16-Bit Low Cost, Low Power Sigma-Delta A/D Converter

Features

• 16-bit Resolution at Eight Conversions Per Second, Adjustable Down to 10-bit Resolution at 512 Conversions Per Second
• 1.8V – 5.5V Operation, Low Power Operating 300µA; Sleep: 50µA
• microPort™ Serial Bus Requires only two Interface Lines
• Uses Internal or External Reference
• Automatically Enters Sleep Mode when not in use
• True Differential Inputs with Built-In Multiplexer Provide Ratiometric Conversions
• Early Warning Power Fail Detector, also suitable as Wake-Up Timer Operational in Shutdown Mode
• \(V_{DD} \) Monitor and Reset Generator Operational in Shutdown Mode

Applications

• Consumer Electronics, Thermostats, CO Monitors, Humidity Meters, Security Sensors
• Embedded Systems, Data Loggers, Portable Equipment
• Medical Instruments

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC3401VPE</td>
<td>16-Pin PDIP (Narrow)</td>
<td>0°C to +85°C</td>
</tr>
<tr>
<td>TC3401VQR</td>
<td>16-Pin QSOP Narrow</td>
<td>0°C to +85°C</td>
</tr>
</tbody>
</table>

General Description

The TC3401 is a low cost, low power analog-to-digital converter based on Microchip’s Sigma-Delta technology. It will perform 16-bit conversions (15-bit plus sign) at up to eight per second. The TC3401 is optimized for use as a microcontroller peripheral in low cost, battery operated systems. A voltage reference is included, or an external reference can be used. A \(V_{DD} \) monitor with a reset generator provides Power-on Reset and Brown-out protection while an extra threshold detector is suitable for use as an early warning Power Fail detector, or as a Wake-up Timer.

The TC3401’s 2-wire microPort™ digital interface is used for starting conversions and for reading out the data. Driving the SCLK line low starts a conversion. After the conversion starts, each additional falling edge (up to six) detected on SCLK for \(t_4 \) seconds reduces the A/D resolution by one bit and cuts conversion time in half. After a conversion is completed, clocking the SCLK line puts the MSB through LSB of the resulting data word onto the SDAT line, much like a shift register. The part automatically sleeps when not performing a data conversion.

The TC3401 is available in a 16-Pin PDIP and a 16-Pin QSOP package.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage ... 6.0V
Voltage on Pins:
 PFO, RESET (GND – 0.3V) to 5.5V
Input Voltage (All Other Pins):
 (GND – 0.3V) to (VDD + 0.3V)
Operating Temperature Range 0°C to 85°C
Storage Temperature -65°C to +150°C

