CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER

FEATURES
- Wide Operating Voltage Range: 1.5V to 15V
- Boost Pin (Pin 1) for Higher Switching Frequency
- High Power Efficiency is 96%
- Easy to Use – Requires Only 2 External Non-Critical Passive Components
- Improved Direct Replacement for Industry Standard ICL7660 and Other Second Source Devices

APPLICATIONS
- Simple Conversion of +5V to ±5V Supplies
- Voltage Multiplication \(V_{OUT} = \pm V_{IN} \)
- Negative Supplies for Data Acquisition Systems and Instrumentation
- RS232 Power Supplies
- Supply Splitter, \(V_{OUT} = \pm V_{S}/2 \)

GENERAL DESCRIPTION
The TC7662B is a pin-compatible upgrade to the Industry standard TC7660 charge pump voltage converter. It converts a +1.5V to +15V input to a corresponding – 1.5 to – 15V output using only two low-cost capacitors, eliminating inductors and their associated cost, size and EMI.

The on-board oscillator operates at a nominal frequency of 10kHz. Frequency is increased to 35kHz when pin 1 is connected to \(V^+ \), allowing the use of smaller external capacitors. Operation below 10kHz (for lower supply current applications) is also possible by connecting an external capacitor from OSC to ground (with pin 1 open).

The TC7662B is available in both 8-pin DIP and 8-pin small outline (SO) packages in commercial and extended temperature ranges.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Package</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC7662BCOA</td>
<td>8-Pin SOIC</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>TC7662BCPA</td>
<td>8-Pin Plastic DIP</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>TC7662BEOA</td>
<td>8-Pin SOIC</td>
<td>– 40°C to +85°C</td>
</tr>
<tr>
<td>TC7662BEPA</td>
<td>8-Pin Plastic DIP</td>
<td>– 40°C to +85°C</td>
</tr>
<tr>
<td>TC7660EV</td>
<td>Evaluation Kit for Charge Pump Family</td>
<td></td>
</tr>
</tbody>
</table>

FUNCTIONAL BLOCK DIAGRAM
ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. +16.5V
LV, Boost and OSC Inputs Voltage (Note 1)
V+<5.5V .. − 0.3V to (V+ + 0.3V)
>5.5V ... (V+ − 5.5V) to (V+ + 0.3V)
Current Into LV (Note 1)
V+ >3.5V .. 20µA
Output Short Duration
(V_SUPPLY ≤ 5.5V) Continuous
Power Dissipation (T_A ≤ 70°C) (Note 2)
Plastic DIP .. 730mW
SO ... 470mW

ELECTRICAL CHARACTERISTICS: V+ = 5V, T_A = +25°C, OSC = Free running, Test Circuit Figure 2, Unless Otherwise Specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+</td>
<td>Supply Current (Note 3)</td>
<td>RL = ∞, +25°C</td>
<td>—</td>
<td>80</td>
<td>160</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>(Boost pin OPEN OR GND)</td>
<td>0°C ≤ T_A ≤ +70°C</td>
<td>—</td>
<td>—</td>
<td>180</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 40°C ≤ T_A ≤ +85°C</td>
<td>—</td>
<td>—</td>
<td>180</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 55°C ≤ T_A ≤ +125°C</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td>I+</td>
<td>Supply Current (Boost pin = V+)</td>
<td>0°C ≤ T_A ≤ +70°C</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 40°C ≤ T_A ≤ +85°C</td>
<td>—</td>
<td>—</td>
<td>350</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 55°C ≤ T_A ≤ +125°C</td>
<td>—</td>
<td>—</td>
<td>400</td>
<td>µA</td>
</tr>
<tr>
<td>V_H+</td>
<td>Supply Voltage Range, High (Note 4)</td>
<td>RL = 10 kΩ, LV Open, T_MIN ≤ T_A ≤ T_MAX</td>
<td>3.0</td>
<td>—</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>V_L+</td>
<td>Supply Voltage Range, Low</td>
<td>RL = 10 kΩ, LV to GND, T_MIN ≤ T_A ≤ T_MAX</td>
<td>1.5</td>
<td>—</td>
<td>3.5</td>
<td>V</td>
</tr>
<tr>
<td>R.OUT</td>
<td>Output Source Resistance</td>
<td>I_OUT = 20mA, 0°C ≤ T_A ≤ +70°C</td>
<td>—</td>
<td>65</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_OUT = 20mA, − 40°C ≤ T_A ≤ +85°C</td>
<td>—</td>
<td>—</td>
<td>120</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_OUT = 20mA, − 55°C ≤ T_A ≤ +125°C</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_OUT = 3mA, V+ = 2V, LV to GND, 0°C ≤ T_A ≤ +70°C</td>
<td>—</td>
<td>—</td>
<td>250</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_OUT = 3mA, V+ = 2V, LV to GND, − 40°C ≤ T_A ≤ +85°C</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_OUT = 3mA, V+ = 2V, LV to GND, − 55°C ≤ T_A ≤ +125°C</td>
<td>—</td>
<td>—</td>
<td>400</td>
<td>Ω</td>
</tr>
<tr>
<td>fOSC</td>
<td>Oscillator Frequency</td>
<td>C_OSC = 0, Pin 1 Open or GND</td>
<td>5</td>
<td>10</td>
<td>—</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 1 = V+</td>
<td>35</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>P_Eff</td>
<td>Power Efficiency</td>
<td>R_L = 5kΩ</td>
<td>96</td>
<td>96</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T_MIN ≤ T_A ≤ T_MAX</td>
<td>95</td>
<td>97</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>V_OUTEff</td>
<td>Voltage Conversion Efficiency</td>
<td>R_L = ∞</td>
<td>99</td>
<td>99.9</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Z_OSC</td>
<td>Oscillator Impedance</td>
<td>V+ = 2V</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>MΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V+ = 5V</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

NOTES:
1. Connecting any terminal to voltages greater than V+ or less than GND may cause destructive latch-up. It is recommended that no inputs from sources operating from external supplies be applied prior to “power up” of the TC7662B.
2. Derate linearly above 50°C by 5.5 mW/°C.
3. In the test circuit, there is no external capacitor applied to pin 7. However, when the device is plugged into a test socket, there is usually a very small but finite stray capacitance present, of the order of 5pF.
4. The TC7662B can operate without an external diode over the full temperature and voltage range. This device will function in existing designs which incorporate an external diode with no degradation in overall circuit performance.

* Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory, a voltage converter can approach 100% efficiency if certain conditions are met:

A. The drive circuitry consumes minimal power.
B. The output switches have extremely low ON resistance and virtually no offset.
C. The impedances of the pump and reservoir capacitors are negligible at the pump frequency.

The TC7662B approaches these conditions for negative voltage conversion if large values of \(C_1 \) and \(C_2 \) are used. Energy is lost only in the transfer of charge between capacitors if a change in voltage occurs. The energy lost is defined by:

\[
E = \frac{1}{2} C_1 (V_1^2 - V_2^2)
\]

where \(V_1 \) and \(V_2 \) are the voltages on \(C_1 \) during the pump and transfer cycles. If the impedances of \(C_1 \) and \(C_2 \) are relatively high at the pump frequency (refer to Figure 2) compared to the value of \(R_L \), there will be a substantial difference in voltages \(V_1 \) and \(V_2 \). Therefore, it is desirable not only to make \(C_2 \) as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for \(C_1 \) in order to achieve maximum efficiency of operation.

Dos and Don’ts

1. Do not exceed maximum supply voltages.
2. Do not connect the LV terminal to GND for supply voltages greater than 3.5 volts.
3. Do not short circuit the output to \(V^* \) supply for voltages above 5.5 volts for extended periods; however, transient conditions including start-up are okay.
4. When using polarized capacitors in the inverting mode, the + terminal of C₁ must be connected to pin 2 of the TC7662B and the − terminal of C₂ must be connected to GND.

5. If the voltage supply driving the TC7662B has a large source impedance (25-30 ohms), then a 2.2 µF capacitor from pin 8 to ground may be required to limit the rate of rise of the input voltage to less than 2V/μsec.

TYPICAL APPLICATIONS

Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the TC7662B for generation of negative supply voltages. Figure 3 shows typical connections to provide a negative supply where a positive supply of +1.5V to +15V is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 3.5 volts.

