MCP2150

IrDA® Standard Protocol Stack Controller
Supporting DTE Applications

Features
• Implements the IrDA® standard including:
 - IrLAP
 - IrLMP
 - IAS
 - TinyTP
 - IrCOMM (9-wire “cooked” service class)
• Provides IrDA standard physical signal layer support including:
 - Bidirectional communication
 - CRC implementation
 - Data communication rates up to 115.2 kbaud
• Includes UART to IrDA standard encoder/decoder functionality:
 - Easily interfaces with industry standard UARTs and infrared transceivers
• UART interface for connecting to Data Terminal Equipment (DTE) systems
• Transmit/Receive formats (bit width) supported:
 - 1.63 µs
• Hardware baud rate selection for UART:
 - 9.6 kbaud
 - 19.2 kbaud
 - 57.6 kbaud
 - 115.2 kbaud
• Infrared baud rates supported:
 - 9.6 kbaud
 - 19.2 kbaud
 - 38.4 kbaud
 - 57.6 kbaud
 - 115.2 kbaud
• 64 Byte Data Packet Size
• Programmable Device ID String
• Operates as Secondary Device

CMOS Technology
• Low power, high-speed CMOS technology
• Fully static design
• Low voltage operation
• Industrial temperature range
• Low power consumption
 - < 1 mA @ 3.3 V, 11.0592 MHz (typical)
 - 3 µA typical @ 5.0 V when disabled

Package Types

<table>
<thead>
<tr>
<th>PDIP, SOIC</th>
<th>SSOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUD0</td>
<td>1</td>
</tr>
<tr>
<td>TXIR</td>
<td>2</td>
</tr>
<tr>
<td>RXIR</td>
<td>3</td>
</tr>
<tr>
<td>RESET</td>
<td>4</td>
</tr>
<tr>
<td>Vss</td>
<td>5</td>
</tr>
<tr>
<td>Vdd</td>
<td>6</td>
</tr>
<tr>
<td>TX</td>
<td>7</td>
</tr>
<tr>
<td>RX</td>
<td>8</td>
</tr>
<tr>
<td>Ri</td>
<td>9</td>
</tr>
<tr>
<td>CD</td>
<td>10</td>
</tr>
<tr>
<td>DTR</td>
<td>11</td>
</tr>
<tr>
<td>DSR</td>
<td>12</td>
</tr>
<tr>
<td>OSC1/CLKI</td>
<td>13</td>
</tr>
<tr>
<td>OSC2</td>
<td>14</td>
</tr>
<tr>
<td>BAUD1</td>
<td>15</td>
</tr>
<tr>
<td>CD</td>
<td>16</td>
</tr>
<tr>
<td>Vss</td>
<td>17</td>
</tr>
<tr>
<td>Vdd</td>
<td>18</td>
</tr>
<tr>
<td>TX</td>
<td>19</td>
</tr>
<tr>
<td>RX</td>
<td>20</td>
</tr>
</tbody>
</table>

Block Diagram

MCP2150

- Encode and Protocol Handler
- Logic
- Baud Rate Generator
- Protocol Handler and Decode
- UART Control

© 2001-2012 Microchip Technology Inc.
MCP2150

NOTES:
1.0 DEVICE OVERVIEW

This document contains device specific information for the following device:

• MCP2150

The MCP2150 is a cost effective, low pin count (18-pin), easy to use device for implementing IrDA standard wireless connectivity. The MCP2150 provides support for the IrDA standard protocol "stack" plus bit encoding/decoding.

The serial interface baud rates are user selectable to one of four IrDA standard baud rates between 9600 baud and 115.2 kbaud (9600, 19200, 57600, 115200). The IR baud rates are user selectable to one of five IrDA standard baud rates between 9600 baud and 115.2 kbaud (9600, 19200, 37400, 57600, 115200). The serial interface baud rate will be specified by the BAUD1:BAUD0 pins, while the IR baud rate is specified by the Primary Device (during Discover phase). This means that the baud rates do not need to be the same. The MCP2150 operates in Data Terminal Equipment (DTE) applications and sits between a UART and an infrared optical transceiver.

The MCP2150 encodes an asynchronous serial data stream, converting each data bit to the corresponding infrared (IR) formatted pulse. IR pulses received are decoded and then handled by the protocol handler state machine. The protocol handler sends the appropriate data bytes to the Host Controller in UART formatted serial data.

The MCP2150 supports "point-to-point" applications. That is, one Primary device and one Secondary device. The MCP2150 operates as a Secondary device. It does not support "multi-point" applications.

Sending data using IR light requires some hardware and the use of specialized communication protocols. These protocol and hardware requirements are described in detail, by the IrDA standard specifications. The encoding/decoding functionality of the MCP2150 is designed to be compatible with the physical layer component of the IrDA standard. This part of the standard is often referred to as "IrPHY".

The complete IrDA standard specifications are available for download from the IrDA website (www.IrDA.org).
1.1 Applications

The MCP2150 Infrared Communications Controller supporting the IrDA standard provides embedded system designers the easiest way to implement IrDA standard wireless connectivity. Figure 1-1 shows a typical application block diagram. Table 1-2 shows the pin definitions.

Infrared communication is a wireless two-way data connection, using infrared light generated by low-cost transceiver signaling technology. This provides reliable communication between two devices.

Infrared technology offers:
- Universal standard for connecting portable computing devices
- Easy, effortless implementation
- Economical alternative to other connectivity solutions
- Reliable, high-speed connection
- Safe to use in any environment (can even be used during air travel)
- Eliminates the hassle of cables
- Allows PCs and other electronic devices (such as PDAs, cell phones, etc.) to communicate with each other
- Enhances mobility by allowing users to easily connect

The MCP2150 allows the easy addition of IrDA standard wireless connectivity to any embedded application that uses serial data. Figure 1-1 shows typical implementation of the MCP2150 in an embedded system.

The IrDA protocols for printer support are not included in the IrCOMM 9-wire "cooked" service class.
TABLE 1-2: PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Number</th>
<th>Pin Type</th>
<th>Buffer Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUD0</td>
<td>1, 1, 1</td>
<td>I</td>
<td>ST</td>
<td>BAUD1:BAUD0 specify the baud rate of the device.</td>
</tr>
<tr>
<td>TXIR</td>
<td>2, 2, 2</td>
<td>O</td>
<td>—</td>
<td>Asynchronous transmit to Infrared transceiver.</td>
</tr>
<tr>
<td>RXIR</td>
<td>3, 3, 3</td>
<td>I</td>
<td>ST</td>
<td>Asynchronous receive from Infrared transceiver.</td>
</tr>
<tr>
<td>RESET</td>
<td>4, 4, 4</td>
<td>I</td>
<td>ST</td>
<td>Resets the device.</td>
</tr>
<tr>
<td>Vss</td>
<td>5, 5, 5, 6</td>
<td>—</td>
<td>P</td>
<td>Ground reference for logic and I/O pins.</td>
</tr>
<tr>
<td>EN</td>
<td>6, 6, 7</td>
<td>I</td>
<td>TTL</td>
<td>Device enable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Device is enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Device is disabled (low power). MCP2150 only monitors this pin when in the NDM state.</td>
</tr>
<tr>
<td>TX</td>
<td>7, 7, 8</td>
<td>I</td>
<td>TTL</td>
<td>Asynchronous receive; from Host Controller UART.</td>
</tr>
<tr>
<td>RX</td>
<td>8, 8, 9</td>
<td>O</td>
<td>—</td>
<td>Asynchronous transmit; to Host Controller UART.</td>
</tr>
<tr>
<td>RI</td>
<td>9, 9, 10</td>
<td>—</td>
<td>—</td>
<td>Ring Indicator. The value on this pin is driven high.</td>
</tr>
<tr>
<td>DSR</td>
<td>10, 10, 11</td>
<td>O</td>
<td>—</td>
<td>Data Set Ready. Indicates that the MCP2150 has completed reset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = MCP2150 is initialized.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = MCP2150 is not initialized.</td>
</tr>
<tr>
<td>DTR</td>
<td>11, 11, 12</td>
<td>I</td>
<td>TTL</td>
<td>Data Terminal Ready. The value of this pin is ignored once the MCP2150 is initialized. It is recommended that this pin be connected so that the voltage level is either Vss or Vcc. At device power up, this signal is used with the RTS signal to enter device ID programming.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Enter Device ID programming mode (if RTS is cleared).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Do not enter Device ID programming mode.</td>
</tr>
<tr>
<td>CTS</td>
<td>12, 12, 13</td>
<td>O</td>
<td>—</td>
<td>Clear to Send. Indicates that the MCP2150 is ready to receive data from the Host Controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Host Controller should not send data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Host Controller may send data.</td>
</tr>
<tr>
<td>RTS</td>
<td>13, 13, 14</td>
<td>I</td>
<td>TTL</td>
<td>Request to Send. Indicates that a Host Controller is ready to receive data from the MCP2150. The MCP2150 prepares to send data, if available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Host Controller not ready to receive data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Host Controller ready to receive data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At device power up, this signal is used with the DTR signal to enter device ID programming.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Do not enter Device ID programming mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Enter Device ID programming mode (if DTR is set).</td>
</tr>
<tr>
<td>VDD</td>
<td>14, 14, 15, 16</td>
<td>—</td>
<td>P</td>
<td>Positive supply for logic and I/O pins.</td>
</tr>
<tr>
<td>OSC2</td>
<td>15, 15, 17</td>
<td>—</td>
<td>—</td>
<td>Oscillator crystal output.</td>
</tr>
<tr>
<td>OSC1/CLKIN</td>
<td>16, 16, 18</td>
<td>I</td>
<td>CMOS</td>
<td>Oscillator crystal input/external clock source input.</td>
</tr>
<tr>
<td>CD</td>
<td>17, 17, 19</td>
<td>O</td>
<td>—</td>
<td>Carrier Detect. Indicates that the MCP2150 has established a valid link with a Primary Device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = An IR link has not been established (No IR Link).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = An IR link has been established (IR Link).</td>
</tr>
<tr>
<td>BAUD1</td>
<td>18, 18, 20</td>
<td>I</td>
<td>ST</td>
<td>BAUD1:BAUD0 specify the baud rate of the device.</td>
</tr>
</tbody>
</table>