TC3401 DC ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply Voltage</td>
<td>1.8</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IDD</td>
<td>Supply Current, During Data Conversion</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>IDD Sleep</td>
<td>Supply Current, Sleep Mode</td>
<td>—</td>
<td>50</td>
<td>80</td>
<td>µA</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>50</td>
<td>130</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy (Differential Inputs)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>Resolution</td>
<td>—</td>
<td>16</td>
<td>—</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>INL</td>
<td>Integral Non-Linearity</td>
<td>—</td>
<td>0.0038</td>
<td>—</td>
<td>%FSR</td>
<td>VDD = 2.7V</td>
</tr>
<tr>
<td>VOS</td>
<td>Offset Error</td>
<td>—</td>
<td>—</td>
<td>±0.9%FSR</td>
<td>—</td>
<td>%FSR</td>
</tr>
<tr>
<td>VNOISE</td>
<td>Referred to input</td>
<td>—</td>
<td>60</td>
<td>—</td>
<td>µVRms</td>
<td></td>
</tr>
<tr>
<td>CMR</td>
<td>Common Mode Rejection</td>
<td>—</td>
<td>75</td>
<td>—</td>
<td>dB</td>
<td>At DC</td>
</tr>
<tr>
<td>FSE</td>
<td>Full Scale Error</td>
<td>—</td>
<td>0.4%</td>
<td>—</td>
<td>%FS</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>—</td>
<td>75</td>
<td>—</td>
<td>dB</td>
<td>VDD = 2.5V to 3.5V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN+, IN-</td>
<td>Differential Input Voltage</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absolute Voltage Range on IN+, IN-</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Bias Current</td>
<td>—</td>
<td>1</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>CIN</td>
<td>Input Sampling Capacitance</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Rin</td>
<td>Differential Input Resistance</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>MΩ</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREF</td>
<td>REF IN Voltage Range</td>
<td>0</td>
<td>—</td>
<td>1.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IREF</td>
<td>REF IN Input Current</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>VREFOUT</td>
<td>REF OUT Voltage</td>
<td>—</td>
<td>1.193</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>REF SINK</td>
<td>REF OUT Current Sink Capability</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>REF SRC</td>
<td>REF OUT Current Source Capability</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Differential input voltage defined as (VIN+ – VIN-).
Note 2: Resistance from IN+ to IN- or IN- to GND.
Note 3: @ VDD = 1.8V, ISOURCE ≤ 200µA.
TC3401 AC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: $T_A = 25^\circ C$ and $V_{DD} = 2.7V$, unless otherwise specified. **Boldface** type specifications apply for temperatures of 0°C to 85°C. $V_{REF} = 1.25V$, Internal Clock Frequency = 520kHz.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK, ADDR, ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td></td>
<td></td>
<td></td>
<td>0.3xV_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td></td>
<td>$0.7xV_{DD}$</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{LEAK}</td>
<td>Leakage Current</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage (SDAT)</td>
<td></td>
<td></td>
<td></td>
<td>$0.9xV_{DD}$</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDmin}</td>
<td>Minimum V_{DD} for PFO, RESET Valid</td>
<td></td>
<td>1.1</td>
<td>1.3</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$V_{TH,PFI}$</td>
<td>PFI Input Voltage Range</td>
<td></td>
<td></td>
<td></td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>$V_{TH,PFI}$</td>
<td>PFI Input Current</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{THR}</td>
<td>Threshold ($V_{TH,PFI}$)</td>
<td></td>
<td>1.23</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{THH}</td>
<td>Threshold Hysteresis</td>
<td></td>
<td>30</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold Tempco</td>
<td></td>
<td>30</td>
<td></td>
<td>ppm/°C</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Differential input voltage defined as $(V_{IN+} - V_{IN-})$.

Note 2: Resistance from INn+ to INn- or INn to GND.

Note 3: @ $V_{DD} = 1.8V$,ADVERTISEMENT = 200µA.

