Features
- Wide Input Voltage Range: +1.5V to +10V
- Efficient Voltage Conversion (99.9%, typ)
- Excellent Power Efficiency (98%, typ)
- Low Power Consumption: 80 µA (typ) @ \(V_{IN} = 5V \)
- Low Cost and Easy to Use
 - Only Two External Capacitors Required
- Available in 8-Pin Small Outline (SOIC), 8-Pin PDIP and 8-Pin CERDIP Packages
- Improved ESD Protection (3 kV HBM)
- No External Diode Required for High-Voltage Operation

Applications
- RS-232 Negative Power Supply
- Simple Conversion of +5V to ±5V Supplies
- Voltage Multiplication \(V_{OUT} = \pm n V^+ \)
- Negative Supplies for Data Acquisition Systems and Instrumentation

Package Types

<table>
<thead>
<tr>
<th>PDIP/CERDIP/SOIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC 1</td>
</tr>
<tr>
<td>CAP+ 2</td>
</tr>
<tr>
<td>GND 3</td>
</tr>
<tr>
<td>CAP- 4</td>
</tr>
<tr>
<td>TC7660 5</td>
</tr>
<tr>
<td>OSC 6</td>
</tr>
<tr>
<td>LOW VOLTAGE (LV) 7</td>
</tr>
<tr>
<td>V+ 8</td>
</tr>
<tr>
<td>VOUT 5</td>
</tr>
</tbody>
</table>

General Description

The TC7660 is a pin-compatible replacement for the industry standard 7660 charge pump voltage converter. It converts a +1.5V to +10V input to a corresponding -1.5V to -10V output using only two low cost capacitors, eliminating inductors and their associated cost, size and electromagnetic interference (EMI).

The on-board oscillator operates at a nominal frequency of 10 kHz. Operation below 10 kHz (for lower supply current applications) is possible by connecting an external capacitor from OSC to ground.

The TC7660 is available in 8-Pin PDIP, 8-Pin Small Outline (SOIC) and 8-Pin CERDIP packages in commercial and extended temperature ranges.

Functional Block Diagram
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage ...+10.5V
LV and OSC Inputs Voltage: (Note 1)
.. -0.3V to \(V_{SS} \) for \(V^+ < 5.5V \)
.....................................\((V^+ - 5.5V) \) to \((V^+) \) for \(V^+ > 5.5V \)
Current into LV ...20 µA for \(V^+ > 3.5V \)
Output Short Duration (\(V_{SUPPLY} \leq 5.5V \))........Continuous
Package Power Dissipation: (\(T_A \leq 70°C \))
8-Pin CERDIP ..800 mW
8-Pin PDIP ...730 mW
8-Pin SOIC...470 mW
Operational Temperature Range:
C Suffix...0°C to +70°C
I Suffix ...-25°C to +85°C
e Suffix..-40°C to +85°C
e Suffix ...-55°C to +125°C
Storage Temperature Range.........................-65°C to +160°C
ESD protection on all pins (HBM)\(\geq 3kV \)
Maximum Junction Temperature 150°C

* Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, specifications measured over operating temperature range with \(V^+ = 5V \), \(C_{OSC} = 0 \), refer to test circuit in Figure 1-1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td>(I^+)</td>
<td>—</td>
<td>80</td>
<td>180</td>
<td>µA</td>
<td>(R_L = \infty)</td>
</tr>
<tr>
<td>Supply Voltage Range, High</td>
<td>(V^+_H)</td>
<td>3.0</td>
<td>—</td>
<td>10</td>
<td>V</td>
<td>Min (T_A \leq \text{Max}, R_L = 10 \text{ kΩ}, LV \text{ Open})</td>
</tr>
<tr>
<td>Supply Voltage Range, Low</td>
<td>(V^+_L)</td>
<td>1.5</td>
<td>—</td>
<td>3.5</td>
<td>V</td>
<td>Min (T_A \leq \text{Max}, R_L = 10 \text{ kΩ}, LV \to \text{ GND})</td>
</tr>
<tr>
<td>Output Source Resistance</td>
<td>(R_{OUT})</td>
<td>—</td>
<td>70</td>
<td>100</td>
<td>Ω</td>
<td>(I_{OUT} = 20 \text{ mA}, T_A = +25°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>120</td>
<td>—</td>
<td></td>
<td>(I_{OUT} = 20 \text{ mA}, T_A \leq +70°C) (C Device)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>130</td>
<td>—</td>
<td></td>
<td>(I_{OUT} = 20 \text{ mA}, T_A \leq +85°C) (E and I Device)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td>150</td>
<td>—</td>
<td></td>
<td>(I_{OUT} = 20 \text{ mA}, T_A \leq +125°C) (M Device)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>300</td>
<td>—</td>
<td></td>
<td>(V^+ = 2V, I_{OUT} = 3 \text{ mA}, LV \to \text{ GND})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
<td>600</td>
<td>—</td>
<td></td>
<td>0°C (T_A \leq +70°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td>(V^+ = 2V, I_{OUT} = 3 \text{ mA}, LV \to \text{ GND})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-55°C (T_A \leq +125°C) (M Device)</td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>(f_{OSC})</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>kHz</td>
<td>Pin 7 open</td>
</tr>
<tr>
<td>Power Efficiency</td>
<td>(P_{EFF})</td>
<td>95</td>
<td>98</td>
<td>—</td>
<td>%</td>
<td>(R_L = 5 \text{ kΩ})</td>
</tr>
<tr>
<td>Voltage Conversion Efficiency</td>
<td>(V_{OUTEFF})</td>
<td>97</td>
<td>99.9</td>
<td>—</td>
<td>%</td>
<td>(R_L = \infty)</td>
</tr>
<tr>
<td>Oscillator Impedance</td>
<td>(Z_{OSC})</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>MΩ</td>
<td>(V^+ = 2V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>kΩ</td>
<td>(V^+ = 5V)</td>
</tr>
</tbody>
</table>

Note 1: Destructive latch-up may occur if voltages greater than \(V^+ \) or less than GND are supplied to any input pin.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, \(C_1 = C_2 = 10 \, \mu F \), \(ESR_{C1} = ESR_{C2} = 1 \, \Omega \), \(T_A = 25^\circ C \). See Figure 1-1.

FIGURE 2-1: Operating Voltage vs. Temperature.

FIGURE 2-2: Output Source Resistance vs. Supply Voltage.

FIGURE 2-3: Frequency of Oscillation vs. Oscillator Capacitance.

FIGURE 2-4: Power Conversion Efficiency vs. Oscillator Frequency.

FIGURE 2-5: Output Source Resistance vs. Temperature.

FIGURE 2-6: Unloaded Oscillator Frequency vs. Temperature.
Note: Unless otherwise indicated, $C_1 = C_2 = 10 \ \mu F$, $ESR_{C1} = ESR_{C2} = 1 \ \Omega$, $T_A = 25^\circ C$. See Figure 1-1.

FIGURE 2-7: Output Voltage vs. Output Current.

FIGURE 2-8: Supply Current and Power Conversion Efficiency vs. Load Current.

FIGURE 2-9: Output Voltage vs. Load Current.

FIGURE 2-10: Output Voltage vs. Load Current.

