Features:

- Count Resolution: ±19,999
- Resolution on 200 mV Scale: 10 μV
- True Differential Input and Reference
- Low Power Consumption: 500 μA at 9V
- Direct LCD Driver for 4-1/2 Digits, Decimal Points, Low Battery Indicator, and Continuity Indicator
- Overrange and Underrange Outputs
- Range Select Input: 10:1
- High Common Mode Rejection Ratio: 110 dB
- External Phase Compensation Not Required

Applications:

- Full-Featured Multimeters
- Digital Measurement Devices

General Description:

The TC7129 is a 4-1/2 digit Analog-to-Digital Converter (ADC) that directly drives a multiplexed Liquid Crystal Display (LCD). Fabricated in high-performance, low-power CMOS, the TC7129 ADC is designed specifically for high-resolution, battery-powered digital multimeter applications. The traditional dual-slope method of A/D conversion has been enhanced with a successive integration technique to produce readings accurate to better than 0.005% of full-scale and resolution down to 10 μV per count.

The TC7129 includes features important to multimeter applications. It detects and indicates low battery condition. A continuity output drives an annunciator on the display and can be used with an external driver to sound an audible alarm. Overrange and underrange outputs, along with a range-change input, provide the ability to create auto-ranging instruments. For snapshot readings, the TC7129 includes a latch-and-hold input to freeze the present reading. This combination of features makes the TC7129 the ideal choice for full-featured multimeter and digital measurement applications.

Device Selection Table

<table>
<thead>
<tr>
<th>Package Code</th>
<th>Pin Layout</th>
<th>Package</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC7129CPL</td>
<td>Normal</td>
<td>40-Pin PDIP</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>TC7129CKW</td>
<td>Formed</td>
<td>44-Pin PQFP</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>TC7129CLW</td>
<td>–</td>
<td>44-Pin PLCC</td>
<td>0°C to +70°C</td>
</tr>
</tbody>
</table>

Typical Application

![Typical Application Diagram]

Note: RC network between pins 26 and 28 is not required.
TC7129

Package Types

40-Pin PDIP

44-Pin QFP

44-Pin PLCC
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage (V+ to V–)... 15V
Reference Voltage (REF HI or REF LO)........... V+ to V–
Input Voltage (IN HI or IN LO) (Note 1)........ V+ to V–
V_DISP .. V+ to (DGND – 0.3V)
Digital Input (Pins 1, 2, 19, 20, 21, 22, 27, 37, 39, 40)................. DGND to V+
Analog Input (Pins 25, 29, 30) V+ to V–
Package Power Dissipation (T_A ≤ 70°C)
Plastic DIP ... 1.23W
PLCC ...1.23W
Plastic QFP .. 1.00W
Operating Temperature Range 0°C to +70°C
Storage Temperature Range............... -65°C to +150°C

*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC7129 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: V+ to V– = 9V, VREF = 1V, T_A = +25°C, f_CLK = 120 kHz, unless otherwise indicated. Pin numbers refer to 40-pin DIP.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Zero Input Reading</td>
<td>–0000</td>
<td>0000</td>
<td>+0000</td>
<td>Counts</td>
<td>V_IN = 0V, 200 mV scale</td>
</tr>
<tr>
<td></td>
<td>Zero Reading Drift</td>
<td>—</td>
<td>±0.5</td>
<td>—</td>
<td>μV/°C</td>
<td>V_IN = 0V, 0°C < T_A < +70°C</td>
</tr>
<tr>
<td></td>
<td>Ratiometric Reading</td>
<td>9996</td>
<td>—</td>
<td>10000</td>
<td>Counts</td>
<td>V_IN = V_REF = 1000 mV, Range = 2V</td>
</tr>
<tr>
<td></td>
<td>Range Change Accuracy</td>
<td>0.9999</td>
<td>1.0000</td>
<td>1.0001</td>
<td>Ratio</td>
<td>V_IN = 1V on High Range, V_IN = 0.1V on Low Range</td>
</tr>
<tr>
<td></td>
<td>RE Rollover Error</td>
<td>—</td>
<td>1</td>
<td>2</td>
<td>Counts</td>
<td>V_IN– = V_IN+ = 199 mV</td>
</tr>
<tr>
<td></td>
<td>NL Linearity Error</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>Counts</td>
<td>200mV Scale</td>
</tr>
<tr>
<td></td>
<td>CMRR Common Mode Rejection Ratio</td>
<td>—</td>
<td>110</td>
<td>—</td>
<td>dB</td>
<td>V_CM = 1V, V_IN = 0V, 200 mV scale</td>
</tr>
<tr>
<td></td>
<td>CMVR Common Mode Voltage Range</td>
<td>—</td>
<td>(V–) + 1.5</td>
<td>—</td>
<td>V</td>
<td>V_IN = 0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(V+) – 1</td>
<td>—</td>
<td>V</td>
<td>200 mV scale</td>
</tr>
<tr>
<td></td>
<td>e_N Noise (Peak-to-Peak Value not Exceeded 95% of Time)</td>
<td>—</td>
<td>14</td>
<td>—</td>
<td>μV_P-P</td>
<td>V_IN = 0V, 200 mV scale</td>
</tr>
<tr>
<td></td>
<td>I_IN Input Leakage Current</td>
<td>—</td>
<td>1</td>
<td>10</td>
<td>pA</td>
<td>V_IN = 0V, pins 32, 33</td>
</tr>
<tr>
<td></td>
<td>Scale Factor Temperature Coefficient</td>
<td>—</td>
<td>2</td>
<td>7</td>
<td>ppm/°C</td>
<td>V_IN = 199 mV, 0°C < T_A < +70°C, External V_REF = 0 ppm/°C</td>
</tr>
</tbody>
</table>

