Vcc = 5.5V (93XX46X/56X/66X)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>500</td>
<td>3</td>
<td>mA</td>
<td>Fclk = 3 MHz, Vcc = 5.5V (93XX76X/86X)</td>
</tr>
<tr>
<td>D9</td>
<td>icc_r</td>
<td>읽기 모드 전류</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>mA</td>
<td>Fclk = 3 MHz, Vcc = 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>500</td>
<td>1</td>
<td>mA</td>
<td>Fclk = 2 MHz, Vcc = 2.5V</td>
</tr>
<tr>
<td>D10</td>
<td>iccs</td>
<td>지 전력 소비 전류</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>μA</td>
<td>I-Temp (노트 2, 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>100</td>
<td>5</td>
<td>μA</td>
<td>E-Temp</td>
</tr>
<tr>
<td>D11</td>
<td>VPOR</td>
<td>VCC 전압 감지</td>
<td>-</td>
<td>1.5V</td>
<td>-</td>
<td>V</td>
<td>93AAX6A/B/C, 93LCX6A/B/C, 93CX6A/B/C (노트 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>3.8V</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

노트 1: 파라미터 값들은 100% 테스트 되었고 아니라 주기적으로 샘플 테스트 한 값이다.
2: ORG 핀과 PE 핀은 'A', 'B' 버전에는 적용 되지 않는다.
3: Ready/Busy 신호는 DO 핀으로 부터 클리어 되어야 한다. 자세한 사항은 Section 4.4 “데이터 출력 (DO)” 참조 할것.
테이블 2-2: AC 특성

모든 파라미터 값들은 다른 공지 사항이 없으면 명시된 값으로 적용 된다
전압 = 1.8V to 5.5V
Industrial (I): TA = -40°C to +85°C
Automotive (E): TA = -40°C to +125°C

<table>
<thead>
<tr>
<th>Param. 넘버.</th>
<th>심볼</th>
<th>파라미터</th>
<th>최소</th>
<th>최대</th>
<th>단위</th>
<th>조건</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>전압 = 1.8V to 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Industrial (I): TA = -40°C to +85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Automotive (E): TA = -40°C to +125°C</td>
</tr>
<tr>
<td>A1</td>
<td>FCLK</td>
<td>클릭 주파수</td>
<td>—</td>
<td>3</td>
<td>MHz</td>
<td>4.5V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MHz</td>
<td>2.5V ≤ Vcc < 4.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>MHz</td>
<td>1.8V ≤ Vcc < 2.5V</td>
</tr>
<tr>
<td>A2</td>
<td>TCKH</td>
<td>클릭 하이 구간 시간</td>
<td>200</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 4.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>—</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 2.5V</td>
</tr>
<tr>
<td>A3</td>
<td>TCKL</td>
<td>클릭 로우 구간 시간</td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 4.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>—</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 2.5V</td>
</tr>
<tr>
<td>A4</td>
<td>TCSS</td>
<td>집 선택 셋업 시간</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 4.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>—</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 2.5V</td>
</tr>
<tr>
<td>A5</td>
<td>TCSH</td>
<td>집 선택 홀드 시간</td>
<td>0</td>
<td>—</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td>A6</td>
<td>TCSL</td>
<td>집 선택 로우 시간</td>
<td>250</td>
<td>—</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td>A7</td>
<td>TDIS</td>
<td>데이터 입력 셋업 시간</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 4.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>—</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 2.5V</td>
</tr>
<tr>
<td>A8</td>
<td>TDH</td>
<td>데이터 입력 홀드 시간</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>4.5V ≤ Vcc < 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 4.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>—</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 2.5V</td>
</tr>
<tr>
<td>A9</td>
<td>TPD</td>
<td>데이터 출력 지연 시간</td>
<td>—</td>
<td>100</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V, CL = 100 pF (93C76X/86X)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>ns</td>
<td>4.5V ≤ Vcc < 5.5V, CL = 100 pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>ns</td>
<td>2.5V ≤ Vcc < 4.5V, CL = 100 pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>ns</td>
<td>1.8V ≤ Vcc < 2.5V, CL = 100 pF</td>
</tr>
<tr>
<td>A10</td>
<td>TCZ</td>
<td>데이터 출력 디제이블 시간</td>
<td>—</td>
<td>100</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V, (노트 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>ns</td>
<td>1.8V ≤ Vcc ≤ 4.5V, (노트 1)</td>
</tr>
<tr>
<td>A11</td>
<td>TSV</td>
<td>상태 유효 시간</td>
<td>—</td>
<td>200</td>
<td>ns</td>
<td>4.5V ≤ Vcc ≤ 5.5V, CL = 100 pF (93C76X/86X)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>ns</td>
<td>1.8V ≤ Vcc ≤ 4.5V, CL = 100 pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>ns</td>
<td>1.8V ≤ Vcc ≤ 2.5V, CL = 100 pF</td>
</tr>
<tr>
<td>A12</td>
<td>TW</td>
<td>프로그램 사이클 시간</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>Erase/Write 모드 93XX76X/86X (AA 및 LC 버전)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>ms</td>
<td>93XX46X/56X/66X (AA 및 LC 버전)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>ms</td>
<td>93C46X/56X/66X/76X/86X</td>
</tr>
<tr>
<td>A13</td>
<td>TWC</td>
<td>프로그램 사이클 시간</td>
<td>—</td>
<td>6</td>
<td>ms</td>
<td>ERAL 모드, 4.5V ≤ Vcc ≤ 5.5V</td>
</tr>
<tr>
<td>A14</td>
<td>TEC</td>
<td>프로그램 사이클 시간</td>
<td>—</td>
<td>15</td>
<td>ms</td>
<td>WRAL 모드, 4.5V ≤ Vcc ≤ 5.5V</td>
</tr>
<tr>
<td>A15</td>
<td>TRL</td>
<td></td>
<td>—</td>
<td>1M</td>
<td>사이클 25°C, Vcc = 5.0V, (노트 2)</td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>—</td>
<td>인듀어런스</td>
<td>1M</td>
<td>—</td>
<td>사이클 25°C, Vcc = 5.0V, (노트 2)</td>
<td></td>
</tr>
</tbody>
</table>

노트 1: 파라미터 값들은 100% 테스트 된것이 아니라 주기적으로 샘플 테스트 한 값이다.
2: 이값은 테스트 된것은 아니지만 특성에 의하여 보증이 된다. 자신의 어플리케이션에 정확한 인듀어런스 를 체크 하기 위해서는 www.microchip.com에서 Total Endurance™ Model을 참고 하기를 바란다
그림 2-1: 동기화된 데이터 타이밍

Note: 상태안정 시간은 (TSV) CS 에 대하여 상대적이다
테이블 2-3: 93XX46A/B/C 명령어 군

<table>
<thead>
<tr>
<th>명령어</th>
<th>SB</th>
<th>오피코드</th>
<th>어드레스</th>
<th>데이터 입력</th>
<th>데이터 출력</th>
<th>요구되는 클럭 사이클</th>
</tr>
</thead>
<tbody>
<tr>
<td>93XX46B 또는 93XX46C (ORG = 1 일때 : 16 비트 구조)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>9</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>9</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>9</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>9</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>D15-D0</td>
<td>25</td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>A5 A4 A3 A2 A1 A0</td>
<td>D15-D0</td>
<td>(RDY/BSY)</td>
<td>25</td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x</td>
<td>D15-D0</td>
<td>(RDY/BSY)</td>
<td>25</td>
</tr>
<tr>
<td>93XX46A 또는 93XX46C (ORG = 0 일때 : 8 비트 구조)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>10</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>10</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>10</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>10</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>D7-D0</td>
<td>18</td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>A6 A5 A4 A3 A2 A1 A0</td>
<td>D7-D0</td>
<td>(RDY/BSY)</td>
<td>18</td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x</td>
<td>D7-D0</td>
<td>(RDY/BSY)</td>
<td>18</td>
</tr>
</tbody>
</table>

테이블 2-4: 93XX56A/B/C 명령어 군

<table>
<thead>
<tr>
<th>명령어</th>
<th>SB</th>
<th>오피코드</th>
<th>어드레스</th>
<th>데이터 입력</th>
<th>데이터 출력</th>
<th>요구되는 클럭 사이클</th>
</tr>
</thead>
<tbody>
<tr>
<td>93XX56B 또는 93XX56C (ORG = 1 일때 : 16 비트 구조)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>x A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>11</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>11</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>11</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>11</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>x A6 A5 A4 A3 S2 A1 A0</td>
<td>—</td>
<td>D15-D0</td>
<td>27</td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>x A6 A5 A4 A3 S2 A1 A0</td>
<td>D15-D0</td>
<td>(RDY/BSY)</td>
<td>27</td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x</td>
<td>D15-D0</td>
<td>(RDY/BSY)</td>
<td>27</td>
</tr>
<tr>
<td>93XX56A 또는 93XX56C (ORG = 0 일때 : 8 비트 구조)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>x A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>12</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>12</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>12</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>12</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>x A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>D7-D0</td>
<td>20</td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>x A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>D7-D0</td>
<td>(RDY/BSY)</td>
<td>20</td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x</td>
<td>D7-D0</td>
<td>(RDY/BSY)</td>
<td>20</td>
</tr>
</tbody>
</table>
테이블 2-5: 93XX66A/B/C 명령어 군

<table>
<thead>
<tr>
<th>명령어</th>
<th>SB</th>
<th>오피코드</th>
<th>어드레스</th>
<th>데이터 입력</th>
<th>데이터 출력</th>
<th>요구되는 클럭 사이클</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>11</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>11</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>11</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>11</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>D15-D0</td>
<td>27</td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>A7 A6 A5 A4 A3 A2 A1 A0 D15-D0</td>
<td>(RDY/BSY)</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x x x x D15-D0</td>
<td>(RDY/BSY)</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

93XX66B 또는 93XX66C (ORG = 1 일때 : 16 비트 구조)