The output characteristics of the circuit in Figure 3 can be approximated by an ideal voltage source in series with a resistance as shown in Figure 3b. The voltage source has a value of (V+). The output impedance (R₀) is a function of the ON resistance of the internal MOS switches (shown in Figure 2), the switching frequency, the value of C₁ and C₂, and the ESR (equivalent series resistance) of C₁ and C₂. A good first order approximation for R₀ is:

\[
R₀ \approx 2(R_{SW1} + R_{SW3} + \text{ESR}_{C1}) + 2(R_{SW2} + R_{SW4} + \frac{1}{f_{PUMP} \times C₁}) + \text{ESR}_{C2}
\]

\[
(f_{PUMP} = \frac{f_{OSC}}{2}, \text{R}_{SWX} = \text{MOSFET switch resistance})
\]

Combining the four R_{SWX} terms as R_{SW}, we see that:

\[
R₀ \approx 2 \times R_{SW} + \frac{1}{f_{PUMP} \times C₁} + 4 \times \text{ESR}_{C1} + \text{ESR}_{C2}\Omega
\]

R_{SW}, the total switch resistance, is a function of supply voltage and temperature (See the Output Source Resistance graphs), typically 23Ω at +25°C and 5V. Careful selection of C₁ and C₂ will reduce the remaining terms, minimizing the output impedance. High value capacitors will reduce the 1/(f_{PUMP} x C₁) component, and low ESR capacitors will lower the ESR term. Increasing the oscillator frequency will reduce the 1/(f_{PUMP} x C₂) term, but may have the side effect of a net increase in output impedance when C₁ > 10µF and there is not enough time to fully charge the capacitors every cycle. In a typical application when f_{OSC} = 10kHz and C = C₁ = C₂ = 10µF:

\[
R₀ \equiv 2 \times 23 + \frac{1}{(5 \times 10^3 \times 10 \times 10^{-6})} + 4 \times \text{ESR}_{C1} + \text{ESR}_{C2}
\]

\[
R₀ \equiv (46 + 20 + 5 \times \text{ESR C}) \Omega
\]

Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of 5, a high value could potentially swamp out a low 1/(f_{PUMP} x C₁) term, rendering an increase in switching frequency or filter capacitance ineffective. Typical electrolytic capacitors may have ESRs as high as 10Ω.

Output Ripple

ESR also affects the ripple voltage seen at the output. The total ripple is determined by 2 voltages, A and B, as shown in Figure 4. Segment A is the voltage drop across the ESR of C₂ at the instant it goes from being charged by C₁ (current flowing into C₂) to being discharged through the load (current flowing out of C₂). The magnitude of this current change is 2 x I_{OUT}, hence the total drop is 2 x I_{OUT} x ESR_{C2} volts. Segment B is the voltage change across C₂ during time t₂, the half of the cycle when C₂ supplies current to the load. The drop at B is I_{OUT} x t₂/C₂ volts. The peak-to-peak ripple voltage is the sum of these voltage drops:

\[
V_{RIPPLE} \equiv \left(\frac{1}{2 \times f_{PUMP} \times C₂} + \text{ESR}_{C2} \times I_{OUT} \right)
\]
Paralleling Devices

Any number of TC7662B voltage converters may be paralleled to reduce output resistance (Figure 5). The reservoir capacitor, C2, serves all devices, while each device requires its own pump capacitor, C1. The resultant output resistance would be approximately:

\[R_{\text{OUT}} = \frac{R_{\text{OUT}} \text{ (of TC7662B)}}{n \text{ (number of devices)}} \]

![Figure 5. Paralleling Devices](image)

Cascading Devices

The TC7662B may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

\[V_{\text{OUT}} = -n(V_{\text{IN}}) \]

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual TC7662B R\(_{\text{OUT}}\) values.

![Figure 6. Cascading Devices for Increased Output Voltage](image)

Changing the TC7662B Oscillator Frequency

It may be desirable in some applications (due to noise or other considerations) to increase the oscillator frequency. This is achieved by one of several methods described below:

By connecting the BOOST pin (Pin 1) to V\(^+\), the oscillator charge and discharge current is increased and, hence the oscillator frequency is increased by approximately 3-1/2 times. The result is a decrease in the output impedance and ripple. This is of major importance for surface mount applications where capacitor size and cost are critical. Smaller capacitors, e.g., 0.1\(\mu\)F, can be used in conjunction with the Boost Pin in order to achieve similar output currents compared to the device free running with \(C_1 = C_2 = 1\mu\)F or 10\(\mu\)F. (Refer to graph of Output Source Resistance as a Function of Oscillator Frequency).

Increasing the oscillator frequency can also be achieved by overdriving the oscillator from an external clock as shown in Figure 7. In order to prevent device latchup, a 1k\(\Omega\) resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a 10k\(\Omega\) pullup resistor to V\(^+\) supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be 1/2 of the clock frequency. Output transitions occur on the positive-going edge of the clock.

![Figure 7. External Clocking](image)
Positive Voltage Doubling

The TC7662B may be employed to achieve positive voltage doubling using the circuit shown in Figure 9. In this application, the pump inverter switches of the TC7662B are used to charge C1 to a voltage level of \(V^+ - V_F \) (where \(V^+ \) is the supply voltage and \(V_F \) is the forward voltage on C1 plus the supply voltage \(V^+ \) applied through diode \(D_2 \) to capacitor \(C_2 \)). The voltage thus created on \(C_2 \) becomes \((2 V^+) - (2 V_F) \), or twice the supply voltage minus the combined forward voltage drops of diodes \(D_1 \) and \(D_2 \).

The source impedance of the output \(V_{OUT} \) will depend on the output current, but for \(V^+ = 5V \) and an output current of 10 mA, it will be approximately 60Ω.

Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 11. The combined load will be evenly shared between the two sides and a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure 6, +15V can be converted (via +7.5V and −7.5V) to a nominal −15V, though with rather high series resistance (~250Ω).

Combined Negative Voltage Conversion and Positive Supply Multiplication

Figure 10 combines the functions shown in Figures 3 and 9 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9V and −5V from an existing +5V supply. In this instance, capacitors \(C_1 \) and \(C_3 \) perform the pump and reservoir functions, respectively, for the generation of the negative voltage, while capacitors \(C_2 \) and \(C_4 \) are pump and reservoir, respectively, for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.
Regulated Negative Voltage Supply

In some cases, the output impedance of the TC7662B can be a problem, particularly if the load current varies substantially. The circuit of Figure 12 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is advisable, since the TC7662B’s output does not respond instantaneously to change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the TC7662B, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provide an output impedance of less than 5Ω to a load of 10mA.

Figure 12. Regulating the Output Voltage

Figure 13. RS232 Levels from a Single 5V Supply
TYPICAL CHARACTERISTICS

Supply Current vs. Temperature
(with Boost Pin = V_IN)

Voltage Conversion

Output Source Resistance vs. Supply Voltage

Output Source Resistance vs. Temperature

Output Voltage vs. Output Current

Supply Current vs. Temperature
TYPICAL CHARACTERISTICS (cont.)

Unloaded Osc Freq vs. Temperature

Unloaded Osc Freq vs. Temperature with Boost Pin = VIN

PACKAGE DIMENSIONS

8-Pin Plastic DIP

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Pin SOIC

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

Dimensions: inches (mm)
Worldwide Sales and Service

Americas
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0037

Austin
Analog Product Sales
8303 MoPac Expwy North
Suite A-201
Austin, TX 78759
Tel: 512-345-2030 Fax: 512-345-6085

Boston
Analog Product Sales
Unit A-8-1 Millbrook Tarry Condominium
97 Lowell Road
Concord, MA 01742
Tel: 978-371-6400 Fax: 978-371-0050

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Detroit
3-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1338 Fax: 949-263-1338

Mountain View
Analog Product Sales
1300 Terra Bella Avenue
Mountain View, CA 94043-1836
Tel: 650-988-9241 Fax: 650-967-1590

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northdam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

Asia/Pacific
China - Beijing
Microchip Technology Beijing Office
Unit 915
New China Hong Kong Manhattan Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai
Microchip Technology Shanghai Office
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-7570 Fax: 86-21-6275-5060

Hong Kong
Microchip Asia Pacific
RM 2101, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Dhivyaere Chambers
1 Floor, Wing A (A3/A4)
No. 11, OlShaungesney Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shirokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Asia/Pacific (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 189980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 866-2-2717-7175 Fax: 886-2-2545-0139

Europe
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A – Ier Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-827-144 0 Fax: 49-89-627-144-44

Analogue Product Sales
Lochhammer Strasse 13
D-82152 Martinsried, Germany
Tel: 49-89-895650-0 Fax: 49-89-895650-22

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus I V Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01 Printed on recycled paper.