6A High-Speed MOSFET Drivers

Features
- Latch-Up Protected: Will Withstand >1.5A Reverse Output Current
- Logic Input Will Withstand Negative Swing Up To 5V
- ESD Protected: 4 kV
- Matched Rise and Fall Times:
 - 25 ns (2500 pF load)
- High Peak Output Current: 6A
- Wide Input Supply Voltage Operating Range:
 - 4.5V to 18V
- High Capacitive Load Drive Capability: 10,000 pF
- Short Delay Time: 55 ns (typ.)
- CMOS/TTL Compatible Input
- Low Supply Current With Logic ‘1’ Input:
 - 450 µA (typ.)
- Low Output Impedance: 2.5Ω
- Output Voltage Swing to Within 25 mV of Ground or VDD
- Space-Saving 8-Pin SOIC and 8-Pin 6x5 DFN Packages

Applications
- Switch-Mode Power Supplies
- Motor Controls
- Pulse Transformer Driver
- Class D Switching Amplifiers

General Description

The TC4420/TC4429 are 6A (peak), single-output MOSFET drivers. The TC4429 is an inverting driver (pin-compatible with the TC429), while the TC4420 is a non-inverting driver. These drivers are fabricated in CMOS for lower power and more efficient operation versus bipolar drivers.

Both devices have TTL/CMOS compatible inputs that can be driven as high as VDD + 0.3V or as low as –5V without upset or damage to the device. This eliminates the need for external level-shifting circuitry and its associated cost and size. The output swing is rail-to-rail, ensuring better drive voltage margin, especially during power-up/power-down sequencing. Propagational delay time is only 55 ns (typ.) and the output rise and fall times are only 25 ns (typ.) into 2500 pF across the usable power supply range.

Unlike other drivers, the TC4420/TC4429 are virtually latch-up proof. They replace three or more discrete components, saving PCB area, parts and improving overall system reliability.

Package Types

<table>
<thead>
<tr>
<th>8-Pin CERDIP/PDIP/SOIC</th>
<th>TC4420</th>
<th>TC4429</th>
<th>8-Pin DFN</th>
<th>TC4420</th>
<th>TC4429</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>INPUT</td>
<td>NC</td>
<td>GND</td>
<td>TC4420</td>
<td>TC4429</td>
</tr>
</tbody>
</table>

Note
1. Duplicate pins must both be connected for proper operation.
2. Exposed pad of the DFN package is electrically isolated.
Functional Block Diagram

TC4420/TC4429

TC4429 Inverting

500 µA

300 mV

Input

4.7V

GND

Effective Input
C = 38 pF

Non-Inverting

Output

VDD
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage ... +20V
Input Voltage – 5V to VDD + 0.3V
Input Current (VIN > VDD)............................... 50 mA
Power Dissipation (TA ≤ 70°C)
 5-Pin TO-220 .. 1.6W
 CERDIP ... 800 mW
 DFN ... Note 2
 PDIP .. 730 mW
 SOIC ... 470 mW

