TC7650

Chopper Stabilized Operational Amplifier

Features

• Low Input Offset Voltage: 0.7µV Typ
• Low Input Offset Voltage Drift: 0.05µV/°C Max
• Low Input Bias Current: 10pA Max
• High Impedance Differential CMOS Inputs: 10^12Ω
• High Open Loop Voltage Gain: 120dB Min.
• Low Input Noise Voltage: 2.0µVp-p
• High Slew Rate: 2.5V/µsec.
• Low Power Operation: 20mW
• Output Clamp Speeds Recovery Time
• Compensated Internally for Stable Unity Gain Operation
• Direct Replacement for ICL7650
• Available in 8-Pin Plastic DIP and 14-Pin Plastic DIP Packages

Applications

• Instrumentation
• Medical Instrumentation
• Embedded Control
• Temperature Sensor Amplifier
• Strain Gage Amplifier

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Temperature Range</th>
<th>Max V_OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC7650CPA</td>
<td>8-Pin DIP</td>
<td>0°C to +70°C</td>
<td>5µV</td>
</tr>
<tr>
<td>TC7650CPD</td>
<td>14-Pin DIP</td>
<td>0°C to +70°C</td>
<td>5µV</td>
</tr>
</tbody>
</table>
General Description

The TC7650 CMOS chopper stabilized operational amplifier practically removes offset voltage error terms from system error calculations. The 5µV maximum V_{OS} specification, for example, represents a 15 times improvement over the industry standard OP07E. The 50nV/°C offset drift specification is over 25 times lower than the OP07E. The increased performance eliminates V_{OS} trim procedures, periodic potentiometer adjustment and the reliability problems caused by damaged trimmers.

The TC7650 performance advantages are achieved without the additional manufacturing complexity and cost incurred with laser or “zener zap” V_{OS} trim techniques.

Functional Block Diagram

The TC7650 nulling scheme corrects both DC V_{OS} errors and V_{OS} drift errors with temperature. A nulling amplifier alternately corrects its own V_{OS} errors and the main amplifier V_{OS} error. Offset nulling voltages are stored on two user supplied external capacitors. The capacitors connect to the internal amplifier V_{OS} null points. The main amplifier input signal is never switched. Switching spikes are not present at the TC7650 output.

The 14-pin dual-in-line package (DIP) has an external oscillator input to drive the nulling circuitry for optimum noise performance. Both the 8 and 14-pin DIPs have an output voltage clamp circuit to minimize overload recovery time.
1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

<table>
<thead>
<tr>
<th>Total Supply Voltage (VDD to VSS)</th>
<th>+18V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(VDD +0.3V) to (VSS –0.3V)</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Voltage on Oscillator Control Pins</td>
<td>VDD to VSS</td>
</tr>
<tr>
<td>Duration of Output Short Circuit</td>
<td>Indefinite</td>
</tr>
<tr>
<td>Current Into Any Pin</td>
<td>10mA</td>
</tr>
</tbody>
</table>

While Operating *(Note 3)*: 100µA

Package Power Dissipation *(TA ≤ 70°C)*
- 8-Pin Plastic DIP: 730mW
- 14-Pin Plastic DIP: 800mW