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power CMOS = CMOS compatible input
1.1.1 SIGNAL DIRECTIONS

Table 1-3 shows the direction of the MCP2150 signals. The MCP2150 is designed for use in Data Terminal Equipment (DTE) applications.

TABLE 1-3: MCP2150 SIGNAL DIRECTION

<table>
<thead>
<tr>
<th>DB-9 Pin No.</th>
<th>Signal</th>
<th>Direction</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
<td>MCP2150 → HC</td>
<td>Carrier Detect</td>
</tr>
<tr>
<td>2</td>
<td>RX</td>
<td>MCP2150 → HC</td>
<td>Received Data</td>
</tr>
<tr>
<td>3</td>
<td>TX</td>
<td>HC → MCP2150</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>DTR (1)</td>
<td>—</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>—</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>MCP2150 → HC</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>HC → MCP2150</td>
<td>Request to Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>MCP2150 → HC</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>9</td>
<td>RI (1)</td>
<td>—</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>

Legend: HC = Host Controller

Note 1: This signal is not implemented in the MCP2150.
2.0 DEVICE OPERATION

The MCP2150 is a cost effective, low pin count (18-pin), easy to use device for implementing IrDA standard wireless connectivity. The MCP2150 provides support for the IrDA standard protocol “stack” plus bit encoding/decoding. The Serial interface and IR baud rates are independently selectable.

2.1 Power Up

Any time the device is powered up (parameter D003), the Power Up Timer delay (parameter 33) occurs, followed by an Oscillator Start-up Timer (OST) delay (parameter 32). Once these delays complete, communication with the device may be initiated. This communication is from both the infrared transceiver’s side as well as the controller’s UART interface.

2.2 Device Reset

The MCP2150 is forced into the reset state when the RESET pin is in the low state. Once the RESET pin is brought to a high state, the Device Reset sequence occurs. Once the sequence completes, functional operation begins.

2.3 Clock Source

The MCP2150 requires a clock source to operate. The frequency of this clock is 11.0592 MHz (electrical specification parameter 1A). This clock can be supplied by either a crystal/resonator or as an external clock input.

2.3.1 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

A crystal or ceramic resonator can be connected to the OSC1 and OSC2 pins to establish oscillation (Figure 2-1). The MCP2150 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency outside of the crystal manufacturers specifications.

FIGURE 2-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR)

See Table 2-1 and Table 2-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

<table>
<thead>
<tr>
<th>Freq</th>
<th>OSC1 (C1)</th>
<th>OSC2 (C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0592 MHz</td>
<td>10 - 22 pF</td>
<td>10 - 22 pF</td>
</tr>
</tbody>
</table>

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

<table>
<thead>
<tr>
<th>Freq</th>
<th>OSC1 (C1)</th>
<th>OSC2 (C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0592 MHz</td>
<td>15 - 30 pF</td>
<td>15 - 30 pF</td>
</tr>
</tbody>
</table>

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

2.3.2 EXTERNAL CLOCK IN

For applications where a clock is already available elsewhere, users may directly drive the MCP2150 provided that this external clock source meets the AC/DC timing requirements listed in Section 4.3. Figure 2-2 shows how an external clock circuit should be configured.

FIGURE 2-2: EXTERNAL CLOCK INPUT OPERATION
MCP2150

2.4 Bit Clock

The device crystal is used to derive the communication bit clock (BITCLK). There are 16 BITCLKs for each bit time. The BITCLKs are used for the generation of the start bit and the eight data bits. The stop bit uses the BITCLK when the data is transmitted (not for reception).

This clock is a fixed frequency and has minimal variation in frequency (specified by crystal manufacturer).

2.5 UART Interface

The UART interface communicates with the "controller". This interface is a half duplex interface, meaning that the system is either transmitting or receiving, but not both simultaneously.

2.5.1 BAUD RATE

The baud rate for the MCP2150 serial port (the TX and RX pins) is configured by the state of the BAUD1 and BAUD0 pins. These two device pins are used to select the baud rate at which the MCP2150 will transmit and receive serial data (not IR data). Table 2-3 shows the baud rate configurations.

TABLE 2-3: SERIAL BAUD RATE SELECTION VS. FREQUENCY

<table>
<thead>
<tr>
<th>BAUD1:BAUD0</th>
<th>Baud Rate @ 11.0592 MHz</th>
<th>Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>9600</td>
<td>Fosc / 1152</td>
</tr>
<tr>
<td>01</td>
<td>19200</td>
<td>Fosc / 576</td>
</tr>
<tr>
<td>10</td>
<td>57600</td>
<td>Fosc / 192</td>
</tr>
<tr>
<td>11</td>
<td>115200</td>
<td>Fosc / 96</td>
</tr>
</tbody>
</table>

2.5.2 TRANSMITTING

When the controller sends serial data to the MCP2150, the controller’s baud rate is required to match the baud rate of the MCP2150’s serial port.

2.5.3 RECEIVING

When the controller receives serial data from the MCP2150, the controller’s baud rate is required to match the baud rate of the MCP2150’s serial port.
2.6 Modulation

The data that the MCP2150 UART received (on the TX pin) that needs to be transmitted (on the TXIR pin) will need to be modulated. This modulated signal drives the IR transceiver module. Figure 2-3 shows the encoding of the modulated signal.

Each bit time is comprised of 16-bit clocks. If the value to be transmitted (as determined by the TX pin) is a logic low, then the TXIR pin will output a low level for 7-bit clock cycles, a logic high level for 3-bit clock cycles or a minimum of 1.6 µsec. (see parameter IR121). The remaining 6-bit clock cycles will be low. If the value to transmit is a logic high, then the TXIR pin will output a low level for the entire 16-bit clock cycles.

2.7 Demodulation

The modulated signal (data) from the IR transceiver module (on RXIR pin) needs to be demodulated to form the received data (on RX pin). Once demodulation of the data byte occurs, the data that is received is transmitted by the MCP2150 UART (on the RX pin). Figure 2-4 shows the decoding of the modulated signal.

Each bit time is comprised of 16-bit clocks. If the value to be received is a logic low, then the RXIR pin will be a low level for the first 3-bit clock cycles or a minimum of 1.6 µs. The remaining 13-bit clock cycles (or difference up to the 16-bit clock time) will be high. If the value to be received is a logic high, then the RXIR pin will be a high level for the entire 16-bit clock cycles. The level on the RX pin will be in the appropriate state for the entire 16 clock cycles.

Note: The signal on the TXIR pin does not actually line up in time with the bit value that was transmitted on the TX pin, as shown in Figure 2-3. The TX bit value is shown to represent the value to be transmitted on the TXIR pin.

Note: The signal on the RX pin does not actually line up in time with the bit value that was received on the RXIR pin, as shown in Figure 2-4. The RXIR bit value is shown to represent the value to be transmitted on the RX pin.
2.8 Minimizing Power

The device can be placed in a low power mode by disabling the device (holding the EN pin at the low state). The internal state machine is monitoring this pin for a low level and, once this is detected, the device is disabled and enters into a low power state.

2.8.1 RETURNING TO DEVICE OPERATION

When disabled, the device is in a low power state. When the EN pin is brought to a high level, the device will return to the operating mode. The device requires a delay of 1024 TOSC before data may be transmitted or received.

2.9 Network Layering Reference Model

Figure 2-5 shows the ISO Network Layering Reference Model. The shaded areas are implemented by the MCP2150, the cross-hatched area is implemented by an infrared transceiver. The unshaded areas should be implemented by the Host Controller.

FIGURE 2-5: ISO REFERENCE LAYER MODEL

<table>
<thead>
<tr>
<th>OSI REFERENCE LAYERS</th>
<th>Regions implemented by the MCP2150</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Has to be implemented in Host Controller firmware (such as a PIC® microcontroller)</td>
</tr>
<tr>
<td></td>
<td>Regions implemented by the Optical Transceiver logic</td>
</tr>
</tbody>
</table>

- **Application**
- **Presentation**
- **Session**
- **Transport**
- **Network**

Data Link Layer

- LLC (Logical Link Control)
- Acceptance Filtering
- Overload Notification
- Recovery Management

- MAC (Medium Access Control)
- Data Encapsulation/Decapsulation
- Frame Coding (stuffing, destuffing)
- Medium Access Management
- Error Detection
- Error Signalling
- Acknowledgment
- Serialization/Deserialization

Physical Layer

- PLS (Physical Signalling)
- Bit Encoding/Decoding
- Bit Timing
- Synchronization

- PMA (Physical Medium Attachment)
- Driver/Receiver Characteristics

- MDI (Medium Dependent Interface)
- Connectors

Fault confinement (MAC-LME)

Bus Failure management (PLS-LME)
The IrDA standard specifies the following protocols:
• Physical Signaling Layer (PHY)
• Link Access Protocol (IrLAP)
• Link Management Protocol/Information Access Service (IrLMP/IAS)

The IrDA data lists optional protocols. They are:
• Tiny TP
• IrTran-P
• IrOBEX
• IrLAN
• IrCOMM
• IrDA Lite

Figure 2-6 shows the IrDA data protocol stack and which components are implemented by the MCP2150.

FIGURE 2-6: IRDA DATA - PROTOCOL STACKS

<table>
<thead>
<tr>
<th>IrTran-P</th>
<th>IrObex</th>
<th>IrLan</th>
<th>IrComm (^1)</th>
<th>IrMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM-IAS</td>
<td>Tiny Transport Protocol (Tiny TP)</td>
<td>IR Link Management - Mux (IrLMP)</td>
<td>IR Link Access Protocol (IrLAP)</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Serial IR (^2) (9600 - 115200 b/s)</td>
<td>Synchronous Serial IR (1.152 Mb/s)</td>
<td>Synchronous 4 PPM (4 Mb/s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supported by the MCP2150

Optional IrDA data protocols not supported by the MCP2150

Note 1: The MCP2155 implements the 9-wire "cooked" service class serial replicator.

2: An optical transceiver is required.

2.9.1 IrDA DATA PROTOCOLS SUPPORTED BY MCP2150

The MCP2150 supports these required IrDA standard protocols:
• Physical Signaling Layer (PHY)
• Link Access Protocol (IrLAP)
• Link Management Protocol/Information Access Service (IrLMP/IAS)

The MCP2150 also supports some of the optional protocols for IrDA data. The optional protocols that the MCP2150 implements are:
• Tiny TP
• IrCOMM

2.9.1.1 Physical Signal Layer (PHY)

The MCP2150 provides the following Physical Signal Layer specification support:
• Bidirectional communication
• Data Packets are protected by a CRC
 - 16-bit CRC for speeds up to 115.2 kbaud
• Data Communication Rate
 - 9600 baud minimum data rate

The following Physical Layer Specification is dependent on the optical transceiver logic used in the application. The specification states:
• Communication Range, which sets the end user expectation for discovery, recognition and performance.
 - Continuous operation from contact to at least 1 meter (typically 2 meters can be reached)
 - A low power specification reduces the objective for operation from contact to at least 20 cm (low power and low power) or 30 cm (low power and standard power).
The MCP2150 supports the IrLAP protocol. The IrLAP protocol provides:
• Management of communication processes on the link between devices.
• A device-to-device connection for the reliable, ordered transfer of data.
• Device discover procedures.
• Hidden node handling.

Figure 2-7 identifies the key parts and hierarchy of the IrDA protocols. The bottom layer is the Physical layer, IrPHY. This is the part that converts the serial data to and from pulses of IR light. IR transceivers can’t transmit and receive at the same time. The receiver has to wait for the transmitter to finish sending. This is sometimes referred to as a “Half-Duplex” connection. The IR Link Access Protocol (IrLAP) provides the structure for packets (or “frames”) of data to emulate data that would normally be free to stream back and forth.

Figure 2-8 shows how the IrLAP frame is organized. The frame is proceeded by some number of Beginning of Frame characters (BOFs). The value of the BOF is generally 0xC0, but 0xFF may be used if the last BOF character is a 0xC0. The purpose of multiple BOFs is to give the other station some warning that a frame is coming.

The IrLAP frame begins with an address byte (‘A’ field), then a control byte (‘C’ field). The control byte is used to differentiate between different types of frames and is also used to count frames. Frames can carry status, data or commands. The IrLAP protocol has a command syntax of its own. These commands are part of the control byte. Lastly, IrLAP frames carry data. This data is the information (or “I”) field. The integrity of the frame is ensured with a 16-bit CRC, referred to as the Frame Check Sequence (FCS). The 16-bit CRC value is transmitted LSB first. The end of the frame is marked with an EOF character, which is always a 0xC1. The frame structure described here is used for all versions of IrDA protocols used for serial wire replacement for speeds up to 115.2 kbaud.

In addition to defining the frame structure, IrLAP provides the “housekeeping” functions of opening, closing and maintaining connections. The critical parameters that determine the performance of the link are part of this function. These parameters control how many BOFs are used, identify the speed of the link, how fast either party may change from receiving to transmitting, etc. IrLAP has the responsibility of negotiating these parameters to the highest common set so that both sides can communicate as quickly, and as reliably, as possible.

FIGURE 2-8: IRLAP FRAME

In addition to defining the frame structure, IrLAP provides the “housekeeping” functions of opening, closing and maintaining connections. The critical parameters that determine the performance of the link are part of this function. These parameters control how many BOFs are used, identify the speed of the link, how fast either party may change from receiving to transmitting, etc. IrLAP has the responsibility of negotiating these parameters to the highest common set so that both sides can communicate as quickly, and as reliably, as possible.

Note 1: Another IrDA standard that is entering general usage is IR Object Exchange (IrOBEX). This standard is not used for serial connection emulation.

Note 2: IrDA communication standards faster than 115.2 kbaud use a different CRC method and physical layer.
2.9.1.3 IrLMP
The MCP2150 implements the IrLMP protocol. The IrLMP protocol provides:

- Multiplexing of the IrLAP layer. This allows multiple channels above an IrLAP connection.
- Protocol and service discovery. This is via the Information Access Service (IAS).

When two devices that contain the IrDA standard feature are connected, there is generally one device that has something to do and the other device that has the resource to do it. For example, a laptop may have a job to print and an IrDA standard compatible printer has the resources to print it. In IrDA standard terminology, the laptop is a Primary device and the printer is the Secondary device. When these two devices connect, the Primary device must determine the capabilities of the Secondary device to determine if the Secondary device is capable of doing the job. This determination is made by the Primary device asking the Secondary device a series of questions. Depending on the answers to these questions, the Primary device may or may not elect to connect to the Secondary device.

The queries from the Primary device are carried to the Secondary device using IrLMP. The responses to these queries can be found in the Information Access Service (IAS) of the Secondary device. The IAS is a list of the resources of the Secondary device. The Primary device compares the IAS responses with its requirements and then makes the decision if a connection should be made.

The MCP2150 identifies itself to the Primary device as a modem.

Note: The MCP2150 identifies itself as a modem to ensure that it is identified as a serial device with a limited amount of memory.

The MCP2150 is not a modem, and the non-data circuits are not handled in a modem fashion.

2.9.1.4 Link Management - Information Access Service (LM-IAS)
The MCP2150 implements the LM-IAS. Each LM-IAS entity maintains an information database to provide:

- Information on services for other devices that contain the IrDA standard feature (Discovery).
- Information on services for the device itself.
- Remote accessing of another device’s information base.

This is required so that clients on a remote device can find configuration information needed to access a service.

2.9.1.5 Tiny TP
Tiny TP provides the flow control on IrLMP connections. An optional service of Segmentation and Reassembly can be handled.

2.9.1.6 IrCOMM
IrCOMM provides the method to support serial and parallel port emulation. This is useful for legacy COM applications, such as printers and modem devices.

The IrCOMM standard is just a syntax that allows the Primary device to consider the Secondary device as a serial device. IrCOMM allows for emulation of serial or parallel (printer) connections of various capabilities. The MCP2150 supports the 9-wire "cooked" service class of IrCOMM. Other service classes supported by IrCOMM are shown in Figure 2-9.

FIGURE 2-9: IRCOMM SERVICE CLASSES

- **Uncooked Services**
 - Parallel
 - Serial
 - 3-wire Raw
 - IrLPT

- **Cooked Services**
 - Parallel
 - Centronics
 - IEEE 1284
 - Serial
 - 3-wire Cooked
 - 9-wire Cooked

Supported by MCP2150
2.9.2 OTHER OPTIONAL IrDA DATA PROTOCOLS

Other IrDA data protocols have been developed to specific application requirements. These optional protocols are not supported by the MCP2150. These IrDA data protocols are briefly described in the following sub-sections. For additional information, please refer to the IrDA website (www.IrDA.org).

2.9.2.1 IrTran-P
IrTran-P provides the protocol to exchange images with digital image capture devices/cameras.

2.9.2.2 IrOBEX
IrOBEX provides OBJ ect EXchange services. This is similar to HTTP.

2.9.2.3 IrLAN
IrLAN describes a protocol to support IR wireless access to a Local Area Network (LAN).

2.9.2.4 IrMC
IrMC describes how mobile telephony and communication devices can exchange information. This information includes phonebook, calender and message data. Also how call control and real-time voice are handled (RTCON).

2.9.2.5 IrDA Lite
IrDA Lite describes how to reduce the application code requirements, while maintaining compatibility with the full implementation.
2.9.3 HOW DEVICES CONNECT

When two devices implementing the IrDA standard feature establish a connection using the IrCOMM protocol, the process is analogous to connecting two devices with serial ports using a cable. This is referred to as a "point-to-point" connection. This connection is limited to half-duplex operation because the IR transceiver cannot transmit and receive at the same time. The purpose of the IrDA protocol is to allow this half-duplex link to emulate, as much as possible, a full-duplex connection. In general, this is done by dividing the data into "packets", or groups of data. These packets can then be sent back and forth, when needed, without risk of collision. The rules of how and when these packets are sent constitute the IrDA protocols. The MCP2150 supports elements of this IrDA protocol to communicate with other IrDA standard compatible devices.

When a wired connection is used, the assumption is made that both sides have the same communications parameters and features. A wired connection has no need to identify the other connector because it is assumed that the connectors are properly connected. In the IrDA standard, a connection process has been defined to identify other IrDA compatible devices and establish a communication link. There are three steps that these two devices go through to make this connection. They are:

- Normal Disconnect Mode (NDM)
- Discovery Mode
- Normal Connect Mode (NCM)

Figure 2-10 shows the connection sequence.

2.9.3.1 Normal Disconnect Mode (NDM)

When two IrDA standard compatible devices come into range they must first recognize each other. The basis of this process is that one device has some task to accomplish and the other device has a resource needed to accomplish this task. One device is referred to as a Primary device and the other is referred to as a Secondary device. This distinction between Primary device and Secondary device is important. It is the responsibility of the Primary device to provide the mechanism to recognize other devices. So the Primary device must first poll for nearby IrDA standard compatible devices. During this polling, the default baud rate of 9600 baud is used by both devices.

For example, if you want to print from an IrDA equipped laptop to an IrDA printer, utilizing the IrDA standard feature, you would first bring your laptop in range of the printer. In this case, the laptop is the one that has something to do and the printer has the resource to do it. The laptop is called the Primary device and the printer is the Secondary device. Some data-capable cellphones have IrDA standard infrared ports. If you used such a cellphone with a Personal Dig-
2.9.3.2 Discovery Mode

Discovery mode allows the Primary device to determine the capabilities of the MCP2150 (Secondary device). Discovery mode is entered once the MCP2150 (Secondary device) has sent an XID response to the Primary device and the Primary device has completed sending the XID's and then sends a Broadcast ID. If this sequence is not completed, then a Primary and Secondary device can stay in NDM indefinitely.

When the Primary device has something to do, it initiates Discovery. Discovery has two parts. They are:

- Link initialization
- Resource determination

The first step is for the Primary and Secondary devices to determine, and then adjust to, each other’s hardware capabilities. These capabilities are parameters like:

- Data rate
- Turn around time
- Number of packets without a response
- How long to wait before disconnecting

Both the Primary and Secondary device begin communications at 9600 baud, which is the default baud rate. The Primary device sends its parameters, then the Secondary device responds with its parameters. For example, if the Primary supports all data rates up to 115.2 kbaud and the Secondary device only supports 19.2 kbaud, the link will be established at 19.2 kbaud.

Note: The MCP2150 is limited to a data rate of 115.2 kbaud.

Once the hardware parameters are established, the Primary device must determine if the Secondary device has the resources it requires. If the Primary device has a job to print, then it must know if it’s talking to a printer, not a modem or other device. This determination is made using the Information Access Service (IAS). The job of the Secondary device is to respond to IAS queries made by the Primary device. The Primary device must ask a series of questions like:

- What is the name of your service?
- What is the address of this service?
- What are the capabilities of this device?

When all the Primary device’s questions are answered, the Primary device can access the service provided by the Secondary device.

During Discovery mode, the MCP2150 handles all responses to the Primary device (see Figure 2-10) without any communication with the Host Controller. The Host Controller is inhibited by the CTS signal of the MCP2150 from sending data to the MCP2150.

2.9.3.3 Normal Connect Mode (NCM)

Once discovery has been completed, the Primary device and MCP2150 (Secondary device) can freely exchange data.

The MCP2150 can receive IR data or serial data, but not both simultaneously. The MCP2150 uses a hardware handshake to stop the local serial port from sending data while the MCP2150 is receiving IR data.

Note: Data loss will result if this hardware handshake is not observed.

Both the Primary device and the MCP2150 (Secondary device) check to make sure that data packets are received by the other without errors. Even when data is required to be sent, the Primary and Secondary devices will still exchange packets to ensure that the connection hasn’t, unexpectedly, been dropped. When the Primary device has finished, it then transmits the close link command to the MCP2150 (Secondary device). The MCP2150 will confirm the close link command and both the Primary device and the MCP2150 (Secondary device) will revert to the NDM state.

Note: If the NCM mode is unexpectedly terminated for any reason (including the Primary device not issuing a close link command), the MCP2150 will revert to the NDM state 10 seconds after the last frame has been received.

It is the responsibility of the Host Controller program to understand the meaning of the data received and how the program should respond to it. It’s just as if the data were being received by the Host Controller from a UART.
FIGURE 2-10: CONNECTION SEQUENCE

Primary Device

Normal Disconnect Mode (NDM)
- Send XID Commands (timeslots n, n+1, ...)
 - (approximately 70ms between XID commands)
- Finish sending XIDs
 - (max timeslots - y frames)
 - Broadcast ID

Secondary Device (ex. MCP2150)
- No Response
- XID Response in timeslot y, claiming this timeslot, (MCP2150 always claims timeslot 2)
- No Response to these XIDs
- No Response to Broadcast ID

Discovery
- Send SNRM Command
 - (w/ parameters and connection address)
- Open channel for IAS Queries
- Send IAS Queries
- Open channel for data

Normal Response Mode (NRM)
- Send Data or Status
- Send Data or Status
- Shutdown link
- (MCP2150 CD pin driven low)
- Confirm shutdown (back to NDM state)
2.10 Operation

The MCP2150 emulates a null modem connection. The application on the DTE device sees a virtual serial port. This serial port emulation is provided by the IrDA standard protocols. The link between the DTE device and the embedded application is made using the MCP2150. The connection between the MCP2150 and the embedded application is wired as if there were a null modem connection.