Note 1: Input voltages may exceed supply voltages, provided input current is limited to ±400 μA. Currents above this value may result in invalid display readings, but will not destroy the device if limited to ±1 mA. Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
TC7129 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: V+ to V– = 9V, VREF = 1V, T_A = +25°C, f_CLK = 120 kHz, unless otherwise indicated.

Pin numbers refer to 40-pin DIP.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_COM</td>
<td>Common Voltage</td>
<td>2.8</td>
<td>3.2</td>
<td>3.5</td>
<td>V</td>
<td>V+ to pin 28</td>
</tr>
<tr>
<td></td>
<td>Common Sink Current</td>
<td>—</td>
<td>0.6</td>
<td>—</td>
<td>mA</td>
<td>ΔCommon = +0.1V</td>
</tr>
<tr>
<td></td>
<td>Common Source Current</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>μA</td>
<td>ΔCommon = -0.1V</td>
</tr>
<tr>
<td>DGND</td>
<td>Digital Ground Voltage</td>
<td>4.5</td>
<td>5.3</td>
<td>5.8</td>
<td>V</td>
<td>V+ to pin 36, V+ to V– = 9V</td>
</tr>
<tr>
<td></td>
<td>Sink Current</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>mA</td>
<td>ΔDGND = +0.5V</td>
</tr>
<tr>
<td></td>
<td>Supply Voltage Range</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>V</td>
<td>V+ to V–</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current Excluding Common Current</td>
<td>—</td>
<td>0.8</td>
<td>1.3</td>
<td>mA</td>
<td>V+ to V– = 9V</td>
</tr>
<tr>
<td>f_CLK</td>
<td>Clock Frequency</td>
<td>—</td>
<td>120</td>
<td>360</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>V_DISP</td>
<td>Resistance</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>kΩ</td>
<td>V_DISP to V+</td>
</tr>
<tr>
<td></td>
<td>Low Battery Flag Activation Voltage</td>
<td>6.3</td>
<td>7.2</td>
<td>7.7</td>
<td>V</td>
<td>V+ to V–</td>
</tr>
</tbody>
</table>

