High-Speed, Microcontroller-Adaptable, Pulse Width Modulator

Features

• High-Speed PWM Operation (12 ns Current Sense to Output Delay)
• Operating Temperature Range:
 - -40°C to +125°C
• Precise Peak Current Limit (±5%) (MCP1630)
• Voltage Mode and Average Current Mode Control (MCP1630V)
• CMOS Output Driver (drives MOSFET driver or low-side N-channel MOSFET directly)
• External Oscillator Input (from PICmicro® Microcontroller (MCU))
• External Voltage Reference Input (for adjustable voltage or current output application)
• Peak Current Mode Operation > 1 MHz
• Low Operating Current: 2.8 mA (typ.)
• Fast Output Rise and Fall Times: 5.9 ns and 6.2 ns
• Undervoltage Lockout (UVLO) Protection
• Output Short Circuit Protection
• Overtemperature Protection

Applications

• Intelligent Power Systems
• Smart Battery Charger Applications
• Multiple Output/Multiple Phase Converters
• Output Voltage Calibration
• AC Power Factor Correction
• VID Capability (programmed and calibrated by PICmicro® microcontroller)
• Buck/Boost/Buck-Boost/SEPIC/Flyback/Isolated Converters
• Parallel Power Supplies

Related Literature

• “MCP1630 Low-Cost Li-Ion Battery Charger User’s Guide”, Microchip Technology Inc., DS51555, 2005
• “MCP1630 Li-Ion Multi-Bay Battery Charger User’s Guide”, Microchip Technology Inc., DS51515, 2005
• “MCP1630 Dual Buck Demo Board User’s Guide”, Microchip Technology Inc., DS51531, 2005

Description

The MCP1630/V is a high-speed Pulse Width Modulator (PWM) used to develop intelligent power systems. When used with a microcontroller unit (MCU), the MCP1630/V will control the power system duty cycle to provide output voltage or current regulation. The MCU can be used to adjust output voltage or current, switching frequency, maximum duty cycle and other features that make the power system more intelligent.

Typical applications include smart battery chargers, intelligent power systems, brick dc/dc converters, ac power-factor correction, multiple output power supplies, multi-phase power supplies and more.

The MCP1630/V inputs were developed to be easily attached to the I/O of a MCU. The MCU supplies the oscillator and reference to the MCP1630/V to provide the most flexible and adaptable power system. The power system switching frequency and maximum duty cycle are set using the I/O of the MCU. The reference input can be external, a D/A Converter (DAC) output or as simple as an I/O output from the MCU. This enables the power system to adapt to many external signals and variables in order to optimize performance and facilitate calibration.

When operating in Current mode, a precise limit is set on the peak current. With the fast comparator speed (typically 12 ns), the MCP1630 is capable of providing a tight limit on the maximum switch current over a wide input voltage range when compared to other high-speed PWM controllers.

For Voltage mode or Average Current mode applications, the MCP1630V provides a larger range for the external ramp voltage.

Additional protection features include: UVLO, overtemperature and overcurrent.

Package Type

<table>
<thead>
<tr>
<th>8-Lead DFN (2 mm x 3 mm)</th>
<th>8-Lead MSOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>V_REF</td>
</tr>
<tr>
<td>FB</td>
<td>V_IN</td>
</tr>
<tr>
<td>CS</td>
<td>V_EXT</td>
</tr>
<tr>
<td>OSC_IN</td>
<td>GND</td>
</tr>
<tr>
<td>COMP</td>
<td>V_REF</td>
</tr>
<tr>
<td>FB</td>
<td>V_IN</td>
</tr>
<tr>
<td>CS</td>
<td>V_EXT</td>
</tr>
<tr>
<td>OSC_IN</td>
<td>GND</td>
</tr>
</tbody>
</table>
Functional Block Diagram – MCP1630

MCP1630 High-Speed PWM

Note: During overtemperature, V_{EXT} driver is high-impedance.

Latch Truth Table

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>\bar{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
MCP1630/MCP1630V

Functional Block Diagram – MCP1630V

MCP1630V High-Speed PWM

Note: During overtemperature, V_{EXT} driver is high-impedance.