93XX66A 또는 93XX66C (ORG = 0 일때 : 8 비트 구조)

테이블 2-6: 93XX76A/B/C 명령어 군

<table>
<thead>
<tr>
<th>명령어</th>
<th>SB</th>
<th>오피코드</th>
<th>어드레스</th>
<th>데이터 입력</th>
<th>데이터 출력</th>
<th>요구되는 클럭 사이클</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>x A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>13</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>13</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>13</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>13</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>x A8 A7 A6 A5 A4 A3 A2 A1 A0 D15-D0</td>
<td>(RDY/BSY)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>x A8 A7 A6 A5 A4 A3 A2 A1 A0 D15-D0</td>
<td>(RDY/BSY)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x x x x x x D15-D0</td>
<td>(RDY/BSY)</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

93XX76B 또는 93XX76C (ORG = 1 일때 : 16 비트 구조)

93XX76A 또는 93XX76C (ORG = 0 일때 : 8 비트 구조)
93XX86A/B/C 명령어 군

<table>
<thead>
<tr>
<th>명령어</th>
<th>SB</th>
<th>오픈코드</th>
<th>어드레스</th>
<th>데이터 입력</th>
<th>데이터 출력</th>
<th>요구되는 클럭 사이클</th>
</tr>
</thead>
<tbody>
<tr>
<td>93XX86B 또는 93XX86C (ORG = 1 일때 : 16 비트 구조)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>A9 A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>13</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x x x x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>13</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>13</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>13</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>A9 A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>D15-D0</td>
<td>29</td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>A9 A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>D15-D0</td>
<td>(RDY/BSY)</td>
<td>29</td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x x x x x x x x</td>
<td>D15-D0</td>
<td>(RDY/BSY)</td>
<td>29</td>
</tr>
<tr>
<td>93XX86A 또는 93XX86C (ORG = 0 일때 : 8 비트 구조)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERASE</td>
<td>1</td>
<td>11</td>
<td>A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>14</td>
</tr>
<tr>
<td>ERAL</td>
<td>1</td>
<td>00</td>
<td>1 0 x x x x x x x x x x x x x x</td>
<td>—</td>
<td>(RDY/BSY)</td>
<td>14</td>
</tr>
<tr>
<td>EWDS</td>
<td>1</td>
<td>00</td>
<td>0 0 x x x x x x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>14</td>
</tr>
<tr>
<td>EWEN</td>
<td>1</td>
<td>00</td>
<td>1 1 x x x x x x x x x x x x x x</td>
<td>—</td>
<td>High-Z</td>
<td>14</td>
</tr>
<tr>
<td>READ</td>
<td>1</td>
<td>10</td>
<td>A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>—</td>
<td>D7-D0</td>
<td>22</td>
</tr>
<tr>
<td>WRITE</td>
<td>1</td>
<td>01</td>
<td>A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>D7-D0</td>
<td>(RDY/BSY)</td>
<td>22</td>
</tr>
<tr>
<td>WRAL</td>
<td>1</td>
<td>00</td>
<td>0 1 x x x x x x x x x x x x x</td>
<td>D7-D0</td>
<td>(RDY/BSY)</td>
<td>22</td>
</tr>
</tbody>
</table>
3.0 기능 설명

ORG 펀이 Vcc 쪽으로 연결이 되어 있는 경우에는 16 비트 통신이 이루어지며 GDN 쪽으로 연결이 되어 있는 경우에는 8 비트 통신이 이루어진다.

DI(Data In) 펀은 EEPROM 쪽으로 전달되는 명령어, 어드레스, 그리고 데이터들은 CLK 펀의 상승 에지에서 전달이 된다.

DO(Data Out) 펀은 EEPROM으로 부터 데이터를 임는 경우 그리고 EEPROM으로 데이터를 라이트하는 동작을 할 때 Ready/Busy 신호로 제공하는 경우를 제외하면 명령어, 어드레스, 그리고 데이터들은 Ready/Busy 신호로 파악할 수 있는데 이는 di(Data In) 펀으로 전달되는 명령어, 어드레스, 그리고 데이터들은 CLK 펀의 상승에지에서 전달이 된다.

DO 펀은 CS 펀의 하강 - 에지에서 하이 - 임피던스 (High-Z) 상태로 들어가게 된다.

3.1 시작 조건

EEPROM과의 통신은 CS 펀과 DI 펀이 HIGH 레벨 상태를 유지하고 있을 때 처음 발생되는 CLK 펀의 상승 에지에서 시작이 된다.

시작 조건이 검출되기 이전에는 CS 펀,CLK 펀,DI 펀들은 EEPROM의 동작 상태인 Read, Write, Erase, EWEN, EWDS, ERAL, WRAL의 상태가 아닌 어떠한 상태(High/Low 레벨)로 있어도 가능하다. 또한 시작 조건에 부합되는 상태는 불가능한 상태(용 신호로 전달되어야 한다. 그리고 이에 따라 CS 펀 외부에 10 kΩ 풀 다운 보호 저항을 연결하여 주는 것이 좋다.

3.2 데이터 입력 / 데이터 출력 (DI/DO)

Data In (DI) 펀과 Data Out (DO) 펀은 서로 연결이 가능하다.

그러나 이러한 연결 방법은 EEPROM으로 부터 읽기 동작을 하는 과정에서 만약 A0가 HIGH 레벨인 경우 “dummy zero”를 발생 시켜 버스가 졸음 하는 현상이 발생 될 수 있다. 따라서 이러한 조건에서 Data Out (DO) 펀에서 나타나는 전압 레벨은 부정확하게 되며 DO 펀의 신호.cc 레벨은 반드시 LOW 레벨을 유지 하고 있어야 한다.

3.3 데이터 프로토콜

’93AAXX’와 ’93LCXX’ EEPROM들은 공급되는 전압 (Vcc) 레벨이 1.5V 이하로 내려가면 모든 동작이 중단되며 ’93CXX’ EEPROM들은 3.8V 이하로 Vcc가 내려가면 모든 동작이 중단된다.

추가적으로 EWEN 와 EWDS 명령어들은 EEPROM 동작 시 오류로 인하여 잘못된 데이터가 라이팅되는 것을 막아 주는 명령어이다.

Note: 잘못된 데이터가 라이팅되는 것을 방지하기 위해서는 반드시 라이팅 동작 이후에는 EWDS 명령을 사용하여야 하며 또한 CS 펀 외부에 10 kΩ 풀 다운 보호 저항을 연결하여 주는 것이 좋다.

EEPROM으로 전원을 투입하면 EEPROM은 자동적으로 EWDS 모드로 들어가므로 WRITE 명령을 사용하기 위해서는 반드시 EWEN 명령이 먼저 수행되어야 한다.

Note: 93XX76C/86C EEPROM인 경우 비 정상적인 라이팅을 방지하기 위해서는 PE 펀을 반드시 LOW 레벨 상태로 만드는 것이 중요하다.

블록 다이어그램

Note: 하나의 명령을 전송하기 위하여 CS 펀이 HIGH 레벨 상태로 전환 되었을때, 또는 DO 펀의 신호 저하 사항은 반드시 LOW 레벨을 유지 하고 있어야 한다.
3.4 지움 (ERASE)

ERASE 명령은 지정된 번지의 내용을 로직 '1'의 상태로 만드는 명령어이다.

EEPROM 으로 전송이 되는 마지막 어드레스 비트 이후에 CS핀은 LOW 상태를 가리키는데 이러한 CS핀의 하강 – 에지에서 자동적으로 프로그래밍 사이클이 초기화 되지만 '93CXX' EEPROM은 전송이 되는 마지막 어드레스 비트 바로 전의 CLK핀의 상승 – 에지에서 프로그래밍 사이클이 초기화 된다.

CS핀이 최소 250 ns (TCSL) 동안 LOW 상태 이후에 HIGH 상태로 전환되면 현재 EEPROM의 상태를 Ready/Busy 신호를 통하여 체크할 수 있는데 만약 DO핀이 로직 '0'을 나타내면 아직 프로그래밍이 진행 중임을 의미하며 로직 '1'을 나타내면 지정된 번지의 내용이 지워졌으며 다음 명령어를 받아들일 준비가 되었음을 나타낸다.

그림 3-1: 93AAXX 와 93LCXX EEPROM의 ERASE 타이밍도

그림 3-2: 93CXX EEPROM의 ERASE 타이밍도

Note: Erase 사이클이 끝난 후에 시작 비트와 CS핀이 LOW 상태로 되면 DO핀상의 Ready/Busy상태는 클리어 됩니다.
3.5 모든 영역 지움 (ERAL)

Erase All (ERAL) 명령은 모든 번지의 내용을 로직 '1'의 상태로 만드는 명령이며 ERAL 사이클은 Opcode를 제외하면 Erase 사이클과 모두 동일하다.

EEPROM으로 전송되는 마지막 어드레스 바이트 이후에 CS핀은 LOW 상태로 들어가는데 이러한 CS 핀의 하강 - 에지에서 자동적으로 프로그래밍 사이클이 초기화 되지만 '93CXX' EEPROM은 전송되는 마지막 어드레스바로 전의 CLK 핀의 상승 - 에지에서 프로그래밍 사이클이 초기화 된다.

CLK 핀을 통한 클럭킹은 EEPROM이 ERAL 사이클에 들어간 이후에는 필요치 않다.

CS 핀이 최소 250 ns (TCSL) 동안 LOW 상태 이후에 HIGH 상태로 전환이라면 현재 EEPROM의 상태를 DO핀상의 Ready/Busy 신호를 통해서 체크 할 수 있다.

ERAL의 정확한 동작을 위해서는 반드시 Vcc ≥ 4.5V이어야 한다.

Note: ERAL 명령이 끝난 후에 시작 비트와 CS 핀이 LOW 상태로 되면 DO 핀상의 Ready/Busy 상태는 클리어 되는 것이다.
3.6 ERASE/WRITE (EWDS/EWEN)

모든 93XX EEPROM들은 전원 투입 시에는 Erase/Write 디제이블 (EWDS) 상태이므로 EEPROM을 지우거나 데이터를 라이팅 하기 위해서는 반드시 Erase/Write 인에이블 (EWEN) 명령을 사용 하여야만 한다.

EWEN 명령이 수행이 되면 EEPROM은 EWDS 명령이 사용이 되거나 또는 Vcc 전원이 차단이 될때까지는 라이팅 가능 상태를 유지 할 것이다.

비정상적인 데이터의 라이팅을 방지하기 위해서 EWDS 명령은 모든 프로그래밍 기능을 수행 하는 Erase/Write 기능을 디제이블 시킬 수 있다.

단 READ 명령은 EWEN/EWDS 명령과 독립적으로 사용이 될 수 있다.

그림 3-5: EWDS 타이밍도

그림 3-6: EWEN 타이밍도
3.7 읽기 동작

READ 명령을 사용하면 DO 핀을 통하여 특정 메모리 번지의 데이터를 얻을 수 있다.

8비트 통신인 경우 (ORG 핀이 LOW 상태이거나 A 버전 EEPROM) 혹은 16비트 통신인 경우 (ORG 핀이 HIGH 상태이거나 B 버전 EEPROM) 에는 맨 처음에는 쓰레기 값인 0 비트가 우선 송신이 된다.

출력 되는 데이터 비트들은 CLK 핀의 상승에지에서 변환되며 스펙에서규정 하고 있는 시간 지연 (TPD) 이후에 안정이 될 것이다.

CS 핀이 계속 HIGH 레벨 상태를 유지 하고 있으면 연속적으로 EEPROM으로부터 데이터를 읽는 것이 가능하다. 이것이 가능한 이유는 EEPROM이 자동적으로 사일로 전가 사라지면서 데이터를 출력하기 때문이다.

그림 3-7: READ 타이밍도
3.8 쓰기 (WRITE)

WRITE 명령이 수행되면 특정 번지에 8 비트 단위 (ORG 판이 LOW 이거나 A 버전 EEPROM) 혹은 16 비트 단위 (ORG 판이 HIGH 이거나 B 버전 EEPROM) 로 데이터가 라이팅 된다.

93AAXX 혹은 93LCXX EEPROM 은 DI 핀을 통하여 마지막 데이터가 들어온 이후에 CS 핀에 하강 - 에지가 발생이 되면 특정 영역을 자동으로 지우면서 라이팅이 되는것이다.

93AAXX 혹은 93LCXX EEPROM은 DI 핀을 통하여 마지막 데이터가 들어온 이후에 CS 핀이 LOW 상태를 하강 - 에지가 발생이 되면 특정 영역을 자동으로 지우면서 라이팅이 된다.

93AAXX 혹은 93LCXX EEPROM은 DI 핀을 통하여 마지막 데이터가 들어온 이후에 CS 핀에 하강 - 에지가 발생이 되면 특정 영역을 자동으로 지우면서 라이팅이 된다.

93AAXX 혹은 93LCXX EEPROM은 DI 핀을 통하여 마지막 데이터가 들어온 이후에 CS 핀에 하강 - 에지가 발생이 되면 특정 영역을 자동으로 지우면서 라이팅이 된다.

CS 판이 최소 250 ns (TCSL) 동안 LOW 상태 이후에 HIGH 상태로 가면 현재 EEPROM의 상태를 DO 판상의 Ready/Busy 신호를 통하여 체크 할 수 있다. 만약 DO 판이 로직 '0'를 나타내면 아직 프로그래밍이 진행중임을 의미하며 로직 '1'을 나타내면 지정된 번지에 데이터가 라이팅 되었으며 다음 명령어를 받아들일 준비가 되었음을 나타낸다.

Note: 93XX76C 또는 93XX86C와 같이 PE 핀이 있는 EEPROM인 경우는 전송 되는 마지막 데이터 비트의 상승 - 에지 이전에 PE 핀에 로직 '0'이 공급 되어야만 한다.

Note: 라이팅 사이클이 끝난 후에 시작 비트와 CS 핀이 LOW 상태로 되면 DO 판상의 Ready/Busy 상태는 클리어 된다.

그림 3-8: 93AAXX 와 93LCXX EEPROM 라이트 타이밍도

그림 3-9: 93CXX EEPROM 라이트 타이밍도
3.9 WRITE ALL (WRAL)

Write All (WRAL) 명령은 전송되는 명령어에 포함된 데이터를 EEPROM의 모든 영역에 라이팅을 한다.

93AAXX와 93LCXX EEPROM은 DI핀을 통하여 들어오는 마지막 데이터 비트 이후 CS핀의 하강 - 에지가 발생이 되면 자동적으로 EEPROM의 모든 영역을 지우며 라이팅이 시작된다.

93CXX EEPROM인 경우는 전송되는 데이터의 마지막 비트 클럭 상승 - 에지에서 자동적으로 EEPROM의 모든 영역을 지우며 라이팅이 시작된다.

CLK핀을 통한 클럭은 EEPROM이 WRAL 라이팅 사이클에 들어간 이후에는 필요 없다.

WRAL 명령은 EEPROM의 ERAL 기능을 포함하고 있으므로 WRAL 명령을 수행하기 전에 ERAL 명령이 반드시 요구 되지는 않지만 반드시 EEPROM은 EWEN 상태에 있어야만 한다.

CS핀의 최소 250 ns (TCSL) 동안 LOW 상태 이후에 HIGH 상태로 전환되면 현재 EEPROM의 상태를 DO핀의 Ready/Busy 신호를 통하여 체크할 수 있다.

WRAL의 정확한 동작을 위해서는 반드시 VCC ≥ 4.5V이어야만 한다.

\[\text{Note: 93XX76C 또는 93XX86C와 같이 PE핀이 있는 EEPROM인 경우는 전송되는 마지막 데이터 비트의 상승 - 에지 이전에 PE핀에 로직 '0' 레벨이 공급되어야만 한다.} \]

\[\text{Note: Write All 사이클이 끝난후에 시작 비트와 CS핀의 LOW 상태로 되면 DO핀 상태의 Ready/Busy 상태는 클리어 됨이다.} \]
4.0 편 설명

테이블 4-1: 편 기능

<table>
<thead>
<tr>
<th>편 이름</th>
<th>SOIC/PDIP/MSOP/TSSOP/DFN</th>
<th>SOT-23</th>
<th>편 기능</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>1</td>
<td>5</td>
<td>EEPROM 선택</td>
</tr>
<tr>
<td>CLK</td>
<td>2</td>
<td>4</td>
<td>클럭 입력</td>
</tr>
<tr>
<td>DI</td>
<td>3</td>
<td>3</td>
<td>데이터 입력</td>
</tr>
<tr>
<td>DO</td>
<td>4</td>
<td>1</td>
<td>데이터 출력</td>
</tr>
<tr>
<td>Vss</td>
<td>5</td>
<td>2</td>
<td>그라운드</td>
</tr>
<tr>
<td>ORG</td>
<td>6</td>
<td>N/A</td>
<td>ORG (93XX46C/56C/66C/76C/86C)</td>
</tr>
<tr>
<td>NC(1)</td>
<td>7</td>
<td>N/A</td>
<td>93XXA/B EEPROM은 내부 연결이 없슴</td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td></td>
<td>프로그램 인베이블 (93XX76C/86C)</td>
</tr>
<tr>
<td>NC(1)</td>
<td></td>
<td></td>
<td>93XXA/B EEPROM은 내부 연결이 없슴</td>
</tr>
<tr>
<td>Vcc</td>
<td>8</td>
<td>6</td>
<td>전원</td>
</tr>
</tbody>
</table>

노트 1: 내부 연결이 되어 있지 않은 NC 편들의 논리 레벨은 "don't care" 상태가 된다.

4.1 칩 선택 (CS)

CS 편이 HIGH 레벨이 있는 경우에 EEPROM 이 선택이 되며 LOW 레벨이 있으면 EEPROM은 선택이 되지 않습니다. 고 칩 선택 모드인 Standby 모드로 진입이 된다. 그러나 CS(Chip Select) 편이 LOW 레벨이라 할지라도 이미 실행중인 프로그래밍 사이클은 계속 진행이 된다. 즉 프로그래밍 사이클 동안에 CS 편이 LOW 레벨로 변한 이래 프로그래밍 사이클이 모두 수행이 완료후에 EEPROM이 Standby 모드로 돌아갑을 의미한다.

CS 편은 연속적으로 명령어 수행시 최소한 250 ns (TCSL)의 LOW 신호를 가져야 한다.

CS 편이 LOW 레벨인 경우에는 EEPROM 내부 제어 로직에서는 리셋 상태에 있게 된다.

4.2 시리얼 클럭 (CLK)

시리얼 클록은 마스터 디바이스와 93XX EEPROM 사이의 통신 동기를 위해서 사용이 된다.

오피코드 명령들, 어드레스 및 데이터 비트들은 CLK의 상승 - 에지에 의하여 EEPROM 내부로 들어오고, CLK의 상승 - 에지에 의하여 데이터들은 EEPROM으로부터 출력이 된다. CLK 편은 전송 진행시 HIGH 레벨 혹은 LOW 레벨이 아닌 부분에서도 될 수 있으며, Clock High Time (Tckh)과 Clock Low Time (Tclk)에서도 계속 진행이 가능하다. 이것은 마스터에게 하루 끝내도 오피코드, 어드레스 및 데이터들이 준비 할 수 있게끔 도움을 주는 역할을 하는 것이다.

 만약 CS 편이 LOW 레벨이면 CLK 편은 "don't care" 상태가 된다. 만약 CS 편의 상태가 HIGH 레벨 상태일 지라도 시각 조건이 검출되지 않았다면 (Di=0) EEPROM 자신의 상태를 변환시키지 않으면서 여러 클록을 받아들일 수 있다.(즉 시각 조건을 가다듬는다.)