Digital

<table>
<thead>
<tr>
<th></th>
<th>Continuity Comparator Threshold Voltages</th>
<th>100</th>
<th>200</th>
<th>—</th>
<th>mV</th>
<th>V_OUT pin 27 = High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-down Current</td>
<td></td>
<td>—</td>
<td>2</td>
<td>10</td>
<td>μA</td>
<td>Pins 37, 38, 39</td>
</tr>
<tr>
<td>"Weak Output" Current Sink/Source</td>
<td></td>
<td>—</td>
<td>3/3</td>
<td>—</td>
<td>μA</td>
<td>Pins 20, 21 sink/source</td>
</tr>
<tr>
<td>Pin 22 Source Current</td>
<td></td>
<td>—</td>
<td>3/9</td>
<td>—</td>
<td>μA</td>
<td>Pin 27 sink/source</td>
</tr>
<tr>
<td>Pin 22 Sink Current</td>
<td></td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Input voltages may exceed supply voltages, provided input current is limited to ±400 μA. Currents above this value may result in invalid display readings, but will not destroy the device if limited to ±1 mA. Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
2.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. 40-Pin PDIP</th>
<th>Pin No. 44-Pin PQFP</th>
<th>Pin No. 44-Pin PLCC</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>2</td>
<td>OSC1</td>
<td>Input to first clock inverter.</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>3</td>
<td>OSC3</td>
<td>Output of second clock inverter.</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>4</td>
<td>ANNUNCIATOR</td>
<td>Backplane square wave output for driving annunciators.</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>5</td>
<td>B1, C1, CONT</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>6</td>
<td>A1, G1, D1</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>7</td>
<td>F1, E1, DP1</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td>B2, C2, LO BATT</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9</td>
<td>A2, G2, D2</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>10</td>
<td>F2, E2, DP2</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>11</td>
<td>B3, C3, MINUS</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>12</td>
<td>A3, G3, D3</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>13</td>
<td>F3, E3, DP3</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>14</td>
<td>B4, C4, BC5</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>15</td>
<td>A4, D4, G4</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>16</td>
<td>F4, E4, DP4</td>
<td>Output to display segments.</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>17</td>
<td>BP3</td>
<td>Backplane #3 output to display.</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>18</td>
<td>BP2</td>
<td>Backplane #2 output to display.</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>19</td>
<td>BP1</td>
<td>Backplane #1 output to display.</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>20</td>
<td>V_DISP</td>
<td>Negative rail for display drivers.</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>21</td>
<td>DP3/OR</td>
<td>Input: When high, turns on most significant decimal point. Output: Pulled high when result count exceeds ±19,999.</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>22</td>
<td>DP3/UR</td>
<td>Input: Second-most significant decimal point on when high. Output: Pulled high when result count is less than ±1000.</td>
</tr>
<tr>
<td>22</td>
<td>19</td>
<td>23</td>
<td>LATCH/HOLD</td>
<td>Input: When floating, ADC operates in Free Run mode. When pulled high, the last displayed reading is held. When pulled low, the result counter contents are shown incrementing during the de-integrate phase of cycle. Output: Negative going edge occurs when the data latches are updated. Can be used for converter status signal.</td>
</tr>
<tr>
<td>23</td>
<td>20</td>
<td>24</td>
<td>V–</td>
<td>Negative power supply terminal.</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>25</td>
<td>V+</td>
<td>Positive power supply terminal and positive rail for display drivers.</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>26</td>
<td>INT IN</td>
<td>Input to integrator amplifier.</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
<td>27</td>
<td>INT OUT</td>
<td>Output of integrator amplifier.</td>
</tr>
<tr>
<td>27</td>
<td>24</td>
<td>28</td>
<td>CONTINUITY</td>
<td>Input: When low, continuity flag on the display is off. When high, continuity flag is on. Output: High when voltage between inputs is less than +200 mV. Low when voltage between inputs is more than +200 mV.</td>
</tr>
<tr>
<td>28</td>
<td>25</td>
<td>29</td>
<td>COMMON</td>
<td>Sets common mode voltage of 3.2V below V+ for DE, 10X, etc. Can be used as pre-regulator for external reference.</td>
</tr>
<tr>
<td>29</td>
<td>26</td>
<td>30</td>
<td>CRREF+</td>
<td>Positive side of external reference capacitor.</td>
</tr>
<tr>
<td>30</td>
<td>27</td>
<td>31</td>
<td>CRREF–</td>
<td>Negative side of external reference capacitor.</td>
</tr>
<tr>
<td>31</td>
<td>28</td>
<td>32</td>
<td>BUFFER</td>
<td>Output of buffer amplifier.</td>
</tr>
<tr>
<td>32</td>
<td>29</td>
<td>33</td>
<td>IN LO</td>
<td>Negative input voltage terminal.</td>
</tr>
<tr>
<td>33</td>
<td>30</td>
<td>34</td>
<td>IN HI</td>
<td>Positive input voltage terminal.</td>
</tr>
<tr>
<td>34</td>
<td>31</td>
<td>35</td>
<td>REF HI</td>
<td>Positive reference voltage.</td>
</tr>
<tr>
<td>35</td>
<td>32</td>
<td>36</td>
<td>REF LO</td>
<td>Negative reference voltage.</td>
</tr>
</tbody>
</table>
TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

<table>
<thead>
<tr>
<th>Pin No. 40-Pin PDIP</th>
<th>Pin No. 44-Pin PQFP</th>
<th>Pin No. 44-Pin PLCC</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>34</td>
<td>40</td>
<td>DGND</td>
<td>Internal ground reference for digital section. See Section 4.2.1 “±5V Power Supply”.</td>
</tr>
<tr>
<td>37</td>
<td>35</td>
<td>41</td>
<td>RANGE</td>
<td>3 μA pull-down for 200 mV scale. Pulled high externally for 2V scale.</td>
</tr>
<tr>
<td>38</td>
<td>36</td>
<td>42</td>
<td>DP₂</td>
<td>Internal 3 μA pull-down. When high, decimal point 2 will be on.</td>
</tr>
<tr>
<td>39</td>
<td>37</td>
<td>43</td>
<td>DP₁</td>
<td>Internal 3 μA pull-down. When high, decimal point 1 will be on.</td>
</tr>
<tr>
<td>40</td>
<td>38</td>
<td>44</td>
<td>OSC2</td>
<td>Output of first clock inverter. Input of second clock inverter.</td>
</tr>
<tr>
<td>—</td>
<td>6, 17, 28, 39</td>
<td>12, 23, 34, 1</td>
<td>NC</td>
<td>No connection.</td>
</tr>
</tbody>
</table>

Legend:
- **Pin No.** Reference numbers for the pins.
- **Symbol** represents the function of the pin.
3.0 DETAILED DESCRIPTION

(All pin designations refer to 40-pin PDIP.)

The TC7129 is designed to be the heart of a high-resolution analog measurement instrument. The only additional components required are a few passive elements: a voltage reference, an LCD and a power source. Most component values are not critical; substitutes can be chosen based on the information given below.

The basic circuit for a digital multimeter application is shown in Figure 3-1. See Section 4.0 “Typical Applications”, for variations. Typical values for each component are shown. The sections below give component selection criteria.

3.1 Oscillator (XOSC, C01, C02, R0)

The primary criterion for selecting the crystal oscillator is to choose a frequency that achieves maximum rejection of line frequency noise. To do this, the integration phase should last an integral number of line cycles. The integration phase of the TC7129 is 10,000 clock cycles on the 200 mV range and 1000 clock cycles on the 2V range. One clock cycle is equal to two oscillator cycles. For 60 Hz rejection, the oscillator frequency should be chosen so that the period of one line cycle equals the integration time for the 2V range.

EQUATION 3-1:

\[\frac{1}{60 \text{ second}} = 16.7 \text{ msec} = \frac{1000 \text{ clock cycles} \times 2 \text{ OSC cycles/clock cycle}}{\text{OSC Frequency}} \]

This equation gives an oscillator frequency of 120 kHz. A similar calculation gives an optimum frequency of 100 kHz for 50 Hz rejection.

The resistor and capacitor values are not critical; those shown work for most applications. In some situations, the capacitor values may have to be adjusted to compensate for parasitic capacitance in the circuit. The capacitors can be low-cost ceramic devices.

Some applications can use a simple RC network instead of a crystal oscillator. The RC oscillator has more potential for jitter, especially in the least significant digit. See Section 4.5 “RC Oscillator”.

3.2 Integrating Resistor (RINT)

The integrating resistor sets the charging current for the integrating capacitor. Choose a value that provides a current between 5 \(\mu \)A and 20 \(\mu \)A at 2V, the maximum full-scale input. The typical value chosen gives a charging current of 13.3 \(\mu \)A:

EQUATION 3-1:

\[I_{\text{CHARGE}} = \frac{2V}{150 \text{ k}\Omega} = 13.3 \mu A \]

Too high a value for \(R_{\text{INT}} \) increases the sensitivity to noise pickup and increases errors due to leakage current. Too low a value degrades the linearity of the integration, leading to inaccurate readings.
3.3 Integrating Capacitor (C\textsubscript{INT})

The charge stored in the integrating capacitor during the integrate phase is directly proportional to the input voltage. The primary selection criterion for C\textsubscript{INT} is to choose a value that gives the highest voltage swing while remaining within the high-linearity portion of the integrator output range. An integrator swing of 2V is the recommended value. The capacitor value can be calculated using the following equation:

\textbf{EQUATION 3-1:}

\[
C_{\text{INT}} = \frac{t_{\text{INT}} \times I_{\text{INT}}}{V_{\text{SWING}}}
\]

Where \(t_{\text{INT}} \) is the integration time.

Using the values derived above (assuming 60 Hz operation), the equation becomes:

\textbf{EQUATION 3-2:}

\[
C_{\text{INT}} = \frac{16.7 \text{ msec} \times 13.3 \mu\text{A}}{2V} = 0.1 \mu\text{A}
\]

The capacitor should have low dielectric absorption to ensure good integration linearity. Polypropylene and Teflon® capacitors are usually suitable. A good measurement of the dielectric absorption is to connect the reference capacitor across the inputs by connecting:

Pin-to-Pin:

\(20 \rightarrow 33 (C_{\text{REF}+} \text{ to IN HI}) \)

\(30 \rightarrow 32 (C_{\text{REF}–} \text{ to IN LO}) \)

A reading between 10,000 and 9998 is acceptable; anything lower indicates unacceptably high dielectric absorption.

3.4 Reference Capacitor (C\textsubscript{REF})

The reference capacitor stores the reference voltage during several phases of the measurement cycle. Low leakage is the primary selection criterion for this component. The value must be high enough to offset the effect of stray capacitance at the capacitor terminals. A value of at least 1 \(\mu\text{F} \) is recommended.
3.5 Voltage Reference
(D_{REF}, R_{REF}, R_{BIAS}, C_{RF})

The reference potentiometer (R_{REF}) provides an adjustment for adjusting the reference voltage; any value above 20 kΩ is adequate. The bias resistor (R_{BIAS}) limits the current through D_{REF} to less than 150 μA. The reference filter capacitor (C_{RF}) forms an RC filter with R_{BIAS} to help eliminate noise.