Package Power Dissipation (TA ≤ 25°C)
 5-Pin TO-220 (With Heatsink) 12.5W

Thermal Impedances (To Case)
 5-Pin TO-220 RθJC 10°C/W

† Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, TA = +25°C with 4.5V ≤ VDD ≤ 18V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic '1', High Input Voltage</td>
<td>VIH</td>
<td>2.4</td>
<td>1.8</td>
<td>—</td>
<td>V</td>
<td>DC TEST</td>
</tr>
<tr>
<td>Logic '0', Low Input Voltage</td>
<td>VIL</td>
<td>—</td>
<td>1.3</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>VIN</td>
<td>—</td>
<td>VDD+0.3</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>IIN</td>
<td>−10</td>
<td>—</td>
<td>+10</td>
<td>µA</td>
<td>0V ≤ VIN ≤ VDD</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>VOH</td>
<td>VDD – 0.025</td>
<td>—</td>
<td>—</td>
<td>V DC TEST</td>
<td></td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>VOL</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>V DC TEST</td>
<td></td>
</tr>
<tr>
<td>Output Resistance, High</td>
<td>ROH</td>
<td>—</td>
<td>2.1</td>
<td>2.8</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Output Resistance, Low</td>
<td>Rol</td>
<td>—</td>
<td>1.5</td>
<td>2.5</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>IPK</td>
<td>—</td>
<td>6.0</td>
<td>—</td>
<td>A</td>
<td>VDD = 18V</td>
</tr>
<tr>
<td>Latch-Up Protection Withstand Reverse Current</td>
<td>IRREV</td>
<td>—</td>
<td>> 1.5</td>
<td>—</td>
<td>A</td>
<td>Duty cycle ≤ 2%, t ≤ 300 μsec</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>tR</td>
<td>—</td>
<td>25</td>
<td>35</td>
<td>ns</td>
<td>Figure 4-1, CL = 2,500 pF</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tF</td>
<td>—</td>
<td>25</td>
<td>35</td>
<td>ns</td>
<td>Figure 4-1, CL = 2,500 pF</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD1</td>
<td>—</td>
<td>55</td>
<td>75</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD2</td>
<td>—</td>
<td>55</td>
<td>75</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>IS</td>
<td>—</td>
<td>0.45</td>
<td>1.5</td>
<td>mA</td>
<td>VIN = 3V</td>
</tr>
<tr>
<td>Operating Input Voltage</td>
<td>VDD</td>
<td>4.5</td>
<td>—</td>
<td>18</td>
<td>V</td>
<td>VIN = 0V</td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.
2: Package power dissipation is dependent on the copper pad area on the PCB.
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Electrical Specifications: Unless otherwise noted, over operating temperature range with 4.5V ≤ VDD ≤ 18V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic '1', High Input Voltage</td>
<td>VIH</td>
<td>2.4</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic '0', Low Input Voltage</td>
<td>VIL</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>VIN</td>
<td>−5</td>
<td>—</td>
<td>VDD + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>IIN</td>
<td>−10</td>
<td>—</td>
<td>+10</td>
<td>µA</td>
<td>0V ≤ VIN ≤ VDD</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage</td>
<td>VOH</td>
<td>—</td>
<td>—</td>
<td>VDD − 0.025</td>
<td>V</td>
<td>DC TEST</td>
</tr>
<tr>
<td>Low Output Voltage</td>
<td>VOL</td>
<td>—</td>
<td>—</td>
<td>0.025 V</td>
<td>V</td>
<td>DC TEST</td>
</tr>
<tr>
<td>Output Resistance, High</td>
<td>ROH</td>
<td>—</td>
<td>3</td>
<td>5</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Output Resistance, Low</td>
<td>ROI</td>
<td>—</td>
<td>2.3</td>
<td>5</td>
<td>Ω</td>
<td>IOUT = 10 mA, VDD = 18V</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>tR</td>
<td>—</td>
<td>32</td>
<td>60</td>
<td>ns</td>
<td>Figure 4-1, C_L = 2,500 pF</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tF</td>
<td>—</td>
<td>34</td>
<td>60</td>
<td>ns</td>
<td>Figure 4-1, C_L = 2,500 pF</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD1</td>
<td>—</td>
<td>50</td>
<td>100</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Delay Time</td>
<td>tD2</td>
<td>—</td>
<td>65</td>
<td>100</td>
<td>ns</td>
<td>Figure 4-1</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>IS</td>
<td>—</td>
<td>0.45</td>
<td>60</td>
<td>mA</td>
<td>VIN = 3V</td>
</tr>
<tr>
<td>Operating Input Voltage</td>
<td>VDD</td>
<td>—</td>
<td>4.5</td>
<td>18</td>
<td>V</td>
<td>VIN = 0V</td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V ≤ VDD ≤ 18V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (C)</td>
<td>TA</td>
<td>0</td>
<td>—</td>
<td>+70</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (I)</td>
<td>TA</td>
<td>−25</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (E)</td>
<td>TA</td>
<td>−40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (V)</td>
<td>TA</td>
<td>−40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>TJ</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>TA</td>
<td>−65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 5L-TO-220</td>
<td>θJA</td>
<td>—</td>
<td>71</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-CERDIP</td>
<td>θJA</td>
<td>—</td>
<td>150</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-6x5 DFN</td>
<td>θJA</td>
<td>—</td>
<td>33.2</td>
<td>—</td>
<td>°C/W</td>
<td>Typical four-layer board with vias to ground plane.</td>
</tr>
<tr>
<td>Thermal Resistance, 8L-PDIP</td>
<td>θJA</td>
<td>—</td>
<td>125</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>θJA</td>
<td>—</td>
<td>155</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-1: Rise Time vs. Supply Voltage.

FIGURE 2-2: Rise Time vs. Capacitive Load.

FIGURE 2-3: Propagation Delay Time vs. Temperature.

FIGURE 2-4: Fall Time vs. Supply Voltage.

FIGURE 2-5: Fall Time vs. Capacitive Load.

FIGURE 2-6: Supply Current vs. Capacitive Load.
Note: Unless otherwise indicated, $T_A = +25^\circ C$ with $4.5V \leq V_{DD} \leq 18V$.

FIGURE 2-7: Rise and Fall Times vs. Temperature.

FIGURE 2-8: Propagation Delay Time vs. Supply Voltage.

FIGURE 2-9: Supply Current vs. Frequency.

FIGURE 2-10: High-State Output Resistance vs Supply Voltage.

FIGURE 2-11: Effect of Input Amplitude on Propagation Delay.

FIGURE 2-12: Low-State Output Resistance vs. Supply Voltage.
Note: Unless otherwise indicated, $T_A = +25^\circ$C with $4.5V \leq V_{DD} \leq 18V$.

The values on this graph represent the loss seen by the driver during one complete cycle. For a single transition, divide the value by 2.

FIGURE 2-13: Crossover Energy.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. 8-Pin CERDIP/ PDIP/SOIC</th>
<th>Pin No. 8-Pin DFN</th>
<th>Pin No. 5-Pin TO-220</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>—</td>
<td>V_DD</td>
<td>Supply input, 4.5V to 18V</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>INPUT</td>
<td>Control input, TTL/CMOS compatible input</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>—</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>OUTPUT</td>
<td>CMOS push-pull output</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>—</td>
<td>OUTPUT</td>
<td>CMOS push-pull output</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3</td>
<td>V_DD</td>
<td>Supply input, 4.5V to 18V</td>
</tr>
<tr>
<td>—</td>
<td>PAD</td>
<td>—</td>
<td>NC</td>
<td>Exposed Metal Pad</td>
</tr>
<tr>
<td>—</td>
<td>TAB</td>
<td>—</td>
<td>V_DD</td>
<td>Metal Tab is at the V_DD Potential</td>
</tr>
</tbody>
</table>

3.1 Supply Input (V_DD)

The V_DD input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V with respect to the ground pins. The V_DD input should be bypassed to ground with a local ceramic capacitor. The value of the capacitor should be chosen based on the capacitive load that is being driven. A minimum value of 1.0 μF is suggested.

3.2 Control Input

The MOSFET driver input is a high-impedance, TTL/CMOS compatible input. The input circuitry of the TC4420/TC4429 MOSFET driver also has a “speed-up” capacitor. This helps to decrease the propagation delay times of the driver. Because of this, input signals with slow rising or falling edges should not be used, as this can result in double-pulsing of the MOSFET driver output.

3.3 CMOS Push-Pull Output

The MOSFET driver output is a low-impedance, CMOS, push-pull style output capable of driving a capacitive load with 6.0A peak currents. The MOSFET driver output is capable of withstanding 1.5A peak reverse currents of either polarity.

3.4 Ground

The ground pins are the return path for the bias current and the high peak currents that discharge the load capacitor. The ground pins should be tied into a ground plane or have very short traces to the bias supply source return.

3.5 Exposed Metal Pad

The exposed metal pad of the 6x5 DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board (PCB) to aid in heat removal from the package.
4.0 APPLICATIONS INFORMATION

FIGURE 4-1: Switching Time Test Circuits.

Note: Pinout shown is for the PDIP, SOIC, DFN and CERDIP packages.
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:

XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WWW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
e3 Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (e3)
 can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
Package Marking Information (Continued)

8-Lead PDIP (300 mil)

Example:

TC4420 CPA256
0419

8-Lead SOIC (150 mil)

Example:

TC4420 EOA0419
256
5-Lead Plastic Transistor Outline (AT) (TO-220)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Pitch</td>
<td>e</td>
<td>.060</td>
<td>1.52</td>
</tr>
<tr>
<td>Overall Lead Centers</td>
<td>e1</td>
<td>.263</td>
<td>6.68</td>
</tr>
<tr>
<td>Space Between Leads</td>
<td>e3</td>
<td>.030</td>
<td>0.76</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.160</td>
<td>4.06</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.385</td>
<td>9.78</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.560</td>
<td>14.22</td>
</tr>
<tr>
<td>Flag Length</td>
<td>H1</td>
<td>.234</td>
<td>5.94</td>
</tr>
<tr>
<td>Flag Thickness</td>
<td>F</td>
<td>.045</td>
<td>1.14</td>
</tr>
<tr>
<td>Through Hole Center</td>
<td>Q</td>
<td>.103</td>
<td>2.62</td>
</tr>
<tr>
<td>Through Hole Diameter</td>
<td>P</td>
<td>.146</td>
<td>3.71</td>
</tr>
<tr>
<td>Lead Length</td>
<td>L</td>
<td>.540</td>
<td>13.72</td>
</tr>
<tr>
<td>Base to Bottom of Lead</td>
<td>J1</td>
<td>.090</td>
<td>2.29</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>C1</td>
<td>.014</td>
<td>0.36</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>.025</td>
<td>0.64</td>
</tr>
<tr>
<td>Mold Draft Angle</td>
<td>a</td>
<td>3°</td>
<td>7°</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
- JEDEC equivalent: TO-220

Drawing No. C04-036
8-Lead Ceramic Dual In-line – 300 mil (JA) (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n MIN</td>
<td>8 MIN</td>
</tr>
<tr>
<td>Pitch</td>
<td>P .100</td>
<td>2.54</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A .160</td>
<td>4.06</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1 .020</td>
<td>0.51</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E .290</td>
<td>7.37</td>
</tr>
<tr>
<td>Ceramic Pkg. Width</td>
<td>E1 .230</td>
<td>5.84</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D .370</td>
<td>9.40</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L .125</td>
<td>3.18</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c .008</td>
<td>0.20</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1 .045</td>
<td>1.14</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B .016</td>
<td>0.41</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB .320</td>
<td>8.13</td>
</tr>
</tbody>
</table>

*Controlling Parameter
JEDEC Equivalent: MS-030
Drawing No. C04-010
TC4420/TC4429

8-Lead Plastic Dual Flat No Lead Package (MF) 6x5 mm Body (DFN-S) – Saw Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.050 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.033 .035 .037</td>
</tr>
<tr>
<td>Package Thickness</td>
<td>A2</td>
<td>.031 .035 .037</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.000 .0004 .002</td>
</tr>
<tr>
<td>Base Thickness</td>
<td>A3</td>
<td>.007 .008 .009</td>
</tr>
<tr>
<td>Overall Length</td>
<td>E</td>
<td>.195 .197 .199</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>E2</td>
<td>.152 .157 .163</td>
</tr>
<tr>
<td>Overall Width</td>
<td>D</td>
<td>.234 .236 .238</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>D2</td>
<td>.089 .091 .093</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.014 .016 .019</td>
</tr>
<tr>
<td>Lead Length</td>
<td>L</td>
<td>.024 .026 .028</td>
</tr>
</tbody>
</table>

Notes:

JEDEC equivalent: MO-220

Drawing No. C04-122

Revised 11/3/03

© 2002-2012 Microchip Technology Inc.
8-Lead Plastic Dual In-line (PA) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins n</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Pitch P</td>
<td>.100</td>
<td>2.54</td>
</tr>
<tr>
<td>Top to Seating Plane A</td>
<td>.140</td>
<td>.155</td>
</tr>
<tr>
<td>Molded Package Thickness A2</td>
<td>.115</td>
<td>.130</td>
</tr>
<tr>
<td>Base to Seating Plane A1</td>
<td>.015</td>
<td>0.38</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width E</td>
<td>.300</td>
<td>.313</td>
</tr>
<tr>
<td>Molded Package Width E1</td>
<td>.240</td>
<td>.250</td>
</tr>
<tr>
<td>Overall Length D</td>
<td>.380</td>
<td>.373</td>
</tr>
<tr>
<td>Tip to Seating Plane L</td>
<td>.125</td>
<td>.130</td>
</tr>
<tr>
<td>Lead Thickness c</td>
<td>.008</td>
<td>.012</td>
</tr>
<tr>
<td>Upper Lead Width B1</td>
<td>.045</td>
<td>.058</td>
</tr>
<tr>
<td>Lower Lead Width B</td>
<td>.014</td>
<td>.016</td>
</tr>
<tr>
<td>Overall Row Spacing § eB</td>
<td>.310</td>
<td>.370</td>
</tr>
<tr>
<td>Mold Draft Angle Top α</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom β</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-018
TC4420/TC4429

8-Lead Plastic Small Outline (OA) – Narrow, 150 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Diagram

![8-Lead Plastic Small Outline (OA) – Narrow, 150 mil (SOIC)](image)

Dimensions Table

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>MIN 8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.050</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.053 .061</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.052 .056</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>.004 .007</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.228 .237</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.146 .154</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.189 .193</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>h</td>
<td>.010 .015</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.019 .025</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0 4 8</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008 .009</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.013 .017</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0 12 15</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0 12 15</td>
</tr>
</tbody>
</table>

*Controlling Parameter

§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (.254mm) per side.
- JEDEC Equivalent: MS-012
- Drawing No. C04-057
6.0 REVISION HISTORY

Revision D (December 2012)

Added a note to each package outline drawing.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>XXX</th>
<th>X</th>
<th>Package</th>
<th>Temperature Range</th>
<th>Device</th>
<th>Tape and Reel</th>
<th>PB Free</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Device: TC4420: 6A High-Speed MOSFET Driver, Non-Inverting
TC4429: 6A High-Speed MOSFET Driver, Inverting

Temperature Range: C = 0°C to +70°C (PDIP, SOIC, and TO-220 Only)
I = -25°C to +85°C (CERDIP Only)
E = -40°C to +85°C
V = -40°C to +125°C

Package: AT = TO-220, 5-lead (C-Temp Only)
JA = Ceramic Dual In-line (300 mil Body), 8-lead (I-Temp Only)
MF = Dual, Flat, No-Lead (6X5 mm Body), 8-lead
MF713 = Dual, Flat, No-Lead (6X5 mm Body), 8-lead (Tape and Reel)
PA = Plastic DIP (300 mil Body), 8-lead
OA = Plastic SOIC, (150 mil Body), 8-lead
OA713 = Plastic SOIC, (150 mil Body), 8-lead (Tape and Reel)

PB Free
G = Lead-Free device*
 = Blank

* Available on selected packages. Contact your local sales representative for availability

Examples:

a) TC4420CAT: 6A High-Speed MOSFET Driver, Non-inverting, TO-220 package, 0°C to +70°C.
b) TC4420EAOA: 6A High-Speed MOSFET Driver, Non-inverting, SOIC package, -40°C to +85°C.
c) TC4420VMF: 6A High-Speed MOSFET Driver, Non-inverting, DFN package, -40°C to +125°C.

a) TC4429CAT: 6A High-Speed MOSFET Driver, Inverting, TO-220 package, 0°C to +70°C.
b) TC4429EPA: 6A High-Speed MOSFET Driver, Inverting, PDIP package, -40°C to +85°C.
c) TC4429VMF: 6A High-Speed MOSFET Driver, Inverting, DFN package, -40°C to +125°C.

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System
Register on our web site (www.microchip.com.cn) to receive the most current information on our products.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC18, PIC logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rFLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620767948

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support:
http://www.microchip.com/support

Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0084
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-2100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5000
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-5970-1661
Fax: 86-24-5970-2889

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-012

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/27/12