Operating Temperature Range
- C Device: 0°C to +70°C

*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC7652 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: \(V_{DD} = +5\text{V}, V_{SS} = -5\text{V}, C_A = C_B = 0.1\mu\text{F}, T_A = +25^\circ\text{C} \), unless otherwise indicated.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OS})</td>
<td>Input Offset Voltage</td>
<td>(-)</td>
<td>±0.7</td>
<td>±1.0</td>
<td>(\mu \text{V})</td>
<td>TA = +25°C, Over Operating Temp Range</td>
</tr>
<tr>
<td>(\Delta V_{OS}/\Delta T)</td>
<td>Input Offset Voltage Average Temperature Coefficient</td>
<td>(-)</td>
<td>0.01</td>
<td>0.05</td>
<td>(\mu \text{V/°C})</td>
<td>Operating Temperature Range</td>
</tr>
<tr>
<td>(I_{BIAS})</td>
<td>Input Bias Current</td>
<td>(-)</td>
<td>1.5</td>
<td>35</td>
<td>10</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(-25^\circ\text{C} \leq T_A \leq +85^\circ\text{C})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Input Offset Current</td>
<td>(-)</td>
<td>0.5</td>
<td>(-)</td>
<td>(\mu \text{A})</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{V_{NP-P}})</td>
<td>Input Noise Voltage</td>
<td>(-)</td>
<td>2</td>
<td>(\mu \text{V})</td>
<td>(R_S = 100\Omega), 0 to 10Hz</td>
<td></td>
</tr>
<tr>
<td>(I_n)</td>
<td>Input Noise Current</td>
<td>(-)</td>
<td>0.01</td>
<td>(\mu \text{A})</td>
<td>(R_S = 100\Omega), 0 to 10Hz</td>
<td></td>
</tr>
<tr>
<td>(R_{IN})</td>
<td>Input Resistance</td>
<td>(-)</td>
<td>10^{12}</td>
<td>\Omega</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CMVR)</td>
<td>Common Mode Voltage Range</td>
<td>-5</td>
<td>-5.2 to +2</td>
<td>+1.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(CMRR)</td>
<td>Common Mode Rejection Ratio</td>
<td>120</td>
<td>130</td>
<td>(-)</td>
<td>(\text{dB})</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>Large Signal Voltage Gain</td>
<td>120</td>
<td>130</td>
<td>(-)</td>
<td>(\text{dB})</td>
<td></td>
</tr>
<tr>
<td>(R_L = 10\text{k}\Omega)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage Swing (Note 2)</td>
<td>±4.7</td>
<td>±4.85</td>
<td>±4.95</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>(R_L = 10\text{k}\Omega)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_L = 100\text{k}\Omega)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp ON Current</td>
<td>25</td>
<td>70</td>
<td>200</td>
<td>(\mu \text{A})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp OFF Current</td>
<td>(-)</td>
<td>1</td>
<td>(-)</td>
<td>(\mu \text{A})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_W)</td>
<td>Unity Gain Bandwidth</td>
<td>(-)</td>
<td>2.0</td>
<td>(-)</td>
<td>MHz</td>
</tr>
<tr>
<td>(S_R)</td>
<td>Slew Rate</td>
<td>(-)</td>
<td>2.5</td>
<td>(-)</td>
<td>(V/\mu\text{sec})</td>
</tr>
<tr>
<td>(I_R)</td>
<td>Rise Time</td>
<td>(-)</td>
<td>0.2</td>
<td>(-)</td>
<td>(\mu\text{sec})</td>
</tr>
<tr>
<td>(O\text{vershoot})</td>
<td>(-)</td>
<td>20</td>
<td>(-)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(f_{CH})</td>
<td>Internal Chopping Frequency</td>
<td>120</td>
<td>200</td>
<td>375</td>
<td>Hz</td>
</tr>
<tr>
<td>Pins 12–14 Open (DIP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supply

- \(V_{DD}, V_{SS} \): Operating Supply Range
- \(V_S \): Supply Current
- \(PSRR \): Power Supply Rejection Ratio

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD}, V_{SS})</td>
<td>Operating Supply Range</td>
<td>4.5</td>
<td>(-)</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>(I_S)</td>
<td>Supply Current</td>
<td>(-)</td>
<td>2</td>
<td>3.5</td>
<td>mA</td>
</tr>
<tr>
<td>(PSRR)</td>
<td>Power Supply Rejection Ratio</td>
<td>120</td>
<td>130</td>
<td>(-)</td>
<td>(\text{dB})</td>
</tr>
</tbody>
</table>

\(V_S = \pm 3\text{V to} \pm 8\text{V} \)

Note
1: See “Output Clamp” discussion.
2: Output clamp not connected. See typical characteristics curves for output swing versus clamp current characteristics.
3: Limiting input current to 100µA is recommended to avoid latch-up problems.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 18</td>
<td>C<sub>A</sub>, C<sub>B</sub></td>
<td>Nulling capacitor pins</td>
</tr>
<tr>
<td>4</td>
<td>-INPUT</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>5, 15</td>
<td>+INPUT</td>
<td>Non-inverting Input</td>
</tr>
<tr>
<td>7</td>
<td>V<sub>SS</sub></td>
<td>Negative Power Supply</td>
</tr>
<tr>
<td>9</td>
<td>OUTPUT CLAMP</td>
<td>Output Voltage Clamp</td>
</tr>
<tr>
<td>10</td>
<td>OUTPUT</td>
<td>Output</td>
</tr>
<tr>
<td>11</td>
<td>V<sub>DD</sub></td>
<td>Positive Power Supply</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td>No internal connection</td>
</tr>
<tr>
<td>13</td>
<td>C<sub>RET</sub>N</td>
<td>Capacitor current return pin</td>
</tr>
<tr>
<td>14</td>
<td>INT CLK OUT</td>
<td>Internal Clock Output</td>
</tr>
<tr>
<td>15</td>
<td>EXT CLK IN</td>
<td>External Clock Input</td>
</tr>
<tr>
<td>16</td>
<td>INT/EXT</td>
<td>Select Internal or External Clock</td>
</tr>
</tbody>
</table>

3.0 DETAILED DESCRIPTION

3.1 Theory of Operation

Figure 3-1 shows the major elements of the TC7650. There are two amplifiers (the main amplifier and the nulling amplifier), and both have offset null capability. The main amplifier is connected full-time from the input to the output. The nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. Two external capacitors provide the required storage of the nulling potentials and the necessary nulling loop time constants. The nulling arrangement operates over the full common mode and power supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR and AVOL.