3.6 Input Filter (R_{IF}, C_{IF})

For added stability, an RC input noise filter is usually included in the circuit. The input filter resistor value should not exceed 100 kΩ. A typical RC time constant value is 16.7 msec to help reject line frequency noise. The input filter capacitor should have low leakage for a high-impedance input.

3.7 Battery

The typical circuit uses a 9V battery as a power source. However, any value between 6V and 12V can be used. For operation from batteries with voltages lower than 6V and for operation from power supplies, see Section 4.2 “Powering the TC7129”.

4.0 TYPICAL APPLICATIONS

4.1 TC7129 as a Replacement Part

The TC7129 is a direct pin-for-pin replacement part for the ICL7129. Note, however, that the ICL7129 requires a capacitor and resistor between pins 26 and 28 for phase compensation. Since the TC7129 uses internal phase compensation, these parts are not required and, in fact, must be removed from the circuit for stable operation.

4.2 Powering the TC7129

While the most common power source for the TC7129 is a 9V battery, there are other possibilities. Some of the more common ones are explained below.

4.2.1 ±5V Power Supply

Measurements are made with respect to power supply ground. DGND (pin 36) is set internally to about 5V less than V+ (pin 24); it is not intended to be a power supply input and must not be tied directly to power supply ground. It can be used as a reference for external logic, as explained in Section 4.3 “Connecting to External Logic”, (see Figure 4-1).

Figure 4-1: Powering the TC7129 From a ±5V Power Supply.

4.2.2 Low Voltage Battery Source

A battery with voltage between 3.8V and 6V can be used to power the TC7129 when used with a voltage doubler circuit, as shown in Figure 4-2. The voltage doubler uses the TC7660 DC-to-DC voltage converter and two external capacitors.

Figure 4-2: Powering the TC7129 From a Low-Voltage Battery.
4.2.3 +5V Power Supply

Measurements are made with respect to power supply ground. COMMON (pin 28) is connected to REF LO (pin 35). A voltage doubler is needed, since the supply voltage is less than the 6V minimum needed by the TC7129. DGND (pin 36) must be isolated from power supply ground (see Figure 4-3).

Figure 4-3: Powering the TC7129 From a +5V Power Supply.

4.3 Connecting to External Logic

External logic can be directly referenced to DGND (pin 36), provided that the supply current of the external logic does not exceed the sink current of DGND (Figure 4-4). A safe value for DGND sink current is 1.2 mA. If the sink current is expected to exceed this value, a buffer is recommended (see Figure 4-5).

Figure 4-4: External Logic Referenced Directly to DGND.

Figure 4-5: External Logic Referenced to DGND with Buffer.

4.4 Temperature Compensation

For most applications, V\textsubscript{DISP} (pin 19) can be connected directly to DGND (pin 36). For applications with a wide temperature range, some LCDs require that the drive levels vary with temperature to maintain good viewing angle and display contrast. Figure 4-6 shows two circuits that can be adjusted to give temperature compensation of about 10 mV/°C between V+ (pin 24) and V\textsubscript{DISP}. The diode between DGND and V\textsubscript{DISP} should have a low turn-on voltage because V\textsubscript{DISP} cannot exceed 0.3V below DGND.
4.5 RC Oscillator

For applications in which 3-1/2 digit (100 μV) resolution is sufficient, an RC oscillator is adequate. A recommended value for the capacitor is 51 pF. Other values can be used as long as they are sufficiently larger than the circuit parasitic capacitance. The resistor value is calculated as:

EQUATION 4-1:

\[
R = \frac{0.45}{\text{Freq} \times C}
\]

For 120 kHz frequency and \(C = 51 \) pF, the calculated value of \(R \) is 75 kΩ. The RC oscillator and the crystal oscillator circuits are shown in Figure 4-7.

4.6 Measuring Techniques

Two important techniques are used in the TC7129: successive integration and digital auto-zeroing. Successive integration is a refinement to the traditional dual-slope conversion technique.

4.7 Dual-Slope Conversion

A dual-slope conversion has two basic phases: integrate and de-integrate. During the integrate phase, the input signal is integrated for a fixed period of time; the integrated voltage level is thus proportional to the input voltage. During the de-integrate phase, the integrated voltage is ramped down at a fixed slope, and a counter counts the clock cycles until the integrator voltage crosses zero. The count is a measurement of the time to ramp the integrated voltage to zero and is, therefore, proportional to the input voltage being measured. This count can then be scaled and displayed as a measurement of the input voltage. Figure 4-8 shows the phases of the dual-slope conversion.