The Carrier Detect (CD) signal of the MCP2150 is used to indicate that a valid IrDA standard infrared link has been established between the MCP2150 and the Primary device. The CD signal should be monitored closely to make sure that any communication tasks can be completed. The MCP2150 DSR signal indicates that the device has powered-up, successfully initialized and is ready for service. This signal is intended to be connected to the DSR input of the Host Controller. If the Host Controller was directly connected to an IrDA standard Primary device using a serial cable (the MCP2150 is not present), the Host Controller would be connected to the Primary device’s DTR output signal.

The MCP2150 generates the CTS signal locally because of buffer limitations.

2.10.1 HARDWARE HANDSHAKING

The MCP2150 uses a 64-byte buffer for incoming data from the IR Host. Another 64-byte buffer is provided to buffer data from the UART serial port. When an IR packet begins the IrComm, the MCP2150 handles IR data exclusively (the UART serial port buffer is not available). A hardware handshaking pin (CTS) is provided to inhibit the Host Controller from sending serial data while IR Data is being sent or received.

| Note 1: | The MCP2150 generates non-data signals locally. |
| Note 2: | Only transceiver’s TXD and RXD signals are carried back and forth to the Primary device. The MCP2150 emulates a 3-wire serial connection (TXD, RXD and GND). |

TABLE 2-4: THEORETICAL IrDA STANDARD THROUGHPUT EXAMPLES @ 115.2 KBAUD

<table>
<thead>
<tr>
<th>MCP2150 Data Packet Size (Bytes)</th>
<th>Overhead (Bytes)</th>
<th>Primary Device Minimum Response (Bytes)</th>
<th>Primary Device Turn-around Time(1) (Bytes)</th>
<th>MCP2150 Turn-around Time(1) (Bytes)</th>
<th>Total Bytes Transmitted</th>
<th>Throughput % (Data/Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>102</td>
<td>62.7%</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>39</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

Note 1: Number of bytes calculated based on a common turnaround time of 1 ms.

2.10.2 BUFFERS AND THROUGHPUT

The maximum IR data rate of the MCP2150 is 115.2 kbaud. The actual throughput will be less, due to several factors. The most significant factors are under the control of the developer. One factor beyond the control of the designer is the overhead associated with the IrDA standard. The MCP2150 uses a fixed data block size of 64 bytes. To carry 64 bytes of data, the MCP2150 must send 72 bytes (64+8). The additional 8 bytes are used by the protocol. When the Primary device receives the frame, it must wait for a minimum latency period before sending a packet of its own. This turnaround time is set by IrLAP when the parameters of the link are negotiated. A common turnaround time is 1 ms, although longer and shorter times may be encountered. 1 ms represents approximately 12 byte times at a data rate of 115.2 kbaud. The minimum size frame the Primary device can respond with is 6 bytes. The MCP2150 will add the 12 byte-time latency on its own, again assuming a 1 ms latency. This means that the maximum throughput will be 64 data bytes out of a total of 64 + 38 byte times. Thus, the maximum theoretical throughput will be limited to about 64/(64+38)=63% of the IR data rate. Actual maximum throughput will be dependent on both the MCP2150 and the characteristics of the Primary device.

The most significant factor in data throughput is how well the data frames are filled. If only 1 byte is sent at a time, then the maximum throughput is 1/(1+38)=2.6% of the IR data rate. The best way to maximize throughput is to align the amounts of data with the packet size of the MCP2150. Throughput examples are shown in Table 2-4.
2.11 Turnaround Latency

An IR link can be compared to a one-wire data connection. The IR transceiver can transmit or receive, but not both at the same time. A delay of one bit time is recommended between the time a byte is received and another byte is transmitted.

2.12 IR Port Baud Rate

The baud rate for the MCP2150 IR port (the TXIR and RXIR pins) is, initially, at the default rate of 9600 baud. The Primary device determines the maximum baud rate that the MCP2150 will operate at. This information is used during NDM, with the Primary device setting the baud rate of the IR link. The maximum IR baud rate is not required to be the same as the MCP2150’s serial port (UART) baud rate (as determined by the BAUD1:BAUD0 pins).

2.13 Programmable Device ID

The MCP2150 has a flexible feature that allows the MCP2150 Device ID to be changed by the Host Controller. The default ID is “Generic IrDA” and is stored in non-volatile, electrically erasable programmable memory (EEPROM). The maximum ID String length is 19 bytes. The format of the ID EEPROM is shown in Figure 2-11.

The ID String must only contain the ASCII characters from 20h to 7Ah (inclusive).

The MCP2150 enters into ID String programming when it exits the reset state and detects that the DTR pin is high and the RTS pin is low.

A Host Controller connected to the MCP2150 would, typically, perform the following steps to place the MCP2150 into ID String programming mode:

1. Force the MCP2150 into reset (RESET pin forced low).
2. Force the DTR pin high and the RTS pin low.
3. Release the MCP2150 from reset (RESET pin forced high).
4. Wait for device to complete initialization.

Example 2-1 shows the firmware code for a PIC16CXXX acting as the Host Controller to modify the MCP2150 Device ID String.
EXAMPLE 2-1: PIC16FXX Code to Program the Device ID

```assembly
#define     dtr    PORTx, Pinx    ; Must specify which Port and Which Pin
#define     cts    PORTx, Pinx    ; Must specify which Port and Which Pin
#define     rts    PORTx, Pinx    ; Must specify which Port and Which Pin
#define     clr    PORTx, Pinx    ; Must specify which Port and Which Pin

;*********************************************************
; String Table
; This table stores a string, breg is the offset. The string
; is terminated by a null character.
;*********************************************************
string1 clrf   PCLATH           ; this routine is on page 0
     movf   breg, W          ; get the offset
     addwf  PCL, F           ; add the offset to PC
     DT     D'15'            ; the first byte is the byte count
     DT     "My IR ID String"

UpdateID
     call   deviceInit       ; Initialize the PIC16Fxxx
     bcf    clr              ; place the MCP2150 in reset
     bsf    dtr              ; Force the DTR pin high for program mode
     bcf    rts              ; Force the RTS pin low for program mode
     call   delay1mS         ; delay for 1 ms.
     bsf    clr              ; allow the MCP2150 to come out of reset

;     clrf   LoopCnt          ; LoopCnt = 0
     ctsLP1  call   delay1mS         ; delay for 1 ms.
     btfss  cts              ; if cts=0 then we're ready to program
     goto   ctsLow           ; MCP2150 is ready to receive data
     decfsz LoopCnt, F       ;
     goto   ctsLP1           ; NO, wait for MCP2150 to be ready
     goto   StuckReset       ; The MCP2150 did not exit reset, do your recovery

```
EXAMPLE 2-1: PIC16FXX Code to Program the Device ID (Continued)

```assembly
ctsLow clr breg ; clear the offset
call string1 ; get the byte count
    ; (ID length byte + # bytes in string)
movf creg ; use creg as the loop counter
incf creg, f ; add 1 to the loop count since
    ; we're jumping into the middle
movf areg ; save the count in areg to send it
goto sndwt ; start sending the count + ID string
; sndlp call string1 ; get the byte
movf areg ; save the byte
sndwt btfsc cts ; check the cts input
goto sndwt ; wait if cts=1
call txser ; send the byte using the Transmit Routine
incf breg, f ; increment the table pointer
decfsz creg, f ; more bytes to send?
goto sndlp ; YES, send more bytes
;
bcf clr ; NO, place the MCP2150 in reset
bcf dtr ; Force the DTR pin low for normal mode
bsf rts ; Force the RTS pin high for normal mode
call delay1MS ; delay for 1 ms.
bsf clr ; allow the MCP2150 to come out of reset
;
ctsLP2 btfss cts ; if cts=1 then MCP2150 is in Normal mode
goto ctsLP2 ; NO, wait for MCP2150 to be ready
goto NormalOperation ; The MCP2150 in now programmed with new ID,
    ; and is ready to establish an IR link
```
2.14 Optical Transceiver

The MCP2150 requires an infrared transceiver. The transceiver can be an integrated solution. Table 2-6 shows a list of common manufacturers of integrated optical transceivers. A typical optical transceiver circuit, using a Vishay/Temic TFDS4500, is shown in Figure 2-12.

![Typical Optical Transceiver Circuit](image)

The optical transceiver logic can be implemented with discrete components for cost savings. Care must be taken in the design and layout of the photo detect circuit, due to the small signals that are being detected and their sensitivity to noise. A discrete implementation of the optical transceiver logic is implemented on the DSTEMP and MCP2150 Developer’s Kit boards.

Note: The discrete optical transceiver implementation on the DSTEMP and MCP2150 Developer’s Kit boards may not meet the IrDA specifications for the physical layer (IrPHY). Any discrete solution will require appropriate validation for the user’s application.