Latch Truth Table

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>\overline{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q^n</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Typical Application Circuit – MCP1630

MCP1630 NiMH Battery Charger and Fuel Gauge Application Diagram

+8V to +15V Input Voltage

SEPIC Converter

MCP1630

+5V Bias

5.7V

+VBATT

4 NiMH Cells

MCP1630 NiMH Battery Charger and Fuel Gauge Application Diagram

MCP1700
3.0V
SOT23

VDD

A/D

1/2 MCP6042

VDD

A/D

1/2 MCP6042

I^C™ To System

MCP16LF818

PWM OUT

VDD

VDD

OS Emb
Bidirectional Power Converter/Battery Charger for 4-Series Cell Li-Ion Batteries

Typical Application Circuit - MCP1630V

MCP1630/MCP1630V

DC Bus Voltage

Boost Switch

Buck Switch

Sync. FET Driver

VSENSE

VREF

IREF Voltage (PWM)

DC bus Voltage Loop

SMBus

(1/2) MCP6021

MCP6021

Comp

FB

FB

OSC

GND

GND

+2.5 VREF

Charge Current Loop

(1/2) MCP6021

PS501

Battery Protection and Monitor

SMBus

4-Cell Li-Ion Battery Pack

Fuse

Battery Protection Switches

ISENSE

VSENSE

RSENSE

0V to 2.7V

+DC Bus VREF

VEXT

VIN

+2.5 VREF

Filter

(1/2) MCP6021

PIC16F88

MCP1630V

VBATT

+VBATT

COUT

CIN

L

Buck

Boost

+VBATT

-VBATT

-
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

- \(V_{DD} \) : 6.0V
- Maximum Voltage on Any Pin : \((V_{GND} - 0.3)\text{V} \) to \((VIN + 0.3)\text{V} \)
- \(V_{EXT} \) Short Circuit Current : Internally Limited
- Storage temperature : -65°C to +150°C
- Maximum Junction Temperature, \(T_J \) : +150°C
- Continuous Operating Temperature Range : -40°C to +125°C
- ESD protection on all pins, HBM : 3 kV

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications:

Unless otherwise noted, \(VIN = 3.0\text{V} \) to 5.5V, \(F_{OSC} = 1 \text{MHz} \) with 10% Duty Cycle, \(C_{IN} = 0.1 \mu\text{F} \), \(VIN \) for typical values = 5.0V, \(T_A = -40°C \) to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>3.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>(I_{EXT} = 0 \text{mA}, F_{OSC , IN} = 0 \text{Hz})</td>
</tr>
<tr>
<td>Input Quiescent Current</td>
<td>(I(V_{IN}))</td>
<td>—</td>
<td>2.8</td>
<td>4.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Oscillator Input</td>
<td>(F_{OSC})</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>MHz</td>
<td>Note 1</td>
</tr>
<tr>
<td>Min. Oscillator High Time</td>
<td>(T_{OH, MIN})</td>
<td>—</td>
<td>10</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Oscillator Low Time</td>
<td>(T_{OL, MIN})</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>µs</td>
<td>Note 2</td>
</tr>
<tr>
<td>Oscillator Rise Time</td>
<td>(T_{RISE})</td>
<td>0.01</td>
<td>—</td>
<td>10</td>
<td>µs</td>
<td>Note 2</td>
</tr>
<tr>
<td>Oscillator Fall Time</td>
<td>(T_{FALL})</td>
<td>0.01</td>
<td>—</td>
<td>10</td>
<td>µs</td>
<td>Note 2</td>
</tr>
<tr>
<td>Oscillator Input Voltage Low</td>
<td>(V_L)</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Oscillator Input Voltage High</td>
<td>(V_H)</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Oscillator Input Capacitance</td>
<td>(C_{OSC})</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>External Reference Input</td>
<td>(V_{REF})</td>
<td>0</td>
<td>—</td>
<td>(V_{IN})</td>
<td>V</td>
<td>Note 2, Note 3</td>
</tr>
<tr>
<td>Error Amplifier</td>
<td>(V_{OS})</td>
<td>-4</td>
<td>0.1</td>
<td>+4</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Error Amplifier PSRR</td>
<td>PSRR</td>
<td>80</td>
<td>99</td>
<td>—</td>
<td>dB</td>
<td>(V_{IN} = 3.0\text{V}) to 5.0V, (V_{CM} = 1.2\text{V})</td>
</tr>
<tr>
<td>Common Mode Input Range</td>
<td>(V_{CM})</td>
<td>GND - 0.3</td>
<td>—</td>
<td>(V_{IN})</td>
<td>V</td>
<td>Note 2, Note 3</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>dB</td>
<td>(V_{IN} = 5\text{V}, V_{CM} = 0\text{V}) to 2.5V</td>
<td></td>
</tr>
<tr>
<td>Open-loop Voltage Gain</td>
<td>(A_{VOL})</td>
<td>85</td>
<td>95</td>
<td>—</td>
<td>dB</td>
<td>(R_L = 5 , k\Omega) to (V_{IN}/2, 100 , \text{mV} < V_{EA, OUT} < V_{IN} - 100 , \text{mV}, V_{CM} = 1.2\text{V})</td>
</tr>
<tr>
<td>Low-level Output</td>
<td>(V_{OL})</td>
<td>—</td>
<td>25</td>
<td>GND + 50</td>
<td>mV</td>
<td>(R_L = 5 , k\Omega) to (V_{IN}/2)</td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>(GBWP)</td>
<td>—</td>
<td>3.5</td>
<td>—</td>
<td>MHz</td>
<td>(V_{IN} = 5\text{V})</td>
</tr>
<tr>
<td>Error Amplifier Sink Current</td>
<td>(I_{SINK})</td>
<td>5</td>
<td>11</td>
<td>—</td>
<td>mA</td>
<td>(V_{IN} = 5\text{V}, V_{REF} = 1.2\text{V}, V_{FB} = 1.4\text{V}, V_{COMP} = 2.0\text{V})</td>
</tr>
<tr>
<td>Error Amplifier Source Current</td>
<td>(I_{SOURCE})</td>
<td>-2</td>
<td>-9</td>
<td>—</td>
<td>mA</td>
<td>(V_{IN} = 5\text{V}, V_{REF} = 1.2\text{V}, V_{FB} = 1.0\text{V}, V_{COMP} = 2.0\text{V}, \text{Absolute Value})</td>
</tr>
</tbody>
</table>

Note 1: Capable of higher frequency operation depending on minimum and maximum duty cycles needed.

Note 2: External oscillator input (OSC IN) rise and fall times between 10 ns and 10 µs used for characterization testing. Signal levels between 0.8V and 2.0V with rise and fall times measured between 10% and 90% of maximum and minimum values. Not production tested.

Note 3: The reference input of the internal amplifier is capable of rail-to-rail operation.
AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = 3.0V$ to 5.5V, $F_{OSC} = 1$ MHz with 10% Duty Cycle, $C_{IN} = 0.1 \mu F$, V_{IN} for typical values $= 5.0V$, $T_A = -40^\circ C$ to $+125^\circ C$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Sense Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Current Sense Signal MCP1630</td>
<td>V_{CS_MAX}</td>
<td>0.85</td>
<td>0.9</td>
<td>0.95</td>
<td>V</td>
<td>Set by maximum error amplifier clamp voltage, divided by 3.</td>
</tr>
<tr>
<td>Delay From CS to V_{EXT} MCP1630</td>
<td>T_{CS_VEXT}</td>
<td>—</td>
<td>12</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Maximum Current Sense Signal MCP1630V</td>
<td>V_{CS_MAX}</td>
<td>2.55</td>
<td>2.7</td>
<td>2.85</td>
<td>V</td>
<td>$V_{IN} > 4.25V$, Maximum CS input range limited by comparator input common mode range. $V_{CS_MAX} = V_{IN}-1.4V$</td>
</tr>
<tr>
<td>Delay From CS to V_{EXT} MCP1630V</td>
<td>T_{CS_VEXT}</td>
<td>—</td>
<td>17.5</td>
<td>35</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Minimum Duty Cycle</td>
<td>DC_{MIN}</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>%</td>
<td>$V_{FB} = V_{REF} + 0.1V$, $V_{CS} = GND$</td>
</tr>
<tr>
<td>Current Sense Input Bias Current</td>
<td>I_{CS_B}</td>
<td>—</td>
<td>-0.1</td>
<td>—</td>
<td>μA</td>
<td>$V_{IN} = 5V$</td>
</tr>
</tbody>
</table>

Internal Driver

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{DS_ON} P-channel</td>
<td>$R_{DS_ON_P}$</td>
<td>—</td>
<td>10</td>
<td>30</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{DS_ON} N-channel</td>
<td>$R_{DS_ON_N}$</td>
<td>—</td>
<td>7</td>
<td>30</td>
<td>Ω</td>
</tr>
<tr>
<td>V_{EXT} Rise Time</td>
<td>T_{RISE}</td>
<td>—</td>
<td>5.9</td>
<td>18</td>
<td>ns</td>
</tr>
<tr>
<td>V_{EXT} Fall Time</td>
<td>T_{FALL}</td>
<td>—</td>
<td>6.2</td>
<td>18</td>
<td>ns</td>
</tr>
</tbody>
</table>

Protection Features

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Voltage Lockout</td>
<td>$UVLO$</td>
<td>2.7</td>
<td>—</td>
<td>3.0</td>
<td>V</td>
</tr>
<tr>
<td>Under Voltage Lockout Hysteresis</td>
<td>$UVLO_HYS$</td>
<td>50</td>
<td>75</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td>T_{SHD}</td>
<td>—</td>
<td>150</td>
<td>—</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>T_{SHD_HYS}</td>
<td>—</td>
<td>18</td>
<td>—</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note

1: Capable of higher frequency operation depending on minimum and maximum duty cycles needed.
2: External oscillator input (OSC IN) rise and fall times between 10 ns and 10 µs used for characterization testing. Signal levels between 0.8V and 2.0V with rise and fall times measured between 10% and 90% of maximum and minimum values. Not production tested.
3: The reference input of the internal amplifier is capable of rail-to-rail operation.

TEMPERATURE SPECIFICATIONS

Electrical Specifications: $V_{IN} = 3.0V$ to 5.5V, $F_{OSC} = 1$ MHz with 10% Duty Cycle, $C_{IN} = 0.1 \mu F$, $T_A = -40^\circ C$ to $+125^\circ C$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>Steady state</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>Transient</td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-DFN (2 mm x 3 mm)</td>
<td>θ_{JA}</td>
<td>—</td>
<td>50.8</td>
<td>—</td>
<td>°C/W</td>
<td>Typical 4-layer board with two interconnecting vias</td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>208</td>
<td>—</td>
<td>°C/W</td>
<td>Typical 4-layer board</td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise noted, \(V_{IN} = 3.0 \text{V} \) to \(5.5 \text{V} \), \(F_{OSC} = 1 \text{MHz} \) with 10% Duty Cycle, \(C_{IN} = 0.1 \mu \text{F} \), \(V_{IN} \) for typical values = \(5.0 \text{V} \), TA = -40°C to +125°C.

FIGURE 2-1: Input Quiescent Current vs. Input Voltage.

FIGURE 2-2: Input Quiescent Current vs. Input Voltage.

FIGURE 2-3: Error Amplifier Frequency Response.

FIGURE 2-4: Error Amplifier Input Bias Current vs. Input Voltage.

FIGURE 2-5: Error Amplifier Sink Current vs. Input Voltage.

FIGURE 2-6: Error Amplifier Source Current vs. Input Voltage.
Note: Unless otherwise noted, $V_{IN} = 3.0V$ to $5.5V$, $F_{OSC} = 1$ MHz with 10% Duty Cycle, $C_{IN} = 0.1 \mu F$, V_{IN} for typical values = $5.0V$, $T_A = -40^\circ C$ to $+125^\circ C$.

FIGURE 2-7: V_{EXT} Rise Time vs. Input Voltage.

FIGURE 2-8: V_{EXT} Fall Time vs. Input Voltage.

FIGURE 2-9: Current Sense to V_{EXT} Delay vs. Input Voltage (MCP1630).

FIGURE 2-10: Current Sense Clamp Voltage vs. Input Voltage (MCP1630).

FIGURE 2-11: Undervoltage Lockout vs. Temperature.

FIGURE 2-12: EXT Output N-channel $R_{DS(on)}$ vs. Input Voltage.
Note: Unless otherwise noted, $V_{IN} = 3.0$V to 5.5V, $F_{OSC} = 1$ MHz with 10% Duty Cycle, $C_{IN} = 0.1$ µF, V_{IN} for typical values = 5.0V, T_A = -40°C to +125°C.

FIGURE 2-13: EXT Output P-channel R_{DSON} vs. Input Voltage.

FIGURE 2-14: Error Amplifier Input Offset Voltage vs. Input Voltage.

FIGURE 2-15: Error Amplifier Input Offset Voltage vs. Input Voltage.

FIGURE 2-16: Current Sense Common Mode Input Voltage Range vs. Input Voltage (MCP1630V).

FIGURE 2-17: Current Sense to V_{EXT} Delay vs. Input Voltage (MCP1630V).
The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>PIN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>Error Amplifier Output pin</td>
</tr>
<tr>
<td>FB</td>
<td>Error Amplifier Inverting Input</td>
</tr>
<tr>
<td>CS</td>
<td>Current Sense Input pin (MCP1630) or Voltage Ramp Input pin (MCP1630V)</td>
</tr>
<tr>
<td>OSC</td>
<td>Oscillator Input pin</td>
</tr>
<tr>
<td>GND</td>
<td>Circuit Ground pin</td>
</tr>
<tr>
<td>V_EXT</td>
<td>External Driver Output pin</td>
</tr>
<tr>
<td>V_IN</td>
<td>Input Bias pin</td>
</tr>
<tr>
<td>V_REF</td>
<td>Reference Voltage Input pin</td>
</tr>
</tbody>
</table>

3.1 Error Amplifier Output Pin (COMP)

COMP is an internal error amplifier output pin. External compensation is connected from the FB pin to the COMP pin for control-loop stabilization. An internal voltage clamp is used to limit the maximum COMP pin voltage to 2.7V (typ.). This clamp is used to set the maximum peak current in the power system switch by setting a maximum limit on the CS input for Peak Current mode control systems.

3.2 Error Amplifier Inverting Input (FB)

FB is an internal error amplifier inverting input pin. The output (voltage or current) is sensed and fed back to the FB pin for regulation. Inverting or negative feedback is used.

3.3 Current Sensing Input (CS)

CS is the current sense input pin used for cycle-by-cycle control for Peak Current mode converters. The MCP1630 is typically used for sensed current applications to reduce the current sense signal, thus reducing power dissipation.

For Voltage mode or Average Current mode applications, a ramp is used to compare the error amplifier output voltage with producing the PWM duty cycle. For applications that require higher signal levels, the MCP1630V is used to increase the level from a maximum of 0.9V (MCP1630) to 2.7V (MCP1630V). The common mode voltage range for the MCP1630V CS input is V_IN - 1.4V. For normal PWM operation, the CS input should be less than or equal to V_IN - 1.4V at all times.

3.4 Oscillator Input (OSC)

OSC is an external oscillator input pin. Typically, a microcontroller I/O pin is used to generate the OSC input. When high, the output driver pin (V_EXT) is driven low. The high-to-low transition initiates the start of a new cycle. The duty cycle of the OSC input pin determines the maximum duty cycle of the power converter. For example, if the OSC input is low for 75% of the time and high for 25% of the time, the duty cycle range for the power converter is 0% to 75% maximum.

3.5 Ground (GND)

Connect the circuit ground to the GND pin. For most applications, this should be connected to the analog or quiet ground plane. Noise on this ground can affect the sensitive cycle-by-cycle comparison between the CS input and the error amplifier output.

3.6 External Driver Output Pin (V_EXT)

V_EXT is an external driver output pin, used to determine the power system duty cycle. For high-power or high-side drives, this output should be connected to the logic-level input of the MOSFET driver. For low-power, low-side applications, the V_EXT pin can be used to directly drive the gate of an N-channel MOSFET.

3.7 Input Bias Pin (V_IN)

V_IN is an input voltage pin. Connect the input voltage source to the V_IN pin. For normal operation, the voltage on the V_IN pin should be between +3.0V and +5.5V. A 0.1 µF bypass capacitor should be connected between the V_IN pin and the GND pin.

3.8 Reference Voltage Input (V_REF)

V_REF is an external reference input pin used to regulate the output of the power system. By changing the V_REF input, the output (voltage or current) of the power system can be changed. The reference voltage can range from 0V to V_IN (rail-to-rail).
4.0 DETAILED DESCRIPTION

4.1 Device Overview

The MCP1630 is comprised of a high-speed comparator, high-bandwidth amplifier and logic gates that can be combined with a PICmicro MCU to develop an advanced programmable power supply. The oscillator and reference voltage inputs are generated by the PICmicro MCU so that switching frequency, maximum duty cycle and output voltage are programmable. Refer to Figure 4-1.

4.2 PWM

The VEXT output of the MCP1630/V is determined by the output level of the internal high-speed comparator and the level of the external oscillator. When the oscillator level is high, the PWM output (VEXT) is forced low. When the external oscillator is low, the PWM output is determined by the output level of the internal high-speed comparator. During UVLO, the VEXT pin is held in the low state. During overtemperature operation, the VEXT pin is high-impedance (100 kΩ to ground).

4.3 Normal Cycle by Cycle Control

The beginning of a cycle is defined when OSC IN transitions from a high state to a low state. For normal operation, the state of the high-speed comparator output (R) is low and the Q output of the latch is low. On the OSC IN high-to-low transition, the S and R inputs to the high-speed latch are both low and the Q output will remain unchanged (low). The output of the OR gate (VDRIVE) will transition from a high state to a low state, turning on the internal P-channel drive transistor in the output stage of the PWM. This will change the PWM output (VEXT) from a low state to a high state, turning on the power-train external switch and ramping current in the power-train magnetic device.

The sensed current in the magnetic device is fed into the CS input (shown as a ramp) and increases linearly. Once the sensed current ramp (MCP1630) reaches the same voltage level as 1/3 of the EA output, the comparator output (R) changes states (low-to-high) and resets the PWM latch. The Q output transitions from a low state to a high state, turning on the N-channel MOSFET in the output stage, which turns off the VDRIVE to drive the external MOSFET driver terminating the duty cycle. The OSC IN will transition from a low state to a high state while the VEXT pin remains unchanged. If the CS input ramp had never reached the same level as 1/3 of the error amplifier output, the low-to-high transition on OSC IN would terminate the duty cycle and this would be considered maximum duty cycle. In either case, while OSC IN is high, the VEXT drive pin is low, turning off the external power-train switch. The next cycle will start on the transition of the OSC IN pin from a high state to a low state.

For Voltage mode or Average Current mode applications that utilize a large signal ramp at the CS input, the MCP1630V is used to provide more signal (2.7V typ.). The operation of the PWM does not change.

4.4 Error Amp/Comparator Current Limit Function

The internal amplifier is used to create an error output signal that is determined by the external VREF input and the power supply output fed back into the FB pin. The error amplifier output is rail-to-rail and clamped by a precision 2.7V. The output of the error amplifier is then divided down 3:1 (MCP1630) and connected to the inverting input of the high-speed comparator. Since the maximum output of the error amplifier is 2.7V, the maximum input to the inverting pin of the high-speed comparator is 0.9V. This sets the peak current limit for the switching power supply.

For the MCP1630V, the maximum error amplifier output is still 2.7V. However, the resistor divider is removed, raising the maximum input signal level at the high-speed comparator inverting input (CS) to 2.7V.

As the output load current demand increases, the error amplifier output increases, causing the inverting input pin of the high-speed comparator to increase. Eventually, the output of the error amplifier will hit the 2.7V clamp, limiting the input of the high-speed comparator to 0.9V max (MCP1630). Even if the FB input continues to decrease (calling for more current), the inverting input is limited to 0.9V. By limiting the inverting input to 0.9V, the current-sense input (CS) is limited to 0.9V, thus limiting the output current of the power supply.

For Voltage mode control, the error amplifier output will increase as input voltage decreases. A voltage ramp is used instead of sensed inductor current at the CS input of the MCP1630V. The 3:1 internal error amplifier output resistor divider is removed in the MCP1630V option to increase the maximum signal level input to 2.7V (typ.).

4.5 0% Duty Cycle Operation

The duty cycle of the VEXT output is capable of reaching 0% when the FB pin is held higher than the VREF pin (inverting error amplifier). This is accomplished by the rail-to-rail output capability of the error amplifier and the offset voltage of the high-speed comparator. The minimum error amplifier output voltage, divided by three, is less than the offset voltage of the high-speed comparator. In the case where the output voltage of the converter is above the desired regulation point, the FB input will be above the VREF input and the error amplifier will be pulled to the bottom rail (GND). This low voltage is divided down 3:1 by the 2R and 1R resistor (MCP1630) and connected to the input of the high-speed comparator. This voltage will be low enough so that there is no triggering of the comparator, allowing narrow pulse widths at VEXT.
4.6 Undervoltage Lockout (UVLO)

When the input voltage \(V_{IN} \) is less than the UVLO threshold, the \(V_{EXT} \) is held in the low state. This will ensure that, if the voltage is not adequate to operate the MCP1630/V, the main power supply switch will be held in the off state. When the UVLO threshold is exceeded, there is some hysteresis in the input voltage prior to the UVLO off threshold being reached. The typical hysteresis is 75 mV. Typically, the MCP1630 will not start operating until the input voltage at \(V_{IN} \) is between 3.0V and 3.1V.

4.7 Overtemperature Protection

To protect the \(V_{EXT} \) output if shorted to \(V_{IN} \) or GND, the MCP1630/V \(V_{EXT} \) output will be high-impedance if the junction temperature is above the thermal shutdown threshold. There is an internal 100 kΩ pull-down resistor connected from \(V_{EXT} \) to ground to provide some pull-down during overtemperature conditions. The protection is set to 150°C (typ.), with a hysteresis of 18°C.
MCP1630 High-Speed PWM Timing Diagram

Note: During overtemperature, V_{EXT} driver is high-impedance.

FIGURE 4-1: Cycle-by-Cycle Timing Diagram (MCP1630).
FIGURE 4-2: Cycle-by-Cycle Timing Diagram (MCP1630V).

MCP1630V High-Speed PWM Timing Diagram

Note: During overtemperature, \(V_{\text{EXT}} \) driver is high-impedance.

Latch Truth Table

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>(\bar{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(\bar{Q})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
5.0 APPLICATION CIRCUITS/ISSUES

5.1 Typical Applications
The MCP1630/V high-speed PWM can be used for any circuit topology and power-train application when combined with a microcontroller. Intelligent, cost-effective power systems can be developed for applications that require multiple outputs, multiple phases, adjustable outputs, temperature monitoring and calibration.

5.2 NiMH Battery Charger Application
A typical NiMH battery charger application is shown in the “Typical Application Circuit – MCP1630” of this data sheet. In that example, a Single-Ended Primary Inductive Converter (SEPIC) is used to provide a constant charge current to the series-connected batteries. The MCP1630 is used to regulate the charge current by monitoring the current through the battery sense resistor and providing the proper pulse width. The PIC16F818 monitors the battery voltage to provide a termination to the charge current. Additional features (trickle charge, fast charge, overvoltage protection, etc.) can be added to the system using the programmability of the microcontroller and the flexibility of the MCP1630.

5.3 Bidirectional Power Converter
A bidirectional Li-Ion charger/buck regulator is shown in the “Typical Application Circuit” of this data sheet. In this example, a synchronous, bidirectional power converter example is shown using the MCP1630V. In this application, when the ac-dc input power is present, the bidirectional power converter is used to charge 4-series Li-Ion batteries by boosting the input voltage. When ac-dc power is removed, the bidirectional power converter bucks the battery voltage down to provide a dc bus for system power. By using this method, a single power train is capable of charging 4-series cell Li-Ion batteries and efficiently converting the battery voltage down to a low, usable voltage.