The dual-slope method has a fundamental limitation. The count can only stop on a clock cycle, so that measurement accuracy is limited to the clock frequency. In addition, a delay in the zero-crossing comparator can add to the inaccuracy. Figure 4-9 shows these errors in an actual measurement.
Figure 4-9: Accuracy Errors in Dual-Slope Conversion.

Figure 4-10: Integration Waveform.

Note: Shaded area greatly expanded in time and amplitude.
4.8 Successive Integration

The successive integration technique picks up where dual-slope conversion ends. The overshoot voltage shown in Figure 4-9 (called the “integrator residue voltage”) is measured to obtain a correction to the initial count. Figure 4-10 shows the cycles in a successive integration measurement.

The waveform shown is for a negative input signal. The sequence of events during the measurement cycle is shown in Table 4-1.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT<sub>1</sub></td>
<td>Input signal is integrated for fixed time (1000 clock cycles on 2V scale, 10,000 on 200 mV).</td>
</tr>
<tr>
<td>DE<sub>1</sub></td>
<td>Integrator voltage is ramped to zero. Counter counts up until zero-crossing to produce reading accurate to 3-1/2 digits. Residue represents an overshoot of the actual input voltage.</td>
</tr>
<tr>
<td>REST</td>
<td>Rest; circuit settles.</td>
</tr>
<tr>
<td>X10</td>
<td>Residue voltage is amplified 10 times and inverted.</td>
</tr>
<tr>
<td>DE<sub>2</sub></td>
<td>Integrator voltage is ramped to zero. Counter counts down until zero-crossing to correct reading to 4-1/2 digits. Residue represents an undershoot of the actual input voltage.</td>
</tr>
<tr>
<td>REST</td>
<td>Rest; circuit settles.</td>
</tr>
<tr>
<td>X10</td>
<td>Residue voltage is amplified 10 times and inverted.</td>
</tr>
<tr>
<td>DE<sub>3</sub></td>
<td>Integrator voltage is ramped to zero. Counter counts up until zero-crossing to correct reading to 5-1/2 digits. Residue is discarded.</td>
</tr>
</tbody>
</table>

4.9 Digital Auto-Zeroing

To eliminate the effect of amplifier offset errors, the TC7129 uses a digital auto-zeroing technique. After the input voltage is measured as described above, the measurement is repeated with the inputs shorted internally. The reading with inputs shorted is a measurement of the internal errors and is subtracted from the previous reading to obtain a corrected measurement. Digital auto-zeroing eliminates the need for an external auto-zeroing capacitor used in other ADCs.

4.10 Inside the TC7129

Figure 4-11 shows a simplified block diagram of the TC7129.
Figure 4-11: TC7129 Functional Block Diagram.

Figure 4-12: Integrator Block Diagram.
4.11 Integrator Section

The integrator section includes the integrator, comparator, input buffer amplifier and analog switches (see Table 4-2) used to change the circuit configuration during the separate measurement phases described earlier. (See Figure 4-12).

TABLE 4-2: SWITCH LEGENDS

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Open during all de-integrate phases.</td>
</tr>
<tr>
<td>DE–</td>
<td>Closed during all de-integrate phases when input voltage is negative.</td>
</tr>
<tr>
<td>DE+</td>
<td>Closed during all de-integrate phases when input voltage is positive.</td>
</tr>
<tr>
<td>INT₁</td>
<td>Closed during the first integrate phase (measurement of the input voltage).</td>
</tr>
<tr>
<td>INT₂</td>
<td>Closed during the second integrate phase (measurement of the amplifier offset).</td>
</tr>
<tr>
<td>INT</td>
<td>Open during both integrate phases.</td>
</tr>
<tr>
<td>REST</td>
<td>Closed during the rest phase.</td>
</tr>
<tr>
<td>ZI</td>
<td>Closed during the zero integrate phase.</td>
</tr>
<tr>
<td>X10</td>
<td>Closed during the X10 phase.</td>
</tr>
<tr>
<td>X10</td>
<td>Open during the X10 phase.</td>
</tr>
</tbody>
</table>

The buffer amplifier has a common mode input voltage range from 1.5V above V– to 1V below V+. The integrator amplifier can swing to within 0.3V of the rails. However, for best linearity, the swing is usually limited to within 1V. Both amplifiers can supply up to 80 μA of output current, but should be limited to 20 μA for good linearity.