CLK 신호는 EEPROM 자신의 라이트 하는 동안에는 요구되지 않는다.(즉 auto Erase/Write 사이클)

시작 조건이 검출 된 후에는 반드시 필요한 만큼의 클락 사이클이 공급 되어야 한다.(CLK 편은 각각 LOW 레벨에서 HIGH 레벨로 변환됨)

명령어가 실행되기 전에 필요한 오피코드, 어드레스 및 데이터 비트들은 여러가지의 클락 사이클을 필요로 한다. 그 이후 CLK와 DI 편은 새로운 시작 조건이 검출 이 완료까지 기다리면서 "don't care" 입력 상태로 있게 된다.

4.3 데이터 입력 (DI)

데이터 입력 (DI) 편으로는 동기 되어진 CLK 입력에 따라서 시작 비트, 오피코드, 어드레스, 동기 데이터 비트들이 입력 된다.

4.4 데이터 출력 (DO)

데이터 출력 (DO) 편으로는 동기 되어진 클럭 입력 (클릭의 상승 - 에지 이후 Tpd)에 따라서 데이터를 출력 시키는데 사용이 된다. 또한 DO 편은 통하여 Erase와 Write 사이클 동안의 Ready/Busy 상태를 알려 준다. Ready/Busy 상태 정보의 확인은 최소로 요구되는 CS 편의 LOW 레벨 시간 (TCSL)이후 CS 편이 HIGH 레벨로 변환되고 Erase와 Write 동작이 초기화 되었을 때 DO 편을 통하여 확인 가능하다.

만약 CS 편이 전영역 Erase 또는 Write 사이클 동안에 LOW 레벨을 유지 한다면 DO 편을 통하여 현재 상태의 확인을 불가능 하다. 이 경우 DO 편은 하이 - 임피던스 상태로 될 것이다. 만약 Erase/Write 사이클 이후에 현재 상태가 작동 되었다면 데이터 라인은 디바이스가 준비가 되었음을 알려주기 위하여 하이 - 레벨 상태로 될 것이다.

주 : 만약 READ 사이클이 끝났을때 시각 비트와 CS 편이 LOW 상태로 되면 DO 편의 Ready/Busy 상태는 클러어 될 것이다.

© 2005 마이크로업 텍크놀로지.
4.5 OEG 핀 (ORG)

ORG 핀이 Vcc 혹은 로직 High 상태로 연결이 되어 있으면 16 비트 메모리 조직이 선택된것이며 ORG 핀이 Vss 혹은 로직 Low 상태로 연결이 되어 있으면 8 비트 메모리 조직이 선택된것이다. 따라서 EEPROM의 정확한 동작을 위해서는 ORG 핀을 유효한 상태의 로직 레벨로 연결 시켜야만 한다.

ORG 기능이 없는 EEPROM인 경우는 ORG 핀상의 내부 연결은 되어있지 않다. 이러한 디바이스들은 이미 마이크로칩 공장에서 메모리 조직이 고정이 되어 출력시된다.

'A' 버전 디바이스 – 8 비트 메모리 조직
'B' 버전 디바이스 – 16 비트 메모리 조직

4.6 프로그램 인에이블 핀 (PE)

8 핀 93XX76C 와 93XX86C EEPROM은 PE 핀의 논리 레벨을 통하여 EEPROM 내부 메모리에 데이터를 라이팅 하는 기능을 인에이블 또는 디제이블 시킬 수 있다.

93XX76C와 93XX86C은 제외한 모든 EEPROM들은 PE 기능을 가지고 있지 않으며 내부적으로 연결되어 있지 않다. PE 핀에 High 레벨을 공급하면 EEPROM으로 라이팅 가능하며 반면에 Low 레벨을 공급하면 라이팅 가능성이 금지된다. 아래 테이블 4-2에서 나타낸것처럼 PE 핀은 비정상적인 데이터가 EEPROM에 라이팅 되는 것을 방지하기 위하여 사용되는 EWEN/EWDS 명령과 함께 사용될 수가 있다.

따라서 93XX76C 혹은 93XX86C EEPROM의 PE 핀은 반드시 정확한 로직 레벨로 연결하여야 하며 플로팅 상태로 나누어서는 안된다. 이를 제외한 모든 EEPROM은 PE 기능이 없으며 PE 핀은 EEPROM 내부의 연결이 되어있지 않고 항상 프로그래밍 기능이 인에이블 되어있다.

테이블 4-2: WRITE 프로토콜선 구조

<table>
<thead>
<tr>
<th>EWEN/EWDS 레지</th>
<th>PE 핀</th>
<th>라이팅 가능 여부</th>
</tr>
</thead>
<tbody>
<tr>
<td>인에이블</td>
<td>1</td>
<td>가능</td>
</tr>
<tr>
<td>디제이블</td>
<td>1</td>
<td>불가능</td>
</tr>
<tr>
<td>인에이블</td>
<td>0</td>
<td>불가능</td>
</tr>
<tr>
<td>디제이블</td>
<td>0</td>
<td>불가능</td>
</tr>
</tbody>
</table>

* PE 핀 레벨은 EWEN/EWDS 레지의 상태와 다르지 않다.

노트: 정확한 로직 제어를 위하여 PE 핀은 반드시 EEPROM을 인에이블 시키는 Chip Select 이전에 로직 High 상태로 전환되어야 하며 Chip Select가 디제이블 될때까지 로직 High 상태를 유지 하여야 한다.
부록 A: 개정 근거

개정 A

초본 발행 본임. 모든 93 시리즈 마이크로 와이어 시리얼 EEPROM 데이터 쉬트가 포함되어 있다.
5.0 패키지 정보

5.1 패키지 마킹 정보

8핀 PDIP

보기: Pb-free

보기: Sn/Pb

노트: 2번 째 라인에서 온도 범위를 나타낸다.

규칙:

<table>
<thead>
<tr>
<th>XX...X</th>
<th>파트 넘버 또는 파트 넘버 코드</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>온도 (I, E)</td>
</tr>
<tr>
<td>Y</td>
<td>몇 년도에 만들어진지 표시 (캘린더 year의 마지막 자릿수)</td>
</tr>
<tr>
<td>YY</td>
<td>온도 코드에 만들었는지 표시 (캘린더 year의 마지막 2자)</td>
</tr>
<tr>
<td>WW</td>
<td>몇 번째 주에 만들어진지 표시 (1월의 첫번째 주가 '01'이다)</td>
</tr>
<tr>
<td>NNN</td>
<td>P번 패키지는 적용 엔진 코드 (적은 패키지는 2영문자)</td>
</tr>
<tr>
<td>6e3</td>
<td>Matte Tin (Sn)의 Pb-free JEDEC 표시</td>
</tr>
</tbody>
</table>

노트: 매우 작은 패키지는 Pb-free JEDEC 표시 마크만
6e3를 표시할 공간이 없으므로 박스 외부 또는 레이블에 표시 될 것이다.

노트: 모든 마이크로칩 과트 넘버는 한 라인으로 마킹을 할 수가 없다. 따라서 다음 라인에 추가 정보를 넣어야 하므로 사용자가 원하는 문자의 삽입에는 상당한 제한이 있다.

노트: Pb-free에 대한 자세한 정보는 www.microchip.com/Pbfree 에서 확인 하기를 바란다.
93XX46X/56X/66X/76X/86X

8핀 SOIC 보기: Pb-free

보기: Sn/Pb

3와이어 8핀 SOIC (SN) 패키지 마킹 (Pb-free 또는 Sn/Pb)

<table>
<thead>
<tr>
<th>파트</th>
<th>Line 1 마킹</th>
<th>파트</th>
<th>Line 1 마킹</th>
<th>파트</th>
<th>Line 1 마킹</th>
</tr>
</thead>
<tbody>
<tr>
<td>93AA46A</td>
<td>93AA46AT</td>
<td>93LC46A</td>
<td>93LC46AT</td>
<td>93C46A</td>
<td>93C46AT</td>
</tr>
<tr>
<td>93AA46B</td>
<td>93AA46BT</td>
<td>93LC46B</td>
<td>93LC46BT</td>
<td>93C46B</td>
<td>93C46BT</td>
</tr>
<tr>
<td>93AA46C</td>
<td>93AA46CT</td>
<td>93LC46C</td>
<td>93LC46CT</td>
<td>93C46C</td>
<td>93C46CT</td>
</tr>
<tr>
<td>93AA56A</td>
<td>93AA56AT</td>
<td>93LC56A</td>
<td>93LC56AT</td>
<td>93C56A</td>
<td>93C56AT</td>
</tr>
<tr>
<td>93AA56B</td>
<td>93AA56BT</td>
<td>93LC56B</td>
<td>93LC56BT</td>
<td>93C56B</td>
<td>93C56BT</td>
</tr>
<tr>
<td>93AA56C</td>
<td>93AA56CT</td>
<td>93LC56C</td>
<td>93LC56CT</td>
<td>93C56C</td>
<td>93C56CT</td>
</tr>
<tr>
<td>93AA66A</td>
<td>93AA66AT</td>
<td>93LC66A</td>
<td>93LC66AT</td>
<td>93C66A</td>
<td>93C66AT</td>
</tr>
<tr>
<td>93AA66B</td>
<td>93AA66BT</td>
<td>93LC66B</td>
<td>93LC66BT</td>
<td>93C66B</td>
<td>93C66BT</td>
</tr>
<tr>
<td>93AA66C</td>
<td>93AA66CT</td>
<td>93LC66C</td>
<td>93LC66CT</td>
<td>93C66C</td>
<td>93C66CT</td>
</tr>
<tr>
<td>93AA76A</td>
<td>93AA76AT</td>
<td>93LC76A</td>
<td>93LC76AT</td>
<td>93C76A</td>
<td>93C76AT</td>
</tr>
<tr>
<td>93AA76B</td>
<td>93AA76BT</td>
<td>93LC76B</td>
<td>93LC76BT</td>
<td>93C76B</td>
<td>93C76BT</td>
</tr>
<tr>
<td>93AA76C</td>
<td>93AA76CT</td>
<td>93LC76C</td>
<td>93LC76CT</td>
<td>93C76C</td>
<td>93C76CT</td>
</tr>
<tr>
<td>93AA86A</td>
<td>93AA86AT</td>
<td>93LC86A</td>
<td>93LC86AT</td>
<td>93C86A</td>
<td>93C86AT</td>
</tr>
<tr>
<td>93AA86B</td>
<td>93AA86BT</td>
<td>93LC86B</td>
<td>93LC86BT</td>
<td>93C86B</td>
<td>93C86BT</td>
</tr>
<tr>
<td>93AA86C</td>
<td>93AA86CT</td>
<td>93LC86C</td>
<td>93LC86CT</td>
<td>93C86C</td>
<td>93C86CT</td>
</tr>
</tbody>
</table>