FIGURE 2-11: Supply Current and Power Conversion Efficiency vs. Load Current.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>2</td>
<td>CAP+</td>
<td>Charge pump capacitor positive terminal</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground terminal</td>
</tr>
<tr>
<td>4</td>
<td>CAP-</td>
<td>Charge pump capacitor negative terminal</td>
</tr>
<tr>
<td>5</td>
<td>VOUT</td>
<td>Output voltage</td>
</tr>
<tr>
<td>6</td>
<td>LV</td>
<td>Low voltage pin. Connect to GND for V+ < 3.5V</td>
</tr>
<tr>
<td>7</td>
<td>OSC</td>
<td>Oscillator control input. Bypass with an external capacitor to slow the oscillator</td>
</tr>
<tr>
<td>8</td>
<td>V+</td>
<td>Power supply positive voltage input</td>
</tr>
</tbody>
</table>

3.1 Charge Pump Capacitor (CAP+)

Positive connection for the charge pump capacitor, or flying capacitor, used to transfer charge from the input source to the output. In the voltage-inverting configuration, the charge pump capacitor is charged to the input voltage during the first half of the switching cycle. During the second half of the switching cycle, the charge pump capacitor is inverted and charge is transferred to the output capacitor and load.

It is recommended that a low ESR (equivalent series resistance) capacitor be used. Additionally, larger values will lower the output resistance.

3.2 Ground (GND)

Input and output zero volt reference.

3.3 Charge Pump Capacitor (CAP-)

Negative connection for the charge pump capacitor, or flying capacitor, used to transfer charge from the input to the output. Proper orientation is imperative when using a polarized capacitor.

3.4 Output Voltage (VOUT)

Negative connection for the charge pump output capacitor. In the voltage-inverting configuration, the charge pump output capacitor supplies the output load during the first half of the switching cycle. During the second half of the switching cycle, charge is restored to the charge pump output capacitor.

It is recommended that a low ESR (equivalent series resistance) capacitor be used. Additionally, larger values will lower the output ripple.

3.5 Low Voltage Pin (LV)

The low voltage pin ensures proper operation of the internal oscillator for input voltages below 3.5V. The low voltage pin should be connected to ground (GND) for input voltages below 3.5V. Otherwise, the low voltage pin should be allowed to float.

3.6 Oscillator Control Input (OSC)

The oscillator control input can be utilized to slow down or speed up the operation of the TC7660. Refer to Section 5.4, “Changing the TC7660 Oscillator Frequency”, for details on altering the oscillator frequency.

3.7 Power Supply (V+)

Positive power supply input voltage connection. It is recommended that a low ESR (equivalent series resistance) capacitor be used to bypass the power supply input to ground (GND).
4.0 DETAILED DESCRIPTION

4.1 Theory of Operation

The TC7660 charge pump converter inverts the voltage applied to the V+ pin. The conversion consists of a two-phase operation (Figure 4-1). During the first phase, switches S2 and S4 are open and switches S1 and S3 are closed. C1 charges to the voltage applied to the V+ pin, with the load current being supplied from C2. During the second phase, switches S2 and S4 are closed and switches S1 and S3 are open. Charge is transferred from C1 to C2, with the load current being supplied from C1.

FIGURE 4-1: Ideal Switched Capacitor Inverter.

In this manner, the TC7660 performs a voltage inversion, but does not provide regulation. The average output voltage will drop in a linear manner with respect to load current. The equivalent circuit of the charge pump inverter can be modeled as an ideal voltage source in series with a resistor, as shown in Figure 4-2.

FIGURE 4-2: Switched Capacitor Inverter Equivalent Circuit Model.

The value of the series resistor (R_OUT) is a function of the switching frequency, capacitance and equivalent series resistance (ESR) of C1 and C2 and the on-resistance of switches S1, S2, S3 and S4. A close approximation for R_OUT is given in the following equation:

\[
R_{OUT} = \left(\frac{1}{f_{PUMP} \times C_1} + 8R_{SW} + 4ESR_{C1} + ESR_{C2}\right)
\]

Where:

- \(f_{PUMP}\) = oscillator frequency
- \(f_{OSC}\) = oscillator frequency
- \(R_{SW}\) = on-resistance of the switches
- \(ESR_{C1}\) = equivalent series resistance of C1
- \(ESR_{C2}\) = equivalent series resistance of C2

4.2 Switched Capacitor Inverter Power Losses

The overall power loss of a switched capacitor inverter is affected by four factors:

1. Losses from power consumed by the internal oscillator, switch drive, etc. These losses will vary with input voltage, temperature and oscillator frequency.
2. Conduction losses in the non-ideal switches.
3. Losses due to the non-ideal nature of the external capacitors.
4. Losses that occur during charge transfer from C1 to C2 when a voltage difference between the capacitors exists.