2.15 References

The IrDA Standards download page can be found at: http://www.irda.org/standards/specifications

Some common manufacturers of Optical Transceivers are shown in Table 2-6.

<table>
<thead>
<tr>
<th>Company</th>
<th>Company Web Site Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infineon</td>
<td>www.infineon.com</td>
</tr>
<tr>
<td>Agilent</td>
<td>www.agilent.com</td>
</tr>
<tr>
<td>Vishay/Temic</td>
<td>www.vishay.com</td>
</tr>
<tr>
<td>Rohm</td>
<td>www.rohm.com</td>
</tr>
</tbody>
</table>
3.0 DEVELOPMENT TOOLS

The MCP2150 is supported by the HCS1365 Developer’s Kit (order number DM163008). This kit allows the user to evaluate the operation of the MCP2150.

Each kit comes with two DSTEMP Developer’s Boards and one MCP2150 Developer’s Board to demonstrate transmission/reception of infrared data streams. Figure 3-1 shows a block diagram of the MCP2150 Developer’s Board.

As can be seen, the user has jumper options for both the interface to the Host Controller (UART or Header) and the transceiver solution (Integrated or discrete component).

The UART interface allows a direct connection to a PC (use a terminal emulation program), or a header, to allow easy connection to host prototypes (or one of the Microchip PICDEM™ boards).

The transceiver logic is jumpered to allow the selection of either a single chip transceiver solution, or a low cost discrete solution. This low cost discrete solution allows a lower system cost to be achieved. With the lower cost come some trade-offs of the IrDA standard physical layer specifications. These trade-offs need to be evaluated to ensure the characteristics of the component solution meet the requirements of the system.

This kit comes with two identical MCP2120 Developer’s Boards and a single MCP2150 Developer’s Board. This allows a complete system (Transmitter and Receiver) to be implemented with either system requirement (simple encoder/decoder or IrDA standard protocol stack plus encoder/decoder).

FIGURE 3-1: MCP2150 DEVELOPER’S KIT BLOCK DIAGRAM
4.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

- Ambient Temperature under bias: –40°C to +125°C
- Storage Temperature: –65°C to +150°C
- Voltage on VDD with respect to VSS: –0.3 V to +6.5 V
- Voltage on RESET with respect to VSS: –0.3 V to +14 V
- Voltage on all other pins with respect to VSS: –0.3 V to (VDD + 0.3 V)
- Total Power Dissipation: 800 mW
- Max. Current out of VSS pin: 300 mA
- Max. Current into VDD pin: 250 mA
- Input Clamp Current, I_{IK} (V_I < 0 or V_I > V_{DD}): ±20 mA
- Output Clamp Current, I_{OK} (V_0 < 0 or V_0 > V_{DD}): ±20 mA
- Max. Output Current sunk by any Output pin: 25 mA
- Max. Output Current sourced by any Output pin: 25 mA

Note 1: Power Dissipation is calculated as follows:

\[P_{Diss} = V_{DD} \times (I_{DD} - \sum I_{OH}) + \sum (V_{DD} - V_{OH}) \times I_{OH} + \sum (V_{OL} \times I_{OL}) \]

†NOTICE: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
MCP2150

FIGURE 4-1: VOLTAGE-FREQUENCY GRAPH, -40°C ≤ TA ≤ +85°C

![Graph showing voltage-frequency relationship with temperature range]

Frequency (MHz)

Vdd (Volts)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0 4 8 10 12 11.0592 16 20
4.1 DC Characteristics

DC Specifications

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ(1)</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>VDD</td>
<td>Supply Voltage</td>
<td>3.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>See Figure 4-1</td>
</tr>
<tr>
<td>D002</td>
<td>VDR</td>
<td>RAM Data Retention Voltage (2)</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Device Oscillator/Clock stopped</td>
</tr>
<tr>
<td>D003</td>
<td>VPOR</td>
<td>VDD Start Voltage to ensure Power-on Reset</td>
<td>—</td>
<td>VSS</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D004</td>
<td>SV/0</td>
<td>Vdd Rise Rate to ensure Power-on Reset</td>
<td>0.05</td>
<td>—</td>
<td>—</td>
<td>V/ms</td>
<td></td>
</tr>
<tr>
<td>D010</td>
<td>Idd</td>
<td>Supply Current (3)</td>
<td>—</td>
<td>4.0</td>
<td>2.2</td>
<td>mA</td>
<td>FOSC = 11.0592 MHz, VDD = 3.0 V</td>
</tr>
<tr>
<td>D020</td>
<td>IPD</td>
<td>Device Disabled Current (3, 4)</td>
<td>—</td>
<td>9</td>
<td>2.2</td>
<td>μA</td>
<td>VDD = 3.0 V</td>
</tr>
</tbody>
</table>

Electrical Characteristics:
Standard Operating Conditions (unless otherwise specified)
Operating Temperature: -40°C ≤ TA ≤ +85°C (industrial)

Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Pin loading, pin rate and temperature have an impact on the current consumption.

 a) The test conditions for all IDD measurements are made when device is enabled (EN pin is high): OSC1 = external square wave, from rail-to-rail; all input pins pulled to Vss, RXIR = VDD, RESET = Vdd;

 b) When device is disabled (EN pin is low), the conditions for current measurements are the same.

4: When the device is disabled (EN pin is low), current is measured with all input pins tied to Vdd or Vss and the output pins driving a high or low level into infinite impedance.
4.1 DC Characteristics (Continued)

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D030</td>
<td>VIL</td>
<td>Input Low Voltage</td>
<td>Vss</td>
<td>—</td>
<td>0.8 V</td>
<td>V</td>
<td>4.5 V ≤ VDD ≤ 5.5 V</td>
</tr>
<tr>
<td>D030A</td>
<td></td>
<td>with TTL buffer (TX, RI, DTR, RTS, and EN)</td>
<td>Vss</td>
<td>—</td>
<td>0.15 VDD</td>
<td>V</td>
<td>otherwise</td>
</tr>
<tr>
<td>D031</td>
<td></td>
<td>with Schmitt Trigger buffer (BAUD1, BAUD0, and RXIR)</td>
<td>Vss</td>
<td>—</td>
<td>0.2 VDD</td>
<td>V</td>
<td>otherwise</td>
</tr>
<tr>
<td>D032</td>
<td></td>
<td>RESET</td>
<td>Vss</td>
<td>—</td>
<td>0.2 VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D033</td>
<td></td>
<td>OSC1</td>
<td>Vss</td>
<td>—</td>
<td>0.3 VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D040</td>
<td>VIH</td>
<td>Input High Voltage</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D040A</td>
<td></td>
<td>with TTL buffer (TX, RI, DTR, RTS, and EN)</td>
<td>2.0</td>
<td>VDD</td>
<td>—</td>
<td>V</td>
<td>4.5 V ≤ VDD ≤ 5.5 V</td>
</tr>
<tr>
<td>D041</td>
<td></td>
<td>with Schmitt Trigger buffer (BAUD1, BAUD0, and RXIR)</td>
<td>0.25 VDD + 0.8</td>
<td>VDD</td>
<td>—</td>
<td>V</td>
<td>otherwise</td>
</tr>
<tr>
<td>D042</td>
<td></td>
<td>RESET</td>
<td>0.8 VDD</td>
<td>VDD</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D043</td>
<td></td>
<td>OSC1</td>
<td>0.7 VDD</td>
<td>VDD</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D060</td>
<td>IIL</td>
<td>Input Leakage Current (Notes 1, 2)</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td>VSS ≤ VPIN ≤ VDD, Pin at high-impedance</td>
</tr>
<tr>
<td>D061</td>
<td></td>
<td>RESET</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>µA</td>
<td>VSS ≤ VPIN ≤ VDD</td>
</tr>
<tr>
<td>D063</td>
<td></td>
<td>OSC1</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>µA</td>
<td>VSS ≤ VPIN ≤ VDD</td>
</tr>
</tbody>
</table>

Note 1: The leakage current on the RESET pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as coming out of the pin.
4.1 DC Characteristics (Continued)

Electrical Characteristics:

Operating Conditions (unless otherwise specified)
- Operating temperature: \(-40°C \leq TA \leq +85°C\) (industrial)
- Operating voltage \(V_{DD}\) range as described in DC spec Section 4.1