노트: T = 온도 범위: I = Industrial, E = Extended

Sn/Pb EEPROM 의 온도는 두번째 라인에 표시된다

규칙: XX...X 패트 넘버 또는 패트 넘버 코드
T 온도 (I, E)
Y 낭년도에 만들어진지 표시 (캘린더 year 의 마지막 디지트)
YY 낭년도에 만들어진지 표시 (캘린더 year 의 마지막 2 디지트)
WWW 월의 첫번째 주가 '01'이다
NNN 따라서 만들어진지 추적 영문 코드 (적은 패키지는 2 영문자)
3e Matte Tin (Sn)의 Pb-free JEDEC 표시

노트: 매우 작은 패키지는 Pb-free JEDEC 표시 마크만 3e표시일 경우 알기에 적절한 표지를 하지 않으므로 박스 외부 또는 라벨에 표시 될 것이다.

노트: 모든 마이크로칩 패트 넘버는 한 라인으로 마킹을 할 수가 없다. 따라서 다음 라인에 추가 정보를 빼아야 하므로 사용자가 원하는 문자의 삽입에는 상당한 제한이 있다.

노트: Pb-free 에 대한 자세한 정보는 www.microchip.com/Pbfree 에서 확인 하기를 바란다
3 Way-2x3 DFN Package Marking (Pb-free)

<table>
<thead>
<tr>
<th>Part</th>
<th>Industrial Line 1 Mark</th>
<th>E-Temp Line 1 Mark</th>
<th>Part</th>
<th>Industrial Line 1 Mark</th>
<th>E-Temp Line 1 Mark</th>
<th>Part</th>
<th>Industrial Line 1 Mark</th>
<th>E-Temp Line 1 Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>93AA46A</td>
<td>301</td>
<td>302</td>
<td>93LC46A</td>
<td>304</td>
<td>305</td>
<td>93C46A</td>
<td>307</td>
<td>308</td>
</tr>
<tr>
<td>93AA46B</td>
<td>311</td>
<td>312</td>
<td>93LC46B</td>
<td>314</td>
<td>315</td>
<td>93C46B</td>
<td>317</td>
<td>318</td>
</tr>
<tr>
<td>93AA46C</td>
<td>321</td>
<td>322</td>
<td>93LC46C</td>
<td>324</td>
<td>325</td>
<td>93C46C</td>
<td>327</td>
<td>328</td>
</tr>
<tr>
<td>93AA56A</td>
<td>331</td>
<td>332</td>
<td>93LC56A</td>
<td>334</td>
<td>335</td>
<td>93C56A</td>
<td>337</td>
<td>338</td>
</tr>
<tr>
<td>93AA56B</td>
<td>341</td>
<td>342</td>
<td>93LC56B</td>
<td>344</td>
<td>345</td>
<td>93C56B</td>
<td>347</td>
<td>348</td>
</tr>
<tr>
<td>93AA56C</td>
<td>351</td>
<td>352</td>
<td>93LC56C</td>
<td>354</td>
<td>355</td>
<td>93C56C</td>
<td>357</td>
<td>358</td>
</tr>
<tr>
<td>93AA66A</td>
<td>361</td>
<td>362</td>
<td>93LC66A</td>
<td>364</td>
<td>365</td>
<td>93C66A</td>
<td>367</td>
<td>368</td>
</tr>
<tr>
<td>93AA66B</td>
<td>371</td>
<td>372</td>
<td>93LC66B</td>
<td>374</td>
<td>375</td>
<td>93C66B</td>
<td>377</td>
<td>378</td>
</tr>
<tr>
<td>93AA66C</td>
<td>381</td>
<td>382</td>
<td>93LC66C</td>
<td>384</td>
<td>385</td>
<td>93C66C</td>
<td>387</td>
<td>388</td>
</tr>
<tr>
<td>93AA76C</td>
<td>3B1</td>
<td>3B2</td>
<td>93LC76C</td>
<td>3B4</td>
<td>3B5</td>
<td>93C76C</td>
<td>3B7</td>
<td>3B8</td>
</tr>
<tr>
<td>93AA86C</td>
<td>3E1</td>
<td>3E2</td>
<td>93LC86C</td>
<td>3E4</td>
<td>3E5</td>
<td>93C86C</td>
<td>3E7</td>
<td>3E8</td>
</tr>
</tbody>
</table>

Rules:
- XX...X: Part number or part number code
- T: Temperature (I, E)
- Y: Month of manufacture (Calendar year of month 2 digit)
- YY: Calendar year (Calendar year of last 2 digits)
- WW: Week of manufacture (1st week of January is '01')
- NNN: Traceable English code (Small packages 2 English letters)

Matte Tin (Sn) of Pb-free JEDEC mark

Note:
- Very small packages will use Pb-free JEDEC mark and place the mark outside the box or on a label.
- Use of Pb-free JEDEC mark on very small packages is limited as to the amount of characters that can be printed.

Note:
- Pb-free part information can be found at www.microchip.com/Pbfree.
93XX46X/56X/66X/76X/86X

6핀 SOT-23

보기: Pb-free

규칙:
- XX...X: 파트 넘버 또는 파트 넘버 코드
- T: 온도(I, E)
- Y: 몇 년도에 만들었는지 표시(캘린더 year의 마지막 디지트)
- YY: 몇 년도에 만들었는지 표시(캘린더 year의 마지막 2 디지트)
- WW: 몇번째 주에 만들었는지 표시(1월의 첫번째 주가 '01'이다)
- NNN: 어디서 만들었는지 추적 영문 코드(적은 패키지는 2 영문자)
- Matte Tin (Sn):의 Pb-free JEDEC 표시

노트:
- 매우 작은 패키지에는 Pb-free JEDEC 표시 마크인 '3'을 표시 할 공간이 없으므로 박스 외부 또는 릴 - 라벨에 표시 됩니다.
- 모든 마이크로펌 파트 넘버는 한 라인으로 마킹을 할 수가 없다. 따라서 다음 라인에 추가 정보를 넣어야 하므로 사용자가 원하는 문자의 삽입에는 상당한 제한이 있다.

노트: Pb-free에 대한 자세한 정보는 www.microchip.com/Pbfree에서 확인하기 바랍니다.

3와이어 6핀 SOT-23 패키지 마킹 (Pb-free)

<table>
<thead>
<tr>
<th>파트</th>
<th>Industrial Line 1 마킹</th>
<th>E-Temp Line 1 마킹</th>
<th>파트</th>
<th>Industrial Line 1 마킹</th>
<th>E-Temp Line 1 마킹</th>
<th>파트</th>
<th>Industrial Line 1 마킹</th>
<th>E-Temp Line 1 마킹</th>
</tr>
</thead>
<tbody>
<tr>
<td>93AA46A</td>
<td>1BNN</td>
<td>1CNN</td>
<td>93LC46A</td>
<td>1ENN</td>
<td>1FNN</td>
<td>93C46A</td>
<td>1HNN</td>
<td>1JNN</td>
</tr>
<tr>
<td>93AA46B</td>
<td>1LNN</td>
<td>1MNN</td>
<td>93LC46B</td>
<td>1PNN</td>
<td>1RNN</td>
<td>93C46B</td>
<td>1TNN</td>
<td>1UNN</td>
</tr>
<tr>
<td>93AA56A</td>
<td>2BNN</td>
<td>2CNN</td>
<td>93LC56A</td>
<td>2ENN</td>
<td>2FNN</td>
<td>93C56A</td>
<td>2HNN</td>
<td>2JNN</td>
</tr>
<tr>
<td>93AA56B</td>
<td>2LNN</td>
<td>2MNN</td>
<td>93LC56B</td>
<td>2PNN</td>
<td>2RNN</td>
<td>93C56B</td>
<td>2TNN</td>
<td>2UNN</td>
</tr>
<tr>
<td>93AA66A</td>
<td>3BNN</td>
<td>3CNN</td>
<td>93LC66A</td>
<td>3ENN</td>
<td>3FNN</td>
<td>93C66A</td>
<td>3HNN</td>
<td>3JNN</td>
</tr>
<tr>
<td>93AA66B</td>
<td>3LNN</td>
<td>3MNN</td>
<td>93LC66B</td>
<td>3PNN</td>
<td>3RNN</td>
<td>93C66B</td>
<td>3TNN</td>
<td>3UNN</td>
</tr>
<tr>
<td>93AA76A</td>
<td>4BNN</td>
<td>4CNN</td>
<td>93LC76A</td>
<td>4ENN</td>
<td>4FNN</td>
<td>93C76A</td>
<td>4HNN</td>
<td>4JNN</td>
</tr>
<tr>
<td>93AA76B</td>
<td>4LNN</td>
<td>4MNN</td>
<td>93LC76B</td>
<td>4PNN</td>
<td>4RNN</td>
<td>93C76B</td>
<td>4TNN</td>
<td>4UNN</td>
</tr>
<tr>
<td>93AA86A</td>
<td>5BNN</td>
<td>5CNN</td>
<td>93LC86A</td>
<td>5ENN</td>
<td>5FNN</td>
<td>93C86A</td>
<td>5HNN</td>
<td>5JNN</td>
</tr>
<tr>
<td>93AA86B</td>
<td>5LNN</td>
<td>5MNN</td>
<td>93LC86B</td>
<td>5PNN</td>
<td>5RNN</td>
<td>93C86B</td>
<td>5TNN</td>
<td>5UNN</td>
</tr>
</tbody>
</table>
38가지 8핀 MSOP 패키지 마킹 (Pb-free 혹은 Sn/Pb)

<table>
<thead>
<tr>
<th>파트</th>
<th>Line 1 마킹</th>
<th>파트</th>
<th>Line 1 마킹</th>
<th>파트</th>
<th>Line 1 마킹</th>
</tr>
</thead>
<tbody>
<tr>
<td>93AA46A</td>
<td>3A46AT</td>
<td>93LC46A</td>
<td>3L46AT</td>
<td>93C46A</td>
<td>3C46AT</td>
</tr>
<tr>
<td>93AA46B</td>
<td>3A46BT</td>
<td>93LC46B</td>
<td>3L46BT</td>
<td>93C46B</td>
<td>3C46BT</td>
</tr>
<tr>
<td>93AA46C</td>
<td>3A46CT</td>
<td>93LC46C</td>
<td>3L46CT</td>
<td>93C46C</td>
<td>3C46CT</td>
</tr>
<tr>
<td>93AA56A</td>
<td>3A56AT</td>
<td>93LC56A</td>
<td>3L56AT</td>
<td>93C56A</td>
<td>3C56AT</td>
</tr>
<tr>
<td>93AA56B</td>
<td>3A56BT</td>
<td>93LC56B</td>
<td>3L56BT</td>
<td>93C56B</td>
<td>3C56BT</td>
</tr>
<tr>
<td>93AA56C</td>
<td>3A56CT</td>
<td>93LC56C</td>
<td>3L56CT</td>
<td>93C56C</td>
<td>3C56CT</td>
</tr>
<tr>
<td>93AA66A</td>
<td>3A66AT</td>
<td>93LC66A</td>
<td>3L66AT</td>
<td>93C66A</td>
<td>3C66AT</td>
</tr>
<tr>
<td>93AA66B</td>
<td>3A66BT</td>
<td>93LC66B</td>
<td>3L66BT</td>
<td>93C66B</td>
<td>3C66BT</td>
</tr>
<tr>
<td>93AA66C</td>
<td>3A66CT</td>
<td>93LC66C</td>
<td>3L66CT</td>
<td>93C66C</td>
<td>3C66CT</td>
</tr>
<tr>
<td>93AA76A</td>
<td>3A76AT</td>
<td>93LC76A</td>
<td>3L76AT</td>
<td>93C76A</td>
<td>3C76AT</td>
</tr>
<tr>
<td>93AA76B</td>
<td>3A76BT</td>
<td>93LC76B</td>
<td>3L76BT</td>
<td>93C76B</td>
<td>3C76BT</td>
</tr>
<tr>
<td>93AA76C</td>
<td>3A76CT</td>
<td>93LC76C</td>
<td>3L76CT</td>
<td>93C76C</td>
<td>3C76CT</td>
</tr>
<tr>
<td>93AA86A</td>
<td>3A86AT</td>
<td>93LC86A</td>
<td>3L86AT</td>
<td>93C86A</td>
<td>3C86AT</td>
</tr>
<tr>
<td>93AA86B</td>
<td>3A86BT</td>
<td>93LC86B</td>
<td>3L86BT</td>
<td>93C86B</td>
<td>3C86BT</td>
</tr>
<tr>
<td>93AA86C</td>
<td>3A86CT</td>
<td>93LC86C</td>
<td>3L86CT</td>
<td>93C86C</td>
<td>3C86CT</td>
</tr>
</tbody>
</table>

주석: T = 온도 범위: I = Industrial, E = Extended

규칙: XX...X 파트 넘버 또는 파트 넘버 코드
T 온도 (I, E)
Y 몇년도에 만들어진지 표시 (캘런더 year의 마지막 디지트)
YY 몇년도에 만들어진지 표시 (캘런더 year의 마지막 2 디지트)
WW 몇번째 주에 만들어진지 표시 (1월의 첫번째 주가 '01'이다)
NNN 어디서 만들어진지 추적 영문 코드 (적은 페이지는 다른 업무) 3e Matte Tin (Sn)의 Pb-free JEDEC 표시

주석: 매우 작은 패키지에는 Pb-free JEDEC 표시 마크만 3e를 표시 할 공간이 없으므로 박스 외부 또는 라벨에 표시 될 것이다.

주석: 모든 마이크로칩 파트 넘버는 한 라인으로 마킹을 할 수가 없다. 따라서 다음 라인에 추가 정보를 넣어야 하므로 사용자가 원하는 문자의 삽입에에는 상당한 제한이 있다

주석: Pb-free에 대한 자세한 정보는 www.microchip.com/Pbfree에서 확인하기 바란다.
3 웨이어 8 핀 TSSOP 패키지 마킹 (Pb-free 혹은 Sn/Pb)

<table>
<thead>
<tr>
<th>파트</th>
<th>Line 1 마킹</th>
<th>파트</th>
<th>Line 1 마킹</th>
<th>파트</th>
<th>Line 1 마킹</th>
</tr>
</thead>
<tbody>
<tr>
<td>93AA46A</td>
<td>A46A</td>
<td>93LC46A</td>
<td>L46A</td>
<td>93C46A</td>
<td>C46A</td>
</tr>
<tr>
<td>93AA46B</td>
<td>A46B</td>
<td>93LC46B</td>
<td>L46B</td>
<td>93C46B</td>
<td>C46B</td>
</tr>
<tr>
<td>93AA46C</td>
<td>A46C</td>
<td>93LC46C</td>
<td>L46C</td>
<td>93C46C</td>
<td>C46C</td>
</tr>
<tr>
<td>93AA56A</td>
<td>A56A</td>
<td>93LC56A</td>
<td>L56A</td>
<td>93C56A</td>
<td>C56A</td>
</tr>
<tr>
<td>93AA56B</td>
<td>A56B</td>
<td>93LC56B</td>
<td>L56B</td>
<td>93C56B</td>
<td>C56B</td>
</tr>
<tr>
<td>93AA56C</td>
<td>A56C</td>
<td>93LC56C</td>
<td>L56C</td>
<td>93C56C</td>
<td>C56C</td>
</tr>
<tr>
<td>93AA66A</td>
<td>A66A</td>
<td>93LC66A</td>
<td>L66A</td>
<td>93C66A</td>
<td>C66A</td>
</tr>
<tr>
<td>93AA66B</td>
<td>A66B</td>
<td>93LC66B</td>
<td>L66B</td>
<td>93C66B</td>
<td>C66B</td>
</tr>
<tr>
<td>93AA66C</td>
<td>A66C</td>
<td>93LC66C</td>
<td>L66C</td>
<td>93C66C</td>
<td>C66C</td>
</tr>
<tr>
<td>93AA76A</td>
<td>A76A</td>
<td>93LC76A</td>
<td>L76A</td>
<td>93C76A</td>
<td>C76A</td>
</tr>
<tr>
<td>93AA76B</td>
<td>A76B</td>
<td>93LC76B</td>
<td>L76B</td>
<td>93C76B</td>
<td>C76B</td>
</tr>
<tr>
<td>93AA76C</td>
<td>A76C</td>
<td>93LC76C</td>
<td>L76C</td>
<td>93C76C</td>
<td>C76C</td>
</tr>
<tr>
<td>93AA86A</td>
<td>A86A</td>
<td>93LC86A</td>
<td>L86A</td>
<td>93C86A</td>
<td>C86A</td>
</tr>
<tr>
<td>93AA86B</td>
<td>A86B</td>
<td>93LC86B</td>
<td>L86B</td>
<td>93C86B</td>
<td>C86B</td>
</tr>
<tr>
<td>93AA86C</td>
<td>A86C</td>
<td>93LC86C</td>
<td>L86C</td>
<td>93C86C</td>
<td>C86C</td>
</tr>
</tbody>
</table>

규칙:

- XX...X: 파트 넘버 또는 파트 넘버 코드
- T: 온도 (I, E)
- Y: 몇년도에 만들어졌는지 표시 (캘런더 year 의 마지막 디지트)
- YY: 몇년도에 만들어졌는지 표시 (캘런더 year 의 마지막 2 디지트)
- WW: 몇번째 주에 만들어졌는지 표시 (1월의 첫번째 주가 '01' 이다)
- NNN: 어디서 만들어졌는지 추적 영문 코드 (작은 패키지는 2 영문자)

노트:

- 매우 작은 패키지는 Pb-free JEDEC 표시 마크인 **라벨** 표시 양식이 적용되어므로 패키지 내부의 표시를 레이블에 표시할 것이다.

- 모든 마이크로칩 패키지 넘버는 한 라인으로 만든 것을 수가 없다. 따라서 다음 라인에 추가 정보를 넣어야 하므로 사용자가 원하는 내용을 삽입할 수는 없다.