5.4 Multiple Output Converters
By using additional MCP1630 devices, multiple output converters can be developed using a single MCU. If a two-output converter is desired, the MCU can provide two PWM outputs that are phased 180° apart. This will reduce the input ripple current to the source and eliminate beat frequencies.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX...X</td>
<td>Customer-specific information</td>
</tr>
<tr>
<td>Y</td>
<td>Year code (last digit of calendar year)</td>
</tr>
<tr>
<td>YY</td>
<td>Year code (last 2 digits of calendar year)</td>
</tr>
<tr>
<td>WW</td>
<td>Week code (week of January 1 is week '01')</td>
</tr>
<tr>
<td>NNN</td>
<td>Alphanumeric traceability code</td>
</tr>
<tr>
<td>e3</td>
<td>Pb-free JEDEC designator for Matte Tin (Sn)</td>
</tr>
</tbody>
</table>

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

For DFN samples, contact your Microchip Sales Office for availability.
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

Units	**INCHES**	**MILLIMETERS**
Number of Pins | n | 8 | 20
Pitch | P | 0.026 BSC | 0.66 BSC
Overall Height | A | 0.043 | 1.10
Molded Package Thickness | A2 | 0.030 - 0.037 | 0.75 - 0.85 | 0.95
Standoff | A1 | 0.000 - 0.006 | 0.00 - 0.15
Overall Width | E | 0.193 TYP. | 4.90 BSC
Molded Package Width | E1 | 0.118 BSC | 3.00 BSC
Overall Length | D | 0.118 BSC | 3.00 BSC
Foot Length | L | 0.016 - 0.024 | 0.040 - 0.060 | 0.80
Footprint (Reference) | F | 0.037 REF | 0.75 REF
Foot Angle | φ | 8° | 0°
Lead Thickness | c | 0.009 - 0.012 | 0.22 - 0.40
Lead Width | B | 0.009 - 0.016 | 0.08 - 0.23
Mold Draft Angle Top | α | 5° - 15° | 5° - 25°
Mold Draft Angle Bottom | β | 5° - 15° | 5° - 25°

*Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254mm) per side.

JEDEC Equivalent: MO-187

Drawing No. C04-111
8-Lead Plastic Dual Flat No Lead Package (MC) 2x3x0.9 mm Body (DFN) – Saw Singulated

For DFN samples, contact your Microchip Sales Office for availability.

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.020</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.031</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.000</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
<td>.008 REF.</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.079 BSC</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>.055</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.118 BSC</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>.047</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
<td>.008</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
<td>.012</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Notes:
1. BSC: Basic Dimension. Theoretically exact value shown without tolerances. See ASME Y14.5M
2. REF: Reference Dimension, usually without tolerance, for information purposes only. See ASME Y14.5M

Exposed pad varies according to die attach paddle size.
Package may have one or more exposed tie bars at ends.
Pin 1 visual index feature may vary, but must be located within the hatched area.
JEDEC equivalent: M0-229
Drawing No. C04-123, Revised 05-05-05
APPENDIX A: REVISION HISTORY

Revision B (June 2005)
The following is the list of modifications:
1. Added MCP1630V device information throughout data sheet
2. Added DFN package information throughout data sheet.
3. Added Appendix A: Revision History.

Revision A (June 2004)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Temperature Range</td>
<td>Package</td>
</tr>
</tbody>
</table>

Device:
- **MCP1630**: High-Speed, Microcontroller-Adaptable, PWM
- **MCP1630T**: High-Speed, Microcontroller-Adaptable, PWM (Tape and Reel)

Temperature Range:
- **E** = -40°C to +125°C

Package:
- **MC** *= Dual Flat, No Lead (2x3mm Body), 8-lead
- **MS** = Plastic MSOP, 8-lead

* For DFN samples, contact your Microchip Sales Office for availability.

Examples:

a) **MCP1630-E/MS**: Extended Temperature, 8LD MSOP package.

b) **MCP1630T-E/MS**: Tape and Reel Extended Temperature, 8LD MSOP package.

c) **MCP1630-E/MC**: Extended Temperature, 8LD DFN package.

a) **MCP1630V-E/MS**: Extended Temperature, 8LD MSOP package.

b) **MCP1630VT-E/MS**: Tape and Reel Extended Temperature, 8LD MSOP package.

c) **MCP1630V-E/MC**: Extended Temperature, 8LD DFN package.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.