Careful balancing of the input switches minimizes chopper frequency charge injection at the input terminals, and the feed forward type injection into the compensation capacitor that can cause output spikes in this type of circuit.

The circuit’s offset voltage compensation is easily shown. With the nulling inputs shorted, a voltage almost identical to the nulling amplifier offset voltage is stored on C_A. The effective offset voltage at the null amplifier input is:

EQUATION 3-1:

\[V_{OSE} = \frac{1}{A_N + 1} V_{OSN} \]

After the nulling amplifier is zeroed, the main amplifier is zeroed; the A switches open and B switches close. The output voltage equation is:

EQUATION 3-2:

\[V_{OUT} = A_M (V_{OSM} + (V^+ - V^-) + A_N (V^+ - V^-) + A_N V_{OSE}) \]

EQUATION 3-3:

\[V_{OUT} = A_M A_N (V^+ - V^-) + \frac{V_{OSM} + V_{OSN}}{A_N} \]

As desired, the device offset voltages are reduced by the high open loop gain of the nulling amplifier.

3.2 Output Stage/Loading

The output circuit is a high impedance stage (approximately 18kΩ). With loads less than this, the chopper amplifier behaves in some ways like a trans-conductance amplifier whose open-loop gain is proportional to load resistance. For example, the open loop gain will be 17dB lower with a 1kΩ load than with a 10kΩ load. If the amplifier is used strictly for DC, the lower gain is of little consequence, since the DC gain is typically greater than 120dB, even with a 1kΩ load. In wideband applications, the best frequency response will be achieved with a load resistor of 10kΩ or higher. This results in a smooth 6dB/octave response from 0.1Hz to 2MHz, with phase shifts of less than 10° in the trans-
tion region, where the main amplifier takes over from the null amplifier. The clock frequency sets the transition region.

3.3 Intermodulation

Previous chopper stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier results in a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies, and causing disturbances to the gain and phase versus frequency characteristics near the chopping frequency. These effects are substantially reduced in the TC7650 by feeding the nulling circuit with a dynamic current corresponding to the compensation capacitor current in such a way as to cancel that portion of the input signal due to a finite AC gain. The intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

FIGURE 3-1: TC7650 CONTAINS A NULLING AND MAIN AMPLIFIER. OFFSET CORRECTION VOLTAGES ARE STORED ON TWO EXTERNAL CAPACITORS.

3.4 Nulling Capacitor Connection

The offset voltage correction capacitors are connected to C_A and C_B. The common capacitor connection is made to V_{SS} (Pin 4) on the 8-pin packages and to capacitor return (C_{RET}, Pin 8) on the 14-pin packages. The common connection should be made through a separate PC trace or wire to avoid voltage drops. The capacitors outside foil, if possible, should be connected to C_{RET} or V_{SS}.

3.5 Clock Operation

The internal oscillator is set for a 200Hz nominal chopp-
ing frequency on both the 8- and 14-pin DIPs. With the 14-pin DIP TC7650, the 200 Hz internal chopping frequency is available at the internal clock output (Pin 12). A 400Hz nominal signal will be present at the external clock input pin (Pin 13) with INT/EXT high or open. This is the internal clock signal before a divide-by-two operation.

The 14-pin DIP device can be driven by an external clock. The INT/EXT input (Pin 14) has an internal pull-up and may be left open for internal clock operation. If an external clock is used, INT/EXT must be tied to V_{SS} (Pin 7) to disable the internal clock. The external clock signal is applied to the external clock input (Pin 13).

The external clock amplitude should swing between V_{DD} and ground for power supplies up to ±6V and between V^+ and $V^+ -6V$ for higher supply voltages.

At low frequencies the external clock duty cycle is not critical, since an internal divide-by-two gives the desired 50% switching duty cycle. The offset storage correction capacitors are charged only when the external clock input is high. A 50% to 80% external clock
positive duty cycle is desired for frequencies above 500Hz to ensure transients settle before the internal switches open.

The external clock input can also be used as a strobe input. If a strobe signal is connected at the external clock input so that it is LOW during the time an overload signal is applied, neither capacitor will be charged. The leakage currents at the capacitors pins are very low. At 25°C a typical TC7650 will drift less than 10μV/sec.

3.6 Output Clamp

Chopper-stabilized systems can show long recovery times from overloads. If the output is driven to either supply rail, output saturation occurs. The inputs are no longer held at a "virtual ground." The VOS null circuit treats the differential signal as an offset and tries to correct it by charging the external capacitors. The nulling circuit also saturates. Once the input signal returns to normal, the response time is lengthened by the long recovery time of the nulling amplifier and external capacitors.