노트:

- Pb-free에 대한 자세한 정보는 www.microchip.com/Pbfree 에서 확인 해보시기 바랍니다.
Dimensions Limits

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n 8 8</td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>p .100 2.54</td>
<td></td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A .140 .155 .170 3.56 3.94 4.32</td>
<td></td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2 .115 .130 .145 2.92 3.30 3.68</td>
<td></td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1 .015 0.38</td>
<td></td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E .300 .313 .325 7.62 7.94 8.26</td>
<td></td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1 .240 .250 .260 6.10 6.35 6.60</td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D .360 .373 .385 9.14 9.46 9.78</td>
<td></td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L .125 .130 .135 3.18 3.30 3.43</td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c .008 .012 .015 0.20 0.29 0.38</td>
<td></td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1 .045 .058 .070 1.14 1.46 1.78</td>
<td></td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B .014 .018 .022 0.36 0.46 0.56</td>
<td></td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB .310 .370 .430 7.87 9.40 10.92</td>
<td></td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α 5 10 15 5 10 15</td>
<td></td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β 5 10 15 5 10 15</td>
<td></td>
</tr>
</tbody>
</table>

*Controlling Parameter

§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
- JEDEC Equivalent: MS-001
- Drawing No. C04-018

![Diagram of 8-pin Plastic Dual In-line (P) – 300 mil (PDIP)](image-url)
8 Pin Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

![SOIC Diagram](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>h</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.050</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.053 – .061</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.052 – .056</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>.004 – .007</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.228 – .237</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.189 – .193</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>h</td>
<td>.010 – .015</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.019 – .025</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>c</td>
<td>0 – 4</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>C</td>
<td>.006 – .009</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.013 – .017</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0 – 12</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0 – 12</td>
</tr>
</tbody>
</table>

*Controlling Parameter

§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
- JEDEC Equivalent: MS-012
- Drawing No. C04-657
8핀 Plastic Dual Flat No Lead 패키지 (MC) 2x3x0.9 mm Body (DFN) – Saw Singulated

Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>8.00 MIN NOM 8.00 MAX</td>
<td>8.00 MIN NOM 20.30 MAX</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.020 BSC</td>
<td>0.50 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>0.39 MIN 0.39 NOM 0.39 MAX</td>
<td>10.00 MIN 0.50 NOM 9.90 MAX</td>
</tr>
<tr>
<td>Standoff</td>
<td>0.002 MIN 0.002 NOM 0.002 MAX</td>
<td>0.05 MIN 0.05 NOM 0.05 MAX</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>0.008 REF.</td>
<td>0.20 REF.</td>
</tr>
<tr>
<td>Overall Length</td>
<td>0.79 BSC</td>
<td>2.00 BSC</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>0.64 MIN 1.39 NOM 1.62 MAX</td>
<td>1.62 MIN 0.50 NOM 1.62 MAX</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>0.118 BSC</td>
<td>3.00 BSC</td>
</tr>
<tr>
<td>Contact Width</td>
<td>0.010 MIN 0.012 NOM 0.012 MAX</td>
<td>0.25 MIN 0.25 NOM 0.25 MAX</td>
</tr>
<tr>
<td>Contact Length</td>
<td>0.012 MIN 0.016 NOM 0.016 MAX</td>
<td>0.30 MIN 0.40 NOM 0.50 MAX</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Notes:
1. Package may have one or more exposed tie bars at ends.
2. Pin 1 visual index feature may vary, but must be located within the hatched area.
3. Exposed pad dimensions vary with paddle size.
4. JEDEC equivalent: MO-229

Drawing No. C04-123
Revised 05/24/04

For further details, please refer to the full datasheet.
6핀 Plastic Small Outline Transistor (OT) (SOT-23)

Dimension Limits

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES**</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n MIN: 6</td>
<td>MAX: 6</td>
</tr>
<tr>
<td>Pitch</td>
<td>p NOM: .038</td>
<td>MAX: .095</td>
</tr>
<tr>
<td>Outside lead pitch (basic)</td>
<td>p1 MIN: .075</td>
<td>MAX: 1.90</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A MIN: .035</td>
<td>MAX: 0.90</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2 MIN: .035</td>
<td>MAX: 1.10</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1 MIN: .000</td>
<td>MAX: 0.08</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E MIN: .102</td>
<td>MAX: 2.60</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1 MIN: .059</td>
<td>MAX: 1.50</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D MIN: .110</td>
<td>MAX: 2.80</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L MIN: .014</td>
<td>MAX: 0.35</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ MIN: 0</td>
<td>MAX: 5</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c MIN: .004</td>
<td>MAX: 0.09</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B MIN: .014</td>
<td>MAX: 0.35</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α MIN: 0</td>
<td>MAX: 5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β MIN: 0</td>
<td>MAX: 5</td>
</tr>
</tbody>
</table>

**Controlling Parameter

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

JEITA (formerly EIAJ) equivalent: SC-74A

Drawing No. C04-120
8 PIN Plastic Micro Small Outline Package (MS) (MSOP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n: MIN: 8</td>
<td>NOM: 8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P: 0.026 BSC</td>
<td>0.65 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A: 0.043</td>
<td>1.08</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2: 0.030</td>
<td>0.76</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1: 0.006</td>
<td>0.015</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E: 0.193 TYP.</td>
<td>4.90 BSC</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1: 0.118 BSC</td>
<td>3.00 BSC</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D: 0.118 BSC</td>
<td>3.00 BSC</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L: 0.016</td>
<td>0.40</td>
</tr>
<tr>
<td>Footprint (Reference)</td>
<td>F: 0.037 REF</td>
<td>0.95 REF</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ: 8°</td>
<td>20.3°</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>θ: 0°</td>
<td>0°</td>
</tr>
<tr>
<td>Lead Width</td>
<td>θ: 0.009</td>
<td>0.22</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α: 5°</td>
<td>5°</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β: 5°</td>
<td>5°</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-187

Drawing No. C04-111
Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.026</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.033</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.002</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>.246</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.169</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
<td>.114</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.020</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.004</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.007</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.
JEDEC Equivalent: MO-153
Drawing No. C04-086
마이크로칩 웹사이트

마이크로칩은 www.microchip.com 을 통하여 온라인 지원을 하고 있다. 이 웹사이트는 다양한 정보의 파일을 지원하며 쉽게 사용이 가능하다.

사용자는 인터넷 브라우저를 이용하여 쉽게 액세스가 가능하며 다음과 같은 정보들을 포함하고 있다.

• 제품 지원 – 데이터 쉐트, 에러타자료, 어플리케이션 노트, 예제 프로그램, 디자인 툴, 유지보수 가이드, 하드웨어 지원하는 자료, 최신 소프트웨어, 다양한 소프트웨어

• 기술 지원 – 자주 질문하는 내용 (FAQ), 기술 지원 상담, 온라인 상담 그룹, 마이크로칩 컨설팅 프로그램 멤버 리스트

• 기타 비즈니스 – 디바이스 선택 가이드 및 오더링 가이드, 최신 마이크로칩 소식, 세미나 및 이벤트 안내, 마이크로칩 지사, 공장, 대리점 소개

변경 통지 서비스

마이크로칩 고객 통지 서비스는 마이크로칩 제품을 사용하는 사용자에게 해당 된다.

사용자는 관심있는 개발 장비 및 제품에 대하여 변경 사항, 업데이트, 개정, 오류 등에 대하여 이메일로 연락을 받을 수 있다.

CUSTOMER 지원

마이크로칩 제품을 사용하는 사용자는 아래의 채널을 통하여 도움을 받을 수 있다.

• 대리점
• 한국 지사
• 필드 어플리케이션 엔지니어 (FAE)
• 기술 지원
• 개발 장비 정보 라인

사용자는 자신의 대리점 및 대표자 드리고 필드 어플리케이션 엔지니어들을 통하여 기술 지원을 받을 수 있으며 한국 지사로 통해서도 가능하다. 각 나라의 지사 및 위치들의 목록은 이 데이터 쉐트의 후반부에 표시한다.

웹사이트를 통한 기술 지원은 http:// support.microchip.com 에서 가능하다.

개발장비 정보 라인의 전화번호는 아래와 같다:
1-800-755-2345 – 미국 및 대부분의 카나다
1-480-792-7302 – 다른 모든 나라
설문지

이 것은 보다 높은 신뢰성을 가지고 마이크로칩 제품을 성공적으로 사용하기 위해서 필요한 질문입니다.
만약 당신이 생각하기에 마이크로칩 자료가 좀 더 신뢰적인 방향으로 나아가는데 의견이 있으신 분은 당신의 의견을 마이크로칩 테크니컬 메니져에게 보내 주십시오. Fax 번호는 1-480-792-4150 입니다.
이 자료에 대한 당신의 의견을 아래의 질문 내용을 작성 하셔서 마이크로칩으로 제공하여 주시길 바랍니다.

To: 마이크로칩 테크니컬 메니져 보내는 페이지: __________
RE: 사용자로부터

From: 이름 __
 회사 ___
 주소 ___
 시/주/우편번호/도 __
 전화번호: (______) _________ - _________ FAX: (______) _________ - _________

어플리케이션 (옵션):
당신은 응답을 하시겠습니까? Y N

Device: 93XX46X/56X/66X/76X/86X 문서 넘버: DS21929A_KR

질문:
1. 이 자료의 가장 큰 장점은 무엇이라 생각 하십니까?

2. 당신은 당신의 하드웨어와 소프트웨어 개발에 이 자료가 도움이 되셨습니까?

3. 당신은 이 자료의 구조를 쉽게 파악 하셨습니까? (만약 아니라면 무엇 때문입니까?)

4. 당신은 보다 더 자세하게 첨가시키아 할 내용과 주제를 무엇이라 생각 하십니까?

5. 전체적인 내용에 영향을 미치지 않고 삭제되어야 할 부분은 무엇입니까?

6. 이 데이터 복에 부정확하고 잘못 기재된 내용은 없었습니까? (무엇? 어디에?)

7. 당신은 이 데이터 쉬트를 어떻게 개선 시킬지 시켰습니까?

FAX: (______) _________ - _________
제품 표기 방법
가격 및 납기 등의 자세한 정보는 공장 및 한국 지사에 문의 하기를 바랍니다.