Figure 4-3 depicts the non-ideal elements associated with the switched capacitor inverter power loss.

FIGURE 4-3: Non-Ideal Switched Capacitor Inverter.

The power loss is calculated using the following equation:

\[
P_{LOSS} = I_{OUT}^2 \times R_{OUT} + I_{DD} \times V^+
\]
5.0 APPLICATIONS INFORMATION

5.1 Simple Negative Voltage Converter

Figure 5-1 shows typical connections to provide a negative supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of +1.5V to +10V, keeping in mind that pin 6 (LV) is tied to the supply negative (GND) only for supply voltages below 3.5V.

FIGURE 5-1: Simple Negative Converter.

The output characteristics of the circuit in Figure 5-1 are those of a nearly ideal voltage source in series with a 70Ω resistor. Thus, for a load current of -10 mA and a supply voltage of +5V, the output voltage would be -4.3V.

5.2 Paralleling Devices

To reduce the value of R_{OUT}, multiple TC7660 voltage converters can be connected in parallel (Figure 5-2). The output resistance will be reduced by approximately a factor of n, where n is the number of devices connected in parallel.

EQUATION

$$R_{OUT} = \frac{R_{OUT} \text{ (of TC7660)}}{n \text{ (number of devices)}}$$

While each device requires its own pump capacitor (C_1), all devices may share one reservoir capacitor (C_2). To preserve ripple performance, the value of C_2 should be scaled according to the number of devices connected in parallel.

5.3 Cascading Devices

A larger negative multiplication of the initial supply voltage can be obtained by cascading multiple TC7660 devices. The output voltage and the output resistance will both increase by approximately a factor of n, where n is the number of devices cascaded.

EQUATION

$$V_{OUT} = -n(V^+)$$

$$R_{OUT} = n \times R_{OUT} \text{ (of TC7660)}$$

FIGURE 5-2: Paralleling Devices Lowers Output Impedance.

FIGURE 5-3: Increased Output Voltage By Cascading Devices.
5.4 Changing the TC7660 Oscillator Frequency

The operating frequency of the TC7660 can be changed in order to optimize the system performance. The frequency can be increased by over-driving the OSC input (Figure 5-4). Any CMOS logic gate can be utilized in conjunction with a 1 kΩ series resistor. The resistor is required to prevent device latch-up. While TTL level signals can be utilized, an additional 10 kΩ pull-up resistor to V+ is required. Transitions occur on the rising edge of the clock input. The resultant output voltage ripple frequency is one half the clock input. Higher clock frequencies allow for the use of smaller pump and reservoir capacitors for a given output voltage ripple and droop. Additionally, this allows the TC7660 to be synchronized to an external clock, eliminating undesirable beat frequencies.

At light loads, lowering the oscillator frequency can increase the efficiency of the TC7660 (Figure 5-5). By lowering the oscillator frequency, the switching losses are reduced. Refer to Figure 2-3 to determine the typical operating frequency based on the value of the external capacitor. At lower operating frequencies, it may be necessary to increase the values of the pump and reservoir capacitors in order to maintain the desired output voltage ripple and output impedance.