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D080</td>
<td>Vol</td>
<td>Output Low Voltage TXIR, RX, DSR, CTS, and CD pins OSC2</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
<td>(I_{OL} = 8.5 \text{ mA}, V_{DD} = 4.5 \text{ V})</td>
</tr>
<tr>
<td>D083</td>
<td>—</td>
<td>Output Voltage OSC2</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
<td>(I_{OL} = 1.6 \text{ mA}, V_{DD} = 4.5 \text{ V})</td>
</tr>
<tr>
<td>D090</td>
<td>VOH</td>
<td>Output High Voltage TXIR, RX, DSR, CTS, and CD pins (Note 1) OSC2</td>
<td>VDD - 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(I_{OH} = -3.0 \text{ mA}, V_{DD} = 4.5 \text{ V})</td>
</tr>
<tr>
<td>D092</td>
<td>—</td>
<td>Output Voltage OSC2</td>
<td>VDD - 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(I_{OH} = -1.3 \text{ mA}, V_{DD} = 4.5 \text{ V})</td>
</tr>
<tr>
<td>D100</td>
<td>COSC2</td>
<td>Capacitive Loading Specs on Output Pins OSC2 pin</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>pF</td>
<td>when external clock is used to drive OSC1.</td>
</tr>
<tr>
<td>D101</td>
<td>CI0</td>
<td>All Input or Output pins</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Negative current is defined as coming out of the pin.
4.2 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created following one of the following formats:

4.2.1 TIMING CONDITIONS

The temperature and voltages specified in Table 4-2 apply to all timing specifications unless otherwise noted. Figure 4-2 specifies the load conditions for the timing specifications.

<table>
<thead>
<tr>
<th>TABLE 4-1: SYMBOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TppS2ppS</td>
</tr>
<tr>
<td>2. TppS</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Lowercase letters (pp) and their meanings:</td>
</tr>
<tr>
<td>pp</td>
</tr>
<tr>
<td>io</td>
</tr>
<tr>
<td>rx</td>
</tr>
<tr>
<td>bitclk</td>
</tr>
<tr>
<td>drt</td>
</tr>
<tr>
<td>Uppercase letters and their meanings:</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Z</td>
</tr>
</tbody>
</table>

TABLE 4-2: AC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Electrical Characteristics:
Standard Operating Conditions (unless otherwise stated):
Operating temperature: -40°C ≤ Ta ≤ +85°C (industrial)
Operating voltage VDD range as described in DC spec Section 4.1.

FIGURE 4-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

C_L = 50 pF for all pins except OSC2
15 pF for OSC2 when external clock is used to drive OSC1
4.3 Timing Diagrams and Specifications

FIGURE 4-3: EXTERNAL CLOCK TIMING

![Timing Diagram](image_url)

TABLE 4-3: EXTERNAL CLOCK TIMING REQUIREMENTS

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ (1)</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tosc</td>
<td>External CLKin Period (2, 3)</td>
<td>90.422 ns</td>
<td>90.422 ns</td>
<td></td>
<td></td>
<td>Device Operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oscillator Period (2)</td>
<td>90.422 ns</td>
<td>90.422 ns</td>
<td></td>
<td>ns</td>
<td>Disable Clock for low power</td>
</tr>
<tr>
<td>1A</td>
<td>Fosc</td>
<td>External CLKin Frequency (4, 3)</td>
<td>11.0592 MHz</td>
<td>11.0592 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oscillator Frequency (2)</td>
<td>11.0592 MHz</td>
<td>11.0592 MHz</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Ferr</td>
<td>Error in Frequency</td>
<td>—</td>
<td>—</td>
<td>± 0.01</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>Eclk</td>
<td>External Clock Error</td>
<td>—</td>
<td>—</td>
<td>± 0.01</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TosR, TosF</td>
<td>Clock in (OSC1) Rise or Fall Time</td>
<td>—</td>
<td>15 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Data in the Typical ("Typ") column is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: All specified values are based on oscillator characterization data under standard operating conditions. Exceeding these specified limits may result in unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

3: A duty cycle of no more than 60% (High time/Low time or Low time/High time) is recommended for external clock inputs.
MCP2150

FIGURE 4-4: OUTPUT WAVEFORM

TABLE 4-4: OUTPUT TIMING REQUIREMENTS

<table>
<thead>
<tr>
<th>AC Specifications</th>
<th>Electrical Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Operating Conditions (unless otherwise specified):</td>
</tr>
<tr>
<td></td>
<td>Operating Temperature: -40°C ≤ Ta ≤ +85°C (industrial)</td>
</tr>
<tr>
<td></td>
<td>Operating Voltage VDD range is described in Section 4.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ(1)</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>ToR</td>
<td>RX and TXIR pin rise time (2)</td>
<td>—</td>
<td>10</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>ToF</td>
<td>RX and TXIR pin fall time (2)</td>
<td>—</td>
<td>10</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Data in the Typical (“Typ”) column is at 5 V, 25°C unless otherwise stated.

Note 2: See Figure 4-2 for loading conditions.

Note: Refer to Figure 4-2 for load conditions.
TABLE 4-5: RESET AND DEVICE RESET REQUIREMENTS

<table>
<thead>
<tr>
<th>AC Specifications</th>
<th>Electrical Characteristics: Standard Operating Conditions (unless otherwise specified): Operating Temperature: -40°C ≤ TA ≤ +85°C (industrial) Operating Voltage VDD range is described in Section 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Param. No.</td>
<td>Sym</td>
</tr>
<tr>
<td>30</td>
<td>TRSTL</td>
</tr>
<tr>
<td>32</td>
<td>TOST</td>
</tr>
<tr>
<td>33</td>
<td>TPWRT</td>
</tr>
<tr>
<td>34</td>
<td>TIOZ</td>
</tr>
</tbody>
</table>

Note 1: Data in the Typical ("Typ") column is at 5 V, 25°C unless otherwise stated.
MCP2150

FIGURE 4-6: UART ASYNCHRONOUS TRANSMISSION WAVEFORM

![UART Asynchronous Transmission Waveform Diagram](https://example.com/uart_waveform.png)

TABLE 4-6: UART ASYNCHRONOUS TRANSMISSION REQUIREMENTS

<table>
<thead>
<tr>
<th>Ac Specifications</th>
<th>Param. No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TXBIT</td>
<td>Transmit Baud rate</td>
<td>1152</td>
<td>—</td>
<td>1152</td>
<td>T OSC</td>
<td>BAUD2:BAUD0 = 0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>576</td>
<td>—</td>
<td>576</td>
<td>T OSC</td>
<td>BAUD2:BAUD0 = 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192</td>
<td>—</td>
<td>192</td>
<td>T OSC</td>
<td>BAUD2:BAUD0 = 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>—</td>
<td>96</td>
<td>T OSC</td>
<td>BAUD2:BAUD0 = 11</td>
</tr>
<tr>
<td></td>
<td>IR101</td>
<td>ETXBIT</td>
<td>Transmit (TX pin) Baud rate Error (into MCP2150)</td>
<td>—</td>
<td>—</td>
<td>±2</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IR102</td>
<td>ETXIRBIT</td>
<td>Transmit (TXIR pin) Baud rate Error (out of MCP2150)</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IR103</td>
<td>TtxRF</td>
<td>TX pin rise time and fall time</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: This error is not additive to IR101 parameter.
MCP2150

FIGURE 4-7: UART ASYNCHRONOUS RECEIVE TIMING

![UART Asynchronous Receive Timing Diagram]

TABLE 4-7: UART ASYNCHRONOUS RECEIVE REQUIREMENTS

<table>
<thead>
<tr>
<th>AC Specifications</th>
<th>Electrical Characteristics: Standard Operating Conditions (unless otherwise specified):</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating Temperature: -40°C ≤ TA ≤ +85°C (industrial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating Voltage VDD range is described in Section 4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Param. No.</td>
<td>Sym</td>
<td>Characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR110</td>
<td>TRXBIT</td>
<td>Receive Baud Rate</td>
<td>1152</td>
<td>1152</td>
<td>1152</td>
<td>Tosc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>576</td>
<td>576</td>
<td>576</td>
<td>Tosc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>Tosc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>Tosc</td>
</tr>
<tr>
<td>IR111</td>
<td>E_RXBIT</td>
<td>Receive (RXIR pin) Baud rate Error (into MCP2150)</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>%</td>
</tr>
<tr>
<td>IR112</td>
<td>E_RXBIT</td>
<td>Receive (RX pin) Baud rate Error (out of MCP2150) (1)</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>%</td>
</tr>
<tr>
<td>IR113</td>
<td>T_RXRF</td>
<td>RX pin rise time and fall time</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 1: This error is not additive to the IR111 parameter.
FIGURE 4-8: TXIR WAVEFORMS