<table>
<thead>
<tr>
<th>EEPROM 사이즈</th>
<th>전압 용량</th>
<th>Word 사이즈</th>
<th>Tape & Reel</th>
<th>온도 범위</th>
<th>페키지</th>
<th>Lead Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>93AA46A-I/MS</td>
<td>1.8V-5.5V</td>
<td>1K 비트</td>
<td>Tape & Reel</td>
<td>-40°C to +85°C</td>
<td>Std 페키지</td>
<td>T = Tape & Reel</td>
</tr>
<tr>
<td>93AA46BT-I/OT</td>
<td>2.5V-5.5V</td>
<td>2K 비트</td>
<td>Tape & Reel</td>
<td>-40°C to +125°C</td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA46CT-I/MS</td>
<td>4.5V-5.5V</td>
<td>4K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA48A-I/MS</td>
<td>1.8V-5.5V</td>
<td>8K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA51A-I/MS</td>
<td>2.5V-5.5V</td>
<td>16K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA51T-I/OT</td>
<td>4.5V-5.5V</td>
<td>32K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA56A-I/MS</td>
<td>1.8V-5.5V</td>
<td>64K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA56T-I/OT</td>
<td>2.5V-5.5V</td>
<td>128K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA64A-I/MS</td>
<td>4.5V-5.5V</td>
<td>256K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93AA64T-I/OT</td>
<td>5.0V-5.5V</td>
<td>512K 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68A-I/MS</td>
<td>1.8V-5.5V</td>
<td>1M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68T-I/OT</td>
<td>2.5V-5.5V</td>
<td>2M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68X-I/MS</td>
<td>4.5V-5.5V</td>
<td>4M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68X-T/OT</td>
<td>5.0V-5.5V</td>
<td>8M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68X-X/IMC</td>
<td>1.8V-5.5V</td>
<td>16M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68X-X/TOT</td>
<td>2.5V-5.5V</td>
<td>32M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68X-X/SNG</td>
<td>4.5V-5.5V</td>
<td>64M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
<tr>
<td>93A68X-X/FO</td>
<td>5.0V-5.5V</td>
<td>128M 비트</td>
<td>Tape & Reel</td>
<td></td>
<td>Std 페키지</td>
<td></td>
</tr>
</tbody>
</table>

예제:

a) 93AA46A-I/MS: 1K, 128x8 Serial EEPROM, Industrial 온도, MSOP 페키지, 1.8V
b) 93AA46BT-I/OT: 1K, 64x16 Serial EEPROM, SOT-23 페키지, tape and reel, 1.8V
c) 93AA46CT-I/MS: 1K, 128x8 or 64x16 Serial EEPROM, MSOP 페키지, tape and reel, 1.8V
d) 93AA48BX-2NSN: 1K, 128x8 Serial EEPROM, Industrial 온도, SOIC 페키지 (다른 편 - 이웃), tape and reel 패키지, 1.8V
e) 93LC66A-I/MS: 4K, 512x8 Serial EEPROM, MSOP 페키지, 2.5V
f) 93LC66BT-I/OT: 4K, 256x16 Serial EEPROM, SOT-23 페키지, tape and reel, 2.5V
g) 93LC66CT-E/SNG: 4K, 512x8 or 256x16 Serial EEPROM, SOIC 페키지, Extended 온도, tape and reel, Pb-free finish, 2.5V
h) 93C88AT-I/OT: 16K, 2048x8 Serial EEPROM, SOT-23 페키지, tape and reel, 5.0V
i) 93C88BT-I/OT: 16K, 1024x16 Serial EEPROM, SOT-23 페키지, tape and reel, 5.0V
j) 93C88CT-I/IMC: 16K, 2048x8 or 1024x16 Serial EEPROM, DFN Industrial 온도, tape and reel 패키지, 5.0V

Note 1: 2005 년이후에 만들어진 대부분은 Matte Tin (Pb-free) 제품이다.
2005 년 1 월 이전에 만들어진 대부분은 대략 63% 의 Sn 그리고 37% 의 Pb (Sn/Pb) 가 포함된 제품이다.
Pb-free에 대한 자세한 사항은 www.microchip.com/Pbfree에서 확인 하기를 바란다.
영업 및 지원

데이터 쉐트
일차적으로 제작이 된 데이터 쉐트는 동작 및 추천 부분에 아주 작은 오류가 있음을 수 있다. 만약 사용하고 있는 제품에 대한 오류 보고가 있는지를 확인하기 위해서는 아래쪽으로 확인 하길 바란다:

1. 한국 지사
2. 마이크로칩 본사 문서 센터: 미국 팩스 : 1-480-792-7277
3. 마이크로칩 웹 - 사이트 (www.microchip.com)

사용하고 있는 제품의 실리콘 개정 번호 및 데이터 쉐트 (문서 번호 포함) 를 알려주기를 바란다

새로운 사용자 정보 알림 시스템
마이크로칩 제품에 대한 최신의 정보를 받기 위해서는 마이크로칩 웹 - 사이트 (www.microchip.com/cn) 에서 등록을 하기를 바란다.
마이크로칩 디바이스의 코드 프로텍트 기능에 대하여 아래 사항을 참조 하십시오:

- 마이크로칩에서 생산되는 제품들은 각각의 데이터 쉬트에 포함된 스펙을 충족시키고 있습니다.
- 마이크로 khoá는 시장에서 정상적인 방법과 조건에서 마이크로칩 제품이 사용되었을 때 가장 안정적인 것으로 생각하고 있습니다.
- 코드 프로텍션을 세미나기 위한 비도적이거나 불법적인 방법들이 있습니다. 우리가 알고 있는 이러한 방법들은 마이크로_chip 제품을 마이크로Chip 데이터 쉬트에 포함되어 있는 동작 스펙 밖에서의 사용을 요구하고 있습니다. 아마도 그런 일을 하는 사람들들은 지적 도덕성을 저해하고 있습니다.
- 마이크로Chip은 코드의 안정성에 걱정이 많은 사용자와 함께 기꺼이 일을 합니다.
- 마이크로Chip 뿐만 아니라 여러 다른 반도체 제조 회사도 완벽히 그들의 코드의 안전을 보증할 수는 없습니다. 코드 프로텍션은 마이크로Chip의 제품이 완벽히 캐 bọn 없는 것을 보증할 수는 없습니다.

코드 프로텍션 기술은 끊임없이 개선되고 있습니다. 마이크로Chip은 마이크로Chip 제품의 코드 프로텍션 기능을 지속적으로 개선하고 있으며, 아마도 Digital Millennium Copyright Act에 위반이 될 것이 다. 반면 사용자의 소프트웨어 혹은 다른 저작권에 대하여 허가를 받지 않고 그러한 행위가 발생한다면 사용자는 Act 아래에서 자신의 보호를 위해 고소하기 위한 권리를 가질 수 있습니다.

이 자료는 사용자의 권리성을 위하여 한국어로 제공이 되고 있습니다. 마이크로Chip 뿐만 아니라 그와 연관이 되어 있는 보조자 및 회사 그리고 모든 책임자, 고용인, 직원 및 에이전트들은 혹시 모를 오류에 대한 책임이 없습니다. 보다 정확한 참조를 위해서 마이크로Chip 테크놀로지의 원문 자료를 참조하기 바랍니다.

정보는 장치 어플리케이션을 고려하는 부분이 이 발행에 포함되어 있으며 또한 단지 당사의 권리를 위하여 제공되고 있을 뿐 업데이트는 하지 않을 수도 있습니다. 사용자의 어플리케이션에 스펙을 정확히 적용시키는 것은 사용자의 책임입니다. 마이크로Chip은 제한적으로 제품의 조건, 품질, 성능을 제공하 고는 명시되거나 감독되거나, 쓰거나 말로 하거나 법정이거나 다른 모든 것에 대하여 어떤 종류의 어떤 표현이나 보증도 하지 않습니다. 마이크로Chip은 이러한 정보와 그것의 사용으로부터 발생하는 것에 대하여 모든 책임이 없이, 일상 생활을 지원하는 시스템에 있는 중요한 구성 요소의 하나로서의 마이크로Chip 제품의 사용은 마이크로Chip에 의하여 인증하고 표현한 것을 제외한 모든 부분은 인정되지 않습니다. 복사적 또는 그림자같은 마이크로Chip 지적 권리 아래에서 어떠한 행위도 인정되지 않습니다.

전 세계 영업망 및 서비스

미국
본사
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 1-480-792-7200
 Fax: 1-480-792-7277
기술 지원:
http://support.microchip.com
 웹 주소:
www.microchip.com

아시아 패시픽
오스트레일리아 - 시드니
Tel: 61-2-9868-6733
 Fax: 61-2-9868-6755
중국 - 베이징
Tel: 86-10-8528-2100
 Fax: 86-10-8528-2104
중국 - 청두
Tel: 86-28-8676-6200
 Fax: 86-28-8676-6599
중국 - 홍콩 SAR
Tel: 852-2401-1200
 Fax: 852-2401-3431
중국 - 상해
Tel: 86-21-5407-5533
 Fax: 86-21-5407-5066
중국 - 센자
Tel: 86-24-2334-2829
 Fax: 86-24-2334-2393
중국 - 선드
Tel: 86-755-8203-2660
 Fax: 86-755-8203-1760
중국 - 항저우
Tel: 86-571-2839-5507
 Fax: 86-571-2839-5571
중국 - 헹다오
Tel: 86-532-502-7355
 Fax: 86-532-502-7205

유럽
오스트리아 - 웨이스
Tel: 43-7242-2244-399
 Fax: 43-7242-2244-393
덴마크 - 발뢰
Tel: 45-4450-2828
 Fax: 45-4485-2829
프랑스 - 아시
Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79
독일 - 이스바이
Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
이태리 - 밸란
Tel: 39-0331-746211
 Fax: 39-0331-466781
네덜란드 - 드루넨
Tel: 31-65-6334-8870
 Fax: 31-65-6334-8850
대만 - 카오슝
Tel: 886-7-536-4818
 Fax: 886-7-536-4803
대만 - 타이페이
Tel: 886-2-2500-6610
 Fax: 886-2-2508-0102
대만 - 쉬먼
Tel: 86-3-572-9526
 Fax: 86-3-572-6459

03/01/05