Features

- High Peak Output Current: 1.2 A
- Wide Operating Range:
 - 4.5 V to 18 V
- Symmetrical Rise/Fall Times: 25 nsec
- Short, Equal Delay Times: 75 nsec
- Latch-proof. Will Withstand 500 mA Inductive Kickback
- 3 Input Logic Choices:
 - AND / NAND / AND + Inv
- ESD Protection on All Pins: 2 kV

Applications

- General Purpose CMOS Logic Buffer
- Driving All Four MOSFETs in an H-Bridge
- Direct Small Motor Driver
- Relay or Peripheral Drivers
- CCD Driver
- Pin-Switching Network Driver

General Description

The TC4467/TC4468/TC4469 devices are a family of four-output CMOS buffers/MOSFET drivers with 1.2 A peak drive capability. Unlike other MOSFET drivers, these devices have two inputs for each output. The inputs are configured as logic gates: NAND (TC4467), AND (TC4468) and AND/INV (TC4469).

The TC4467/TC4468/TC4469 drivers can continuously source up to 250 mA into ground referenced loads. These devices are ideal for direct driving low current motors or driving MOSFETs in a H-bridge configuration for higher current motor drive (see Section 5.0 for details). Having the logic gates onboard the driver can help to reduce component count in many designs.

The TC4467/TC4468/TC4469 devices are very robust and highly latch-up resistant. They can tolerate up to 5 V of noise spiking on the ground line and can handle up to 0.5 A of reverse current on the driver outputs.

The TC4467/TC4468/TC4469 devices are available in commercial, industrial and military temperature ranges.
Logic Diagrams

TC4467

TC4468

TC4469

TC446X

VDD

14

1A

1B

2A

2B

3A

3B

4A

4B

13

1Y

12

2Y

11

3Y

10

4Y

GND

VDD

14

1A

1B

2A

2B

3A

3B

4A

4B

13

1Y

12

2Y

11

3Y

10

4Y

GND

VDD

14

1A

1B

2A

2B

3A

3B

4A

4B

13

1Y

12

2Y

11

3Y

10

4Y

GND

VDD

14

1A

1B

2A

2B

3A

3B

4A

4B

13

1Y

12

2Y

11

3Y

10

4Y

GND

Output
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage ...+20 V
Input Voltage ..(GND – 5 V) to (V DD + 0.3 V)
Package Power Dissipation: (TA ≤ 70°C)
 PDIP ...800 mW
 CERDIP ...840 mW
 SOIC ..760 mW
Package Thermal Resistance:
 CERDIP RθJ-A ...100°C/W
 CERDIP RθJ-C ...23°C/W
 PDIP RθJ-A ..80°C/W
 PDIP RθJ-C ...35°C/W
 SOIC RθJ-A ..95°C/W
 SOIC RθJ-C ..28°C/W
Operating Temperature Range:
 C Version ...0°C to +70°C
 E Version...-40°C to +85°C
 M Version ..-55°C to +125°C
Maximum Chip Temperature....................................... +150°C
Storage Temperature Range.........................-65°C to +150°C

†Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, TA = +25°C, with 4.5 V ≤ V DD ≤ 18 V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic 1, High Input Voltage</td>
<td>V IH</td>
<td>2.4</td>
<td>—</td>
<td>V DD</td>
<td>V</td>
<td>Note 3</td>
</tr>
<tr>
<td>Logic 0, Low Input Voltage</td>
<td>V IL</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td>Note 3</td>
</tr>
<tr>
<td>Input Current</td>
<td>I IN</td>
<td>-1.0</td>
<td>—</td>
<td>+1.0</td>
<td>µA</td>
<td>0 V ≤ VIN ≤ V DD</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>V OH</td>
<td>V DD – 0.025</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>I LOAD = 100 µA (Note 1)</td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>V OL</td>
<td>—</td>
<td>—</td>
<td>0.15</td>
<td>V</td>
<td>I LOAD = 10 mA (Note 1)</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>R O</td>
<td>—</td>
<td>10</td>
<td>15</td>
<td>Ω</td>
<td>I OUT = 10 mA, V DD = 18 V</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>I PK</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Continuous Output Current</td>
<td>I DC</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>mA</td>
<td>Single Package</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>I</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>mA</td>
<td>4.5 V ≤ V DD ≤ 16 V</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>I R</td>
<td>—</td>
<td>15</td>
<td>25</td>
<td>nsec</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Fall Time</td>
<td>I F</td>
<td>—</td>
<td>15</td>
<td>25</td>
<td>nsec</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>I D1</td>
<td>—</td>
<td>40</td>
<td>75</td>
<td>nsec</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>I D2</td>
<td>—</td>
<td>40</td>
<td>75</td>
<td>nsec</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>I S</td>
<td>—</td>
<td>1.5</td>
<td>4</td>
<td>mA</td>
<td>Note 2</td>
</tr>
<tr>
<td>Power Supply Voltage</td>
<td>V DD</td>
<td>4.5</td>
<td>—</td>
<td>18</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Totem pole outputs should not be paralleled because the propagation delay differences from one to the other could cause one driver to drive high a few nanoseconds before another. The resulting current spike, although short, may decrease the life of the device. Switching times are ensured by design.

2: When driving all four outputs simultaneously in the same direction, V DD will be limited to 16 V. This reduces the chance that internal dv/dt will cause high-power dissipation in the device.

3: The input threshold has approximately 50 mV of hysteresis centered at approximately 1.5 V. Input rise times should be kept below 5 µsec to avoid high internal peak currents during input transitions. Static input levels should also be maintained above the maximum, or below the minimum, input levels specified in the “Electrical Characteristics” to avoid increased power dissipation in the device.
ELECTRICAL SPECIFICATIONS (OPERATING TEMPERATURES)

Electrical Characteristics: Unless otherwise noted, over operating temperature range with $4.5\,V \leq V_{DD} \leq 18\,V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic 1, High Input Voltage</td>
<td>V_{IH}</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
<td>Note 3</td>
</tr>
<tr>
<td>Logic 0, Low Input Voltage</td>
<td>V_{IL}</td>
<td>—</td>
<td></td>
<td>0.8</td>
<td>V</td>
<td>Note 3</td>
</tr>
<tr>
<td>Input Current</td>
<td>I_{IN}</td>
<td>-10</td>
<td></td>
<td>10</td>
<td>μA</td>
<td>$0,V \leq I_{IN} \leq V_{DD}$</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>V_{OH}</td>
<td>$V_{DD} - 0.025$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_{LOAD} = 100,\mu$A (Note 1)</td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>V_{OL}</td>
<td>—</td>
<td></td>
<td>0.30</td>
<td>V</td>
<td>$I_{LOAD} = 10,mA$ (Note 1)</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>R_{O}</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td>Ω</td>
<td>$I_{OUT} = 10,mA, V_{DD} = 18,V$</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>I_{PK}</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Continuous Output Current</td>
<td>I_{DC}</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>mA</td>
<td>Single Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Package</td>
</tr>
<tr>
<td>Latch-Up Protection Withstand</td>
<td>I</td>
<td>—</td>
<td>50</td>
<td>500</td>
<td>mA</td>
<td>$4.5,V \leq V_{DD} \leq 16,V$</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{R}</td>
<td>—</td>
<td>15</td>
<td>50</td>
<td>$nsec$</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_{F}</td>
<td>—</td>
<td>15</td>
<td>50</td>
<td>$nsec$</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_{D1}</td>
<td>—</td>
<td>40</td>
<td>100</td>
<td>$nsec$</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>t_{D2}</td>
<td>—</td>
<td>40</td>
<td>100</td>
<td>$nsec$</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>I_{S}</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>mA</td>
<td>Note 2</td>
</tr>
<tr>
<td>Power Supply Voltage</td>
<td>V_{DD}</td>
<td>4.5</td>
<td></td>
<td>18</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note
1: Totem pole outputs should not be paralleled because the propagation delay differences from one to the other could cause one driver to drive high a few nanoseconds before another. The resulting current spike, although short, may decrease the life of the device. Switching times are ensured by design.

2: When driving all four outputs simultaneously in the same direction, V_{DD} will be limited to 16 V. This reduces the chance that internal dv/dt will cause high-power dissipation in the device.

3: The input threshold has approximately 50 mV of hysteresis centered at approximately 1.5 V. Input rise times should be kept below 5 μsec to avoid high internal peak currents during input transitions. Static input levels should also be maintained above the maximum, or below the minimum, input levels specified in the “Electrical Characteristics” to avoid increased power dissipation in the device.

TRUTH TABLE

<table>
<thead>
<tr>
<th>Part No.</th>
<th>TC4467 NAND</th>
<th>TC4468 AND</th>
<th>TC4469 AND/INV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs A</td>
<td>H</td>
<td>H H L L</td>
<td>H H L L</td>
</tr>
<tr>
<td>Inputs B</td>
<td>H L H L</td>
<td>H L H L</td>
<td>H L H L</td>
</tr>
<tr>
<td>Outputs TC446X</td>
<td>L H H H</td>
<td>H L L L</td>
<td>L H L L</td>
</tr>
</tbody>
</table>

Legend: H = High L = Low
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: $T_A = +25^\circ\text{C}$, with $4.5 \, \text{V} \leq V_{DD} \leq 18 \, \text{V}$.

FIGURE 2-1: Rise Time vs. Supply Voltage.

FIGURE 2-2: Rise Time vs. Capacitive Load.

FIGURE 2-3: Rise/Fall Times vs. Temperature.

FIGURE 2-4: Fall Time vs. Supply Voltage.

FIGURE 2-5: Fall Time vs. Capacitive Load.

FIGURE 2-6: Propagation Delay Time vs. Supply Voltage.
2.0 TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: $T_A = +25^\circ C$, with $4.5 \leq V_{DD} \leq 18 \text{ V}$.

FIGURE 2-7: Input Amplitude vs. Delay Times.

FIGURE 2-8: Quiescent Supply Current vs. Supply Voltage.

FIGURE 2-9: High-State Output Resistance.

FIGURE 2-10: Propagation Delay Times vs. Temperatures.

FIGURE 2-11: Quiescent Supply Current vs. Temperature.

FIGURE 2-12: Low-State Output Resistance.
2.0 TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: (Load on single output only).

FIGURE 2-13: Supply Current vs. Capacitive Load.

FIGURE 2-14: Supply Current vs. Capacitive Load.

FIGURE 2-15: Supply Current vs. Capacitive Load.

FIGURE 2-16: Supply Current vs. Frequency.

FIGURE 2-17: Supply Current vs. Frequency.

FIGURE 2-18: Supply Current vs. Frequency.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>14-Pin PDIP, CERDIP</th>
<th>16-Pin SOIC (Wide)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>1A</td>
<td>Input A for Driver 1, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>1B</td>
<td>1B</td>
<td>Input B for Driver 1, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>2A</td>
<td>2A</td>
<td>Input A for Driver 2, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>2B</td>
<td>2B</td>
<td>Input B for Driver 2, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>3A</td>
<td>3A</td>
<td>Input A for Driver 3, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>3B</td>
<td>3B</td>
<td>Input B for Driver 3, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4A</td>
<td>4A</td>
<td>Input A for Driver 4, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>4B</td>
<td>4B</td>
<td>Input B for Driver 4, TTL/CMOS Compatible Input</td>
</tr>
<tr>
<td>4Y</td>
<td>4Y</td>
<td>Output for Driver 4, CMOS Push-Pull Output</td>
</tr>
<tr>
<td>3Y</td>
<td>3Y</td>
<td>Output for Driver 3, CMOS Push-Pull Output</td>
</tr>
<tr>
<td>2Y</td>
<td>2Y</td>
<td>Output for Driver 2, CMOS Push-Pull Output</td>
</tr>
<tr>
<td>1Y</td>
<td>1Y</td>
<td>Output for Driver 1, CMOS Push-Pull Output</td>
</tr>
<tr>
<td>VDD</td>
<td>VDD</td>
<td>Supply Input, 4.5 V to 18 V</td>
</tr>
<tr>
<td>—</td>
<td>VDD</td>
<td>Supply Input, 4.5 V to 18 V</td>
</tr>
</tbody>
</table>
4.0 DETAILED DESCRIPTION

4.1 Supply Bypassing

Large currents are required to charge and discharge large capacitive loads quickly. For example, charging a 1000 pF load to 18 V in 25 nsec requires 0.72 A from the device’s power supply.

To ensure low supply impedance over a wide frequency range, a 1 µF film capacitor in parallel with one or two low-inductance, 0.1 µF ceramic disk capacitors with short lead lengths (<0.5 in.) normally provide adequate bypassing.

4.2 Grounding

The TC4467 and TC4469 contain inverting drivers. Potential drops developed in common ground impedances from input to output will appear as negative feedback and degrade switching speed characteristics. Instead, individual ground returns for input and output circuits, or a ground plane, should be used.

4.3 Input Stage

The input voltage level changes the no-load or quiescent supply current. The N-channel MOSFET input stage transistor drives a 2.5 mA current source load. With logic "0" outputs, maximum quiescent supply current is 4 mA. Logic "1" output level signals reduce quiescent current to 1.4 mA, maximum. Unused driver inputs must be connected to VDD or VSS. Minimum power dissipation occurs for logic "1" outputs.

The drivers are designed with 50 mV of hysteresis, which provides clean transitions and minimizes output stage current spiking when changing states. Input voltage thresholds are approximately 1.5 V, making any voltage greater than 1.5 V, up to VDD, a logic "1" input. Input current is less than 1 µA over this range.

4.4 Power Dissipation

The supply current versus frequency and supply current versus capacitive load characteristic curves will aid in determining power dissipation calculations. Microchip Technology’s CMOS drivers have greatly reduced quiescent DC power consumption.

Input signal duty cycle, power supply voltage and load type influence package power dissipation. Given power dissipation and package thermal resistance, the maximum ambient operating temperature is easily calculated. The 14-pin plastic package junction-to-ambient thermal resistance is 83.3°C/W. At +70°C, the package is rated at 800 mW maximum dissipation. Maximum allowable chip temperature is +150°C.

Three components make up total package power dissipation:
1. Load-caused dissipation (PL).
2. Quiescent power (PQ).
3. Transition power (PT).

A capacitive-load-caused dissipation (driving MOSFET gates), is a direct function of frequency, capacitive load and supply voltage. The power dissipation is:

\[P_L = fCV_S^2 \]

\(f = \text{Switching Frequency} \)
\(C = \text{Capacitive Load} \)
\(V_S = \text{Supply Voltage} \)

A resistive-load-caused dissipation for ground-referenced loads is a function of duty cycle, load current and load voltage. The power dissipation is:

\[P_L = D(V_S - V_L)I_L \]

\(D = \text{Duty Cycle} \)
\(V_S = \text{Supply Voltage} \)
\(V_L = \text{Load Voltage} \)
\(I_L = \text{Load Current} \)
A resistive-load-caused dissipation for supply-referenced loads is a function of duty cycle, load current and output voltage. The power dissipation is

\[P_L = DV_O I_L \]

\[D = \text{Duty Cycle} \]
\[V_O = \text{Device Output Voltage} \]
\[I_L = \text{Load Current} \]

Quiescent power dissipation depends on input signal duty cycle. Logic HIGH outputs result in a lower power dissipation mode, with only 0.6 mA total current drain (all devices driven). Logic LOW outputs raise the current to 4 mA maximum. The quiescent power dissipation is:

\[P_Q = V_S(D I_H) + (1 - D) I_L \]

\[I_H = \text{Quiescent Current with all outputs LOW (4 mA max.)} \]
\[I_L = \text{Quiescent Current with all outputs HIGH (0.6 mA max.)} \]
\[D = \text{Duty Cycle} \]
\[V_S = \text{Supply Voltage} \]

Transition power dissipation arises in the complimentary configuration (TC446X) because the output stage N-channel and P-channel MOS transistors are ON simultaneously for a very short period when the output changes. The transition power dissipation is approximately:

\[P_T = f V_S \left(10 \times 10^{-9}\right) \]

\[C = 1000 \text{ pF Capacitive Load} \]
\[V_S = 15 \text{ V} \]
\[D = 50\% \]
\[f = 200 \text{ kHz} \]
\[P_D = \text{Package Power Dissipation} \]
\[= P_L + P_Q + P_T \]
\[= 45 \text{mW} + 35 \text{mW} + 30 \text{mW} \]
\[= 110 \text{mW} \]

Package power dissipation is the sum of load, quiescent and transition power dissipations. An example shows the relative magnitude for each term:

Maximum operating temperature is:

\[T_J - \theta_JA(P_D) = 141^\circ C \]

\[T_J = \text{Maximum allowable junction temperature (+150^\circ C)} \]
\[\theta_JA = \text{Junction-to-ambient thermal resistance (83.3^\circ C/W) 14-pin plastic package} \]

Note: Ambient operating temperature should not exceed +85°C for "EJD" device or +125°C for "MJD" device.

FIGURE 4-1: Switching Time Test Circuit.
5.0 APPLICATIONS INFORMATION

FIGURE 5-1: Stepper Motor Drive.

FIGURE 5-2: Quad Driver For H-bridge Motor Control.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX...X</td>
<td>Customer specific information*</td>
</tr>
<tr>
<td>YY</td>
<td>Year code (last 2 digits of calendar year)</td>
</tr>
<tr>
<td>WW</td>
<td>Week code (week of January 1 is week '01')</td>
</tr>
<tr>
<td>NNN</td>
<td>Alphanumeric traceability code</td>
</tr>
</tbody>
</table>

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code.
TC4467/TC4468/TC4469

14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>MIN 14</td>
<td>MAX 14</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.100</td>
<td>2.54</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>.140</td>
<td>.170</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
<td>.145</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
<td>0.38</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.300</td>
<td>.325</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
<td>.260</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.740</td>
<td>.760</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.125</td>
<td>.135</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
<td>.015</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>.045</td>
<td>.070</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>.014</td>
<td>.022</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>§ eB</td>
<td>.310</td>
<td>.430</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
- JEDEC Equivalent: MS-001
- Drawing No. C04-005
14-Lead Ceramic Dual In-line – 300 mil (CERDIP)

14-Pin CERDIP (Narrow)

Dimensions: inches (mm)
TC4467/TC4468/TC4469

16-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>MIN</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.093</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.086</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.004</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.394</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.291</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.398</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.010</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>h</td>
<td>.016</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>.009</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.014</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter

§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
JEDEC Equivalent: MS-013
Drawing No. C04-102
ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to Microchip Products
• Conferences for products, Development Systems, technical information and more
• Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and
1-480-792-7302 for the rest of the world.
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To: Technical Publications Manager Total Pages Sent
RE: Reader Response

From: Name ____________________________
 Company ____________________________
 Address ____________________________
 City / State / ZIP / Country __________
 Telephone: (_____) ________ - ________
 FAX: (_____) ________ - ________

Application (optional):

Would you like a reply? Y N

Device: TC4467/TC4468/TC4469 Literature Number: DS21425B

Questions:

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this data sheet easy to follow? If not, why?

4. What additions to the data sheet do you think would enhance the structure and subject?

5. What deletions from the data sheet could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?

8. How would you improve our software, systems, and silicon products?
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device:
TC4467: 1.2A Quad MOSFET Driver, NAND
TC4468: 1.2A Quad MOSFET Driver, AND
TC4469: 1.2A Quad MOSFET Driver, AND/INV

Temperature Range:
C = 0°C to +70°C
E = -40°C to +85°C (CERDIP only)
M = -55°C to +125°C (CERDIP only)

Package:
PD = Plastic DIP, (300 mil body), 14-lead
JD = Ceramic DIP, (300 mil body), 14-lead
OE = SOIC (Wide), 16-lead
OE713 = SOIC (Wide), 16-lead (Tape and Reel)

Examples:
a) TC4467COE: Commercial Temperature, SOIC package.
b) TC4467CPD: Commercial Temperature, PDIP package.
c) TC4467MJD: Military Temperature, Ceramic DIP package.
a) TC4468COE713: Tape and Reel, Commercial Temp., SOIC package.
b) TC4468CPD: Commercial Temperature, PDIP package.
a) TC4469COE: Commercial Temperature, SOIC package.
b) TC4469CPD: Commercial Temperature, PDIP package.

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, MXDEV, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 1-4 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-87676200 Fax: 86-28-87676599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

Europe
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Ladstrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activitée du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44 118 921-5820

Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

05/16/02