TABLE 4-8: TXIR REQUIREMENTS

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR100A</td>
<td>TTXRBIT</td>
<td>Transmit Baud Rate</td>
<td>1152</td>
<td>—</td>
<td>1152</td>
<td>Tosc</td>
<td>BAUD = 9600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>576</td>
<td>—</td>
<td>576</td>
<td>Tosc</td>
<td>BAUD = 19200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>288</td>
<td>—</td>
<td>288</td>
<td>Tosc</td>
<td>BAUD = 38400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>192</td>
<td>—</td>
<td>192</td>
<td>Tosc</td>
<td>BAUD = 57600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>—</td>
<td>96</td>
<td>Tosc</td>
<td>BAUD = 115200</td>
</tr>
<tr>
<td>IR121</td>
<td>TTXRPW</td>
<td>TXIR pulse width</td>
<td>24</td>
<td>—</td>
<td>24</td>
<td>Tosc</td>
<td></td>
</tr>
<tr>
<td>IR122</td>
<td>TTXRP</td>
<td>TXIR bit period (1)</td>
<td>—</td>
<td>16</td>
<td>—</td>
<td>Tbitclk</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Tbitclk = TTXBt/16.

Electrical Characteristics:
Standard Operating Conditions (unless otherwise specified):
Operating Temperature: -40°C ≤ Ta ≤ +85°C (industrial)
Operating Voltage VDD range is described in Section 4.1
FIGURE 4-9: RXIR WAVEFORMS

TABLE 4-9: RXIR REQUIREMENTS

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR110A</td>
<td>TRXIRBIT</td>
<td>Receive Baud Rate</td>
<td>1152</td>
<td>—</td>
<td>1152</td>
<td>Tosc</td>
<td>BAUD = 9600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>576</td>
<td>—</td>
<td>576</td>
<td>Tosc</td>
<td>BAUD = 19200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>288</td>
<td>—</td>
<td>288</td>
<td>Tosc</td>
<td>BAUD = 38400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>192</td>
<td>—</td>
<td>192</td>
<td>Tosc</td>
<td>BAUD = 57600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>—</td>
<td>96</td>
<td>Tosc</td>
<td>BAUD = 115200</td>
</tr>
<tr>
<td>IR131A</td>
<td>TRXIRPW</td>
<td>RXIR pulse width</td>
<td>2</td>
<td>—</td>
<td>24</td>
<td>Tosc</td>
<td></td>
</tr>
<tr>
<td>IR132</td>
<td>TRXIRP</td>
<td>RXIR bit period (1)</td>
<td>—</td>
<td>16</td>
<td>—</td>
<td>Tbitclk</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Tbitclk = TRXBIT/16.
5.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Not available at this time.
MCP2150

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

18-Lead PDIP (300 mil) Example:

```
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
 XXXYWWNNN
```

18-Lead SOIC (300 mil) Example:

```
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
 XXXYWWNNN
```

20-Lead SSOP (209 mil, 5.30 mm) Example:

```
XXXXXXXXXXXXX
XXXXXXXXXXXXX
 XXXYWWNNN
```

Legend:

- **XX..X**: Customer-specific information
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week '01')
- **NNN**: Alphanumeric traceability code
- **@**: Pb-free JEDEC designator for Matte Tin (Sn)
- *****: This package is Pb-free. The Pb-free JEDEC designator (@) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
MCP2150

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>16</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>0.010</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>0.140</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.115</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>0.095</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>0.300</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>0.240</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>0.890</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>0.125</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>0.045</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>0.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>0.310</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>j</td>
<td>0.050</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. CO4-007
18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins n</td>
<td>MIN 28</td>
<td>710</td>
</tr>
<tr>
<td>Pitch p</td>
<td>.002</td>
<td>0.05</td>
</tr>
<tr>
<td>Overall Height A</td>
<td>.093</td>
<td>2.36</td>
</tr>
<tr>
<td>Molded Package Thickness A1</td>
<td>.004</td>
<td>0.10</td>
</tr>
<tr>
<td>Molded Package Width E1</td>
<td>.288</td>
<td>7.32</td>
</tr>
<tr>
<td>Overall Length D</td>
<td>.695</td>
<td>17.65</td>
</tr>
<tr>
<td>Chamfer Distance h</td>
<td>.010</td>
<td>0.25</td>
</tr>
<tr>
<td>Foot Length L</td>
<td>.016</td>
<td>0.41</td>
</tr>
<tr>
<td>Foot Angle Top a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness c</td>
<td>.009</td>
<td>0.23</td>
</tr>
<tr>
<td>Lead Width b</td>
<td>.014</td>
<td>0.36</td>
</tr>
<tr>
<td>Mold Draft Angle Top u</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom p</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
JEDEC Equivalent: MS-013
Drawing No. C04-052

© 2001-2012 Microchip Technology Inc.

Preliminary
MCP2150

20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

Notes: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>(n)</td>
<td>20</td>
</tr>
<tr>
<td>Pitch</td>
<td>(p)</td>
<td>0.026</td>
</tr>
<tr>
<td>Overall Height</td>
<td>(A)</td>
<td>0.068</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>(A_2)</td>
<td>0.064</td>
</tr>
<tr>
<td>Standoff</td>
<td>(\xi)</td>
<td>0.002</td>
</tr>
<tr>
<td>Overall Width</td>
<td>(E)</td>
<td>2.69</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>(E_1)</td>
<td>2.01</td>
</tr>
<tr>
<td>Overall Length</td>
<td>(D)</td>
<td>2.75</td>
</tr>
<tr>
<td>Foot Length</td>
<td>(L)</td>
<td>0.22</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>(c)</td>
<td>0.004</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>(\gamma)</td>
<td>0</td>
</tr>
<tr>
<td>Lead Width</td>
<td>(B)</td>
<td>0.10</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>(\beta)</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>(\beta)</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter

\$ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed \(0.010\) \((0.254\text{ mm}) \) per side.
- JEDEC Equivalent: MO-150
- Drawing No. C04-072

--

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
APPENDIX A: REVISION HISTORY

Revision A
• This is a new data sheet

Revision B
• Updated feature list
• Enhanced pin descriptions. Refer to Table 1-2
• Added description for programmable device ID
• Standardize use of terms for Host Controller and Primary Device

Revision C (December 2012)
• Added a note to each package outline drawing.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: Technical Publications Manager Total Pages Sent ______
RE: Reader Response

From: Name __
 Company __
 Address __
 City / State / ZIP / Country __
 Telephone: (_____) _______ - _______ FAX: (_____) _______ - _______

Application (optional):

Would you like a reply? Y N

Device: Literature Number: DS21655C

Questions:

1. What are the best features of this document?

__

2. How does this document meet your hardware and software development needs?

__

3. Do you find the organization of this document easy to follow? If not, why?

__

4. What additions to the document do you think would enhance the structure and subject?

__

5. What deletions from the document could be made without affecting the overall usefulness?

__

6. Is there any incorrect or misleading information (what and where)?

__

7. How would you improve this document?

__
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP2150: Infrared Communications Controller</td>
<td>Plastic DIP (300 mil, Body), 18-lead</td>
<td>Examples:</td>
</tr>
<tr>
<td>MCP2150T: Infrared Communications Controller (Tape and Reel)</td>
<td>Plastic SOIC (300 mil, Body), 18-lead</td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td>I = -40°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>P =</td>
<td></td>
</tr>
<tr>
<td>SO = Plastic SOIC (300 mil, Body), 18-lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS = Plastic SSOP (209 mil, Body), 20-lead</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
MCP2150

NOTES:
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, HPIF, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECOnOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

Printed on recycled paper.

ISBN: 9781620768860

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949

© 2001-2012 Microchip Technology Inc.
Worldwide Sales and Service

AMERICAS

Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 770-957-9614
Fax: 770-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 440-842-0080
Fax: 440-842-0089

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-0509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2943-5066

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2014

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2943-5066

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7205
Fax: 86-532-8502-9900

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2329
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8581-9120
Fax: 86-755-8581-9120

China - Wuhan
Tel: 86-27-8580-5100
Fax: 86-27-8580-5118

China - Xiamen
Tel: 86-352-2388-1300
Fax: 86-352-2388-1300

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3900-4444
Fax: 91-80-3900-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2656-1512
Fax: 91-20-2656-1513

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-9068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-356
Fax: 886-3-5770-965

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2358-0010
Fax: 886-2-2358-0020

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820