4.12 Continuity Indicator

A comparator with a 200 mV threshold is connected between IN HI (pin 33) and IN LO (pin 32). Whenever the voltage between inputs is less than 200 mV, the CONTINUITY output (pin 27) will be pulled high, activating the continuity annunciator on the display. The continuity pin can also be used as an input to drive the continuity annunciator directly from an external source (see Figure 4-13).

A schematic of the input/output nature of this pin is also shown in Figure 4-14.

4.13 Common and Digital Ground

The common and digital ground (DGND) outputs are generated from internal Zener diodes. The voltage between V+ and DGND is the internal supply voltage for the digital section of the TC7129. Common can source approximately 12 μA; DGND has essentially no source capability (see Figure 4-15).
4.14 Low Battery

The low battery annunciator turns on when supply voltage between V– and V+ drops below 6.8V. The internal zener diode has a threshold of 6.3V. When the supply voltage drops below 6.8V, the transistor tied to V– turns off pulling the "Low Battery" point high.

4.15 Sequence and Results Counter

A sequence counter and associated control logic provide signals that operate the analog switches in the integrator section. The comparator output from the integrator section gates the results counter. The results counter is a six-section up/down decade counter that holds the intermediate results from each successive integration.

4.16 Overrange and Underrange Outputs

When the results counter holds a value greater than ±19,999, the DP₄/OR output (Pin 20) is driven high. When the results counter value is less than ±1000, the DP₃/UR output (Pin 21) is driven high. Both signals are valid on the falling edge of LATCH/HOLD (L/H) and do not change until the end of the next conversion cycle. The signals are updated at the end of each conversion, unless the L/H input (Pin 22) is held high. Pins 20 and 21 can also be used as inputs for external control of decimal points 3 and 4. Figure 4-14 shows a schematic of the input/output nature of these pins.

4.17 LATCH/Hold

The L/H output goes low during the last 100 cycles of each conversion. This pulse latches the conversion data into the display driver section of the TC7129. This pin can also be used as an input. When driven high, the display will not be updated; the previous reading is displayed. When driven low, the display reading is not latched; the sequence counter reading will be displayed. Since the counter is counting much faster than the backplanes are being updated, the reading shown in this mode is somewhat erratic.

4.18 Display Driver

The TC7129 drives a triplexed LCD with three backplanes. The LCD can include decimal points, polarity sign and annunciators for continuity and low battery. Figure 4-16 shows the assignment of the display segments to the backplanes and segment drive lines. The backplane drive frequency is obtained by dividing the oscillator frequency by 1200. This results in a backplane drive frequency of 100 Hz for 60 Hz operation (120 kHz crystal) and 83.3 Hz for 50 Hz operation (100 kHz crystal).

Backplane waveforms are shown in Figure 4-17. These appear on outputs BP₁, BP₂, BP₃ (pins 16, 17 and 18). They remain the same, regardless of the segments being driven.

Other display output lines (pins 4 through 15) have waveforms that vary depending on the displayed values. Figure 4-18 shows a set of waveforms for the A, G, D outputs (pins 5, 8, 11 and 14) for several combinations of "ON" segments.

The ANNUNCIATOR DRIVE output (pin 3) is a square wave, running at the backplane frequency (100 Hz or 83.3 Hz) with a peak-to-peak voltage equal to DGND voltage. Connecting an annunciator to pin 3 turns it on; connecting it to its backplane turns it off.
Figure 4-16: Display Segment Assignments.

Figure 4-17: Backplane Waveforms.

Figure 4-18: Typical Display Output Waveforms.
5.0 PACKAGING INFORMATION

5.1 Package Marking Information
Package marking data not available at this time.

5.2 Taping Forms

Component Taping Orientation for 44-Pin PQFP Devices

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>44-Pin PQFP</td>
<td>24 mm</td>
<td>16 mm</td>
<td>500</td>
<td>13 in</td>
</tr>
</tbody>
</table>

Note: Drawing does not represent total number of pins.
TC7129

40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)

Notes:
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Schematic
![Schematic](image)

Table: Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>40</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.010</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>.150</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.140</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.595</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.530</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>2.045</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.120</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>.030</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>.620</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>b</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
- JEDEC Equivalent: MO-011
- Drawing No. C04-016

© 2002-2012 Microchip Technology Inc. DS21459E-page 19
TC7129

44-Lead Plastic Leaded Chip Carrier (LW) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>MIN</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>0.050</td>
</tr>
<tr>
<td>Pins per Side</td>
<td>n1</td>
<td>11</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.165</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.145</td>
</tr>
<tr>
<td>Standoff</td>
<td>§</td>
<td>A1</td>
</tr>
<tr>
<td>Side 1 Chamfer Height</td>
<td>A3</td>
<td>0.024</td>
</tr>
<tr>
<td>Corner Chamfer 1</td>
<td>CH1</td>
<td>0.040</td>
</tr>
<tr>
<td>Corner Chamfer (others)</td>
<td>CH2</td>
<td>0.000</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>0.685</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>0.685</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>0.650</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D1</td>
<td>0.650</td>
</tr>
<tr>
<td>Footprint Width</td>
<td>E2</td>
<td>0.590</td>
</tr>
<tr>
<td>Footprint Length</td>
<td>D2</td>
<td>0.590</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>0.026</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>0.013</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