5.5 Positive Voltage Multiplication

Positive voltage multiplication can be obtained by employing two external diodes (Figure 5-6). Refer to the theory of operation of the TC7660 (Section 4.1). During the half cycle when switch S2 is closed, capacitor C1 of Figure 5-6 is charged up to a voltage of V+ - VF1, where VF1 is the forward voltage drop of diode D1. During the next half cycle, switch S1 is closed, shifting the reference of capacitor C1 from GND to V+*. The energy in capacitor C1 is transferred to capacitor C2 through diode D2, producing an output voltage of approximately:

\[
V_{OUT} = 2 \times V^+ - (V_{F1} + V_{F2})
\]

where:

- V_{F1} is the forward voltage drop of diode D1
- V_{F2} is the forward voltage drop of diode D2.

5.6 Combined Negative Voltage Conversion and Positive Supply Multiplication

Simultaneous voltage inversion and positive voltage multiplication can be obtained (Figure 5-7). Capacitors C1 and C3 perform the voltage inversion, while capacitors C2 and C4, plus the two diodes, perform the positive voltage multiplication. Capacitors C1 and C2 are the pump capacitors, while capacitors C3 and C4 are the reservoir capacitors for their respective functions. Both functions utilize the same switches of the TC7660. As a result, if either output is loaded, both outputs will drop towards GND.
5.7 Efficient Positive Voltage Multiplication/Conversion

Since the switches that allow the charge pumping operation are bidirectional, the charge transfer can be performed backwards as easily as forwards. Figure 5-8 shows a TC7660 transforming -5V to +5V (or +5V to +10V, etc.). The only problem here is that the internal clock and switch-drive section will not operate until some positive voltage has been generated. An initial inefficient pump, as shown in Figure 5-7, could be used to start this circuit up, after which it will bypass the other (D1 and D2 in Figure 5-7 would never turn on), or else the diode and resistor shown dotted in Figure 5-8 can be used to “force” the internal regulator on.

![Figure 5-7: Combined Negative Converter And Positive Multiplier.](image)

![Figure 5-8: Positive Voltage Conversion.](image)
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

- **XX...X** Customer specific information*
- **YY** Year code (last 2 digits of calendar year)
- **WW** Week code (week of January 1 is week ‘01’)
- **NNN** Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.
TC7660

8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

![Diagram of TC7660](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.100</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>.140</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.300</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.360</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.125</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>.045</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>§ eB</td>
<td>.310</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter

§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
- JEDEC Equivalent: MS-001
- Drawing No. C04-018
8-Lead Ceramic Dual In-line – 300 mil (CERDIP)

Packaging diagram not available at this time.
TC7660

8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>0.050</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.053 .061 .069</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.052 .056 .061</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>0.004 .007 .010</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>0.228 .237 .244</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>0.146 .154 .157</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>0.189 .193 .197</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>h</td>
<td>0.010 .015 .020</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.019 .025 .030</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>e</td>
<td>0 4 8</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.008 .009 .010</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>0.013 .017 .020</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0 12 15</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0 12 15</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device: TC7660: DC-to-DC Voltage Converter

Temperature Range: C = 0°C to +70°C
E = -40°C to +85°C
I = -25°C to +85°C (CERDIP only)
M = -55°C to +125°C (CERDIP only)

Package: PA = Plastic DIP, (300 mil body), 8-lead
JA = Ceramic DIP, (300 mil body), 8-lead
OA = SOIC (Narrow), 8-lead
OA713 = SOIC (Narrow), 8-lead (Tape and Reel)

Examples:
a) TC7660COA: Commercial Temp., SOIC package.
b) TC7660COA713: Tape and Reel, Commercial Temp., SOIC package.
c) TC7660CPA: Commercial Temp., PDIP package.
d) TC7660EOA: Extended Temp., SOIC package.
e) TC7660EOA713: Tape and Reel, Extended Temp., SOIC package.
f) TC7660EPA: Extended Temp., PDIP package.
g) TC7660JA: Industrial Temp., CERDIP package.
h) TC7660MJA: Military Temp., CERDIP package.

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Trademarks

The Microchip name and logo, the Microchip logo, KEELoO, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, I CSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.