Through an external clamp connection, the TC7650 eliminates the overload recovery problem by reducing the feedback network gain before the output voltage reaches either supply rail.

FIGURE 3-3: INTERNAL CLAMP CIRCUIT

FIGURE 3-4: NON-INVERTING AMPLIFIER WITH OPTIONAL CLAMP

The output clamp circuit is shown in Figure 3-3, with typical inverting and non-inverting circuit connections shown in Figures 3-4 and 3-5. Output voltage versus clamp circuit current characteristics are shown in the typical operating curves. For the clamp to be fully effective, the impedance across the clamp output should be greater than 100kΩ.

3.7 Latch-Up Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 0.1mA to avoid latch-up.

3.8 Thermoelectric Potentials

Precision DC measurements are ultimately limited by thermoelectric potentials developed in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages, typically around 0.1μV/°C, but up to tens of μV/°C for some materials, will be generated. In order to realize the benefits extremely-low offset voltages provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially those caused by power dissipating elements in the system. Low thermoelectric co-efficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High impedance loads are preferable, and separation from surrounding heat dissipating elements is advised.
3.9 Pin Compatibility

On the 8-pin mini-DIP TC7650, the external null storage capacitors are connected to pins 1 and 8. On most other operational amplifiers these are left open or are used for offset potentiometer or compensation capacitor connections.

For OP05 and OP07 operational amplifiers, the replacement of the offset null potentiometer between pins 1 and 8 by two capacitors from the pins to VSS will convert the OP05/07 pin configurations for TC7650 operation. For LM108 devices, the compensation capacitor is replaced by the external nulling capacitors.

The LM101/748/709 pinouts are modified similarly by removing any circuit connections to Pin 5. On the TC7650, Pin 5 is the output clamp connection.

Other operational amplifiers may use this pin as an offset or compensation point.

The minor modifications needed to retrofit a TC7650 into existing sockets operating at reduced power supply voltages make prototyping and circuit verification straightforward.

3.10 Input Guarding

High impedance, low leakage CMOS inputs allow the TC7650 to make measurements of high-impedance sources. Stray leakage paths can increase input currents and decrease input resistance unless inputs are guarded. A guard is a conductive PC trace surrounding the input terminals. The ring connects to a low impedance point at the same potential as the inputs. Stray leakages are absorbed by the low impedance ring. The equal potential between ring and inputs prevents input leakage currents. Typical guard connections are shown in Figure 3-6.

The 14-pin DIP configuration has been specifically designed to ease input guarding. The pins adjacent to the inputs are unused.

In applications requiring low leakage currents, boards should be cleaned thoroughly and blown dry after soldering. Protective coatings will prevent future board contamination.

3.11 Component Selection

The two required capacitors, \(C_A \) and \(C_B \), have optimum values, depending on the clock or chopping frequency. For the preset internal clock, the correct value is 0.1\(\mu \)F. To maintain the same relationship between the chopping frequency and the nulling time constant, the capacitor values should be scaled in proportion to the external clock, if used. High quality film type capacitors (such as Mylar) are preferred; ceramic or other lower grade capacitors may be suitable in some applications.

For fast settling on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to 1\(\mu \)V.
4.0 TYPICAL CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Positive Clamp Current vs. Output Voltage

- **Clamp Current**: 1 mA, 0.1 mA, 0.01 mA, 1 nA, 0.1 nA, 0.01 nA, 1 pA, 0.1 pA, 0.01 pA
- **Output Voltage (V)**: 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0

Negative Clamp Current vs. Output Voltage

- **Clamp Current**: 1 mA, 0.1 mA, 0.01 mA, 1 nA, 0.1 nA, 0.01 nA, 1 pA, 0.1 pA, 0.01 pA
- **Output Voltage (V)**: -4.0, -4.1, -4.2, -4.3, -4.4, -4.5, -4.6, -4.7, -4.8, -4.9, -5.0

Supply Current vs. Supply Voltage

- **Supply Current (mA)**: 3.0, 2.6, 2.2, 1.8, 1.4, 1.0
- **Supply Voltage (V)**: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Gain/Phase vs. Frequency

- **Gain (dB)**: 225, 180, 135, 90, 45, 0, -45, -90, -135
- **Frequency (Hz)**: 1k, 10k, 100k, 1M, 10M
- **Closed-Loop Gain = 20**
- **Phase (°)**: -180, -90, -45, 0, 45, 90, 135, 180, 225
5.0 Packaging Information

5.1 Package Marking Information
Package marking information not available at this time.

5.2 Package Dimensions

8-Pin Plastic DIP

Dimensions: inches (mm)

14-Pin PDIP (Narrow)

Dimensions: inches (mm)
SALES AND SUPPORT

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, nPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, nPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.