*Controlling Parameter

§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
- JEDEC Equivalent: MO-047
- Drawing No. C04-048
TC7129

44-Lead Plastic Quad Flatpack (KW) 10x10x2.0 mm Body, 1.95/0.25 mm Lead Form (PQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>44</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.031 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.077</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.010</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.029</td>
</tr>
<tr>
<td>Footprint</td>
<td>F</td>
<td>.077 REF</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0°</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.547 BSC</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.547 BSC</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.394 BSC</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D1</td>
<td>.394 BSC</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.004</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.012</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5°</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5°</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M

REF: Reference Dimension, usually without tolerance, for information purposes only.

See ASME Y14.5M

JEDEC Equivalent: MO-112 AA-1

Drawing No. C04-119

Revised 07-21-05
6.0 REVISION HISTORY

Revision E (December 2012)
Added a note to each package outline drawing.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Temp.</th>
<th>Pkg</th>
<th>Taping Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DSTEMP: 4-1/2 Digit Analog-to-Digital Converter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature:
- C = 0°C to +70°C
- I = -25°C to +85°C

Package:
- PL = 40-Pin PDIP
- KW = 40-Pin PQFP
- LW = 44-Pin PLCC
- JL = 40-Pin CDIP

Taping Direction:
- 713 = Standard Taping

Examples:
- a) TC7129CPL: 40-Pin PDIP
- b) DSTEMPCKW713: 44-Pin PQFP
- c) DSTEMPCLW: 44-Pin PLCC
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:
- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: Technical Publications Manager Total Pages Sent ________

RE: Reader Response

From: Name __

Company ___

Address ___

City / State / ZIP / Country ___________________________________

Telephone: (_____) _______ - _______ FAX: (_____) _______ - _______

Application (optional):

Would you like a reply? __ Y ___ N

Device: Literature Number: DS21459E

Questions:

1. What are the best features of this document?

__

2. How does this document meet your hardware and software development needs?

__

3. Do you find the organization of this document easy to follow? If not, why?

__

4. What additions to the document do you think would enhance the structure and subject?

__

5. What deletions from the document could be made without affecting the overall usefulness?

__

6. Is there any incorrect or misleading information (what and where)?

__

7. How would you improve this document?

__
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC18 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rFLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
ISBN: 9781620768389

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==
World Wide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support: http://www.microchip.com/support

Web Address: www.microchip.com

<table>
<thead>
<tr>
<th>City</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>Duluth, GA</td>
<td>678-957-9614</td>
<td>678-957-1455</td>
</tr>
<tr>
<td>Boston</td>
<td>Westborough, MA</td>
<td>774-760-0087</td>
<td>774-760-0088</td>
</tr>
<tr>
<td>Chicago</td>
<td>Itasca, IL</td>
<td>630-285-0071</td>
<td>630-285-0075</td>
</tr>
<tr>
<td>Cleveland</td>
<td>Independence OH</td>
<td>216-447-0464</td>
<td>216-447-0643</td>
</tr>
<tr>
<td>Dallas</td>
<td>Addison, TX</td>
<td>972-818-7423</td>
<td>972-818-2924</td>
</tr>
<tr>
<td>Detroit</td>
<td>Farmington Hills, MI</td>
<td>248-538-2250</td>
<td>248-538-2280</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>Noblesville, IN</td>
<td>317-773-8323</td>
<td>317-773-5453</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>Mission Viejo, CA</td>
<td>949-462-9523</td>
<td>949-462-9608</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>Santa Clara, CA</td>
<td>408-961-6444</td>
<td>408-961-6445</td>
</tr>
<tr>
<td>Toronto</td>
<td>Mississauga, Ontario, Canada</td>
<td>905-673-0699</td>
<td>905-673-6509</td>
</tr>
</tbody>
</table>

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-9890-9588

Fax: 86-23-9890-9500

China - Hangzhou

Tel: 86-571-2819-3187

Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200

Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138

Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040

Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444

Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512

Fax: 91-20-2566-1513

Japan - Osaka

Tel: 81-6-6152-7160

Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880-3770

Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200

Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366

Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2508-8600

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

UK - Wokingham

Tel: 44-118-921-5869

Fax: 44-118-921-5820

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

UK - Wokingham

Tel: 44-118-921-5869

Fax: 44-118-921-5820

Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

11/29/12