TC3401 DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: $T_A = 25^\circ C$ and $V_{DD} = 2.7V$, unless otherwise specified. **Boldface** type specifications apply for temperatures of 0°C to 85°C. $V_{REF} = 1.25V$, Internal Clock Frequency = 520kHz.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Output Low Voltage</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>I_{SOURCE}</td>
<td>Source Current</td>
<td></td>
<td></td>
<td></td>
<td>400 μA</td>
<td>(Note 3)</td>
</tr>
<tr>
<td>V_{DDmin}</td>
<td>Minimum V_{DD} for PFO, RESET Valid</td>
<td></td>
<td>1.1</td>
<td>1.3</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$V_{TH,PFI}$</td>
<td>PFI Input Voltage Range</td>
<td></td>
<td></td>
<td></td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>$V_{TH,PFI}$</td>
<td>PFI Input Current</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{THR}</td>
<td>Threshold ($V_{TH,PFI}$)</td>
<td></td>
<td>1.23</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{THH}</td>
<td>Threshold Hysteresis</td>
<td></td>
<td>30</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold Tempco</td>
<td></td>
<td>30</td>
<td></td>
<td>ppm/°C</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Nominal temperature drift is -2830ppm/C° for temperature less than 25°C and -1340ppm/C° for temperatures greater than 25°C.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. (16-Pin PDIP) (16-Pin QSOP)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN1+</td>
<td>Analog Input. This is the positive terminal of a true differential input consisting of IN1+ and IN1-. V<sub>IN1</sub> = (IN1+ – IN-). See Section 1.0, Electrical Characteristics.</td>
</tr>
<tr>
<td>2</td>
<td>IN1-</td>
<td>Analog Input. This is the negative terminal of a true differential input consisting of IN1+ and IN1-. V<sub>IN1</sub> = (IN+ - IN-) IN1- can swing to, but not below, ground. See Section 1.0, Electrical Characteristics.</td>
</tr>
<tr>
<td>3</td>
<td>IN2+</td>
<td>Analog Input. This is the positive terminal of a true differential input consisting of IN2+ and IN2-. V<sub>IN2</sub> = (IN2+ – IN-). See Section 1.0, Electrical Characteristics.</td>
</tr>
<tr>
<td>4</td>
<td>IN2-</td>
<td>Analog Input. This is the negative terminal of a true differential input consisting of IN2+ and IN2-. V<sub>IN2</sub> = (IN+ – IN-) IN2- can swing to, but not below, ground. See Section 1.0, Electrical Characteristics.</td>
</tr>
<tr>
<td>5</td>
<td>PFI</td>
<td>Analog Input. This is the positive input to an internal comparator used as a threshold detector. The negative input is tied to an internal reference.</td>
</tr>
<tr>
<td>6</td>
<td>V<sub>TH</sub></td>
<td>Analog Input. This is the positive input to the internal comparator used to monitor the voltage supply. The negative input is tied to an internal reference. When V<sub>TH</sub> falls below the internal reference, the reset generator drives RESET low. See Section 1.0, Electrical Characteristics.</td>
</tr>
<tr>
<td>7</td>
<td>REF<sub>IN</sub></td>
<td>Analog Input. The converter’s reference voltage is the differential between this pin and ground times two. It may be tied directly to REF<sub>OUT</sub> or scaled using a resistor divider. Any user supplied reference voltage less than 1.25 may be used in place of REF<sub>OUT</sub>.</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground Terminal.</td>
</tr>
<tr>
<td>9</td>
<td>REF<sub>OUT</sub></td>
<td>Analog Output. The internal reference connects to this pin. It may be scaled externally and tied to the REF<sub>IN</sub> input to provide the converter’s reference voltage. Care must be taken in connecting external circuitry to this pin. This pin is in a high impedance state during Sleep mode.</td>
</tr>
<tr>
<td>10</td>
<td>SDAT</td>
<td>Digital Output (push-pull). This is the microPort™ serial data output. SDAT is driven low while the TC3401 is converting data, effectively providing a “busy” signal. After the conversion is complete, every high to low transition on the SCLK pin puts a bit from the resulting data word on the SDAT pin (from MSB to LSB).</td>
</tr>
<tr>
<td>11</td>
<td>PFO</td>
<td>Digital Output (open drain). This is the output of the internal threshold detector. When PFI is less than the internal reference, PFO is driven low.</td>
</tr>
<tr>
<td>12</td>
<td>ENABLE</td>
<td>Digital Input. When this input control is pulled low, the part is internally restarted. That is, any data conversion or data read sequence is cleared and the part goes into Sleep mode. When ENABLE returns high, the part resumes normal operation.</td>
</tr>
<tr>
<td>13</td>
<td>RESET</td>
<td>Digital Output (open drain). This is the output of the V<sub>DD</sub> monitor reset generator. RESET is driven low when a Power-on Reset or Brown-out condition is detected. See Section 1.0, AC Electrical Characteristics.</td>
</tr>
<tr>
<td>14</td>
<td>ADDR</td>
<td>Digital Input. This input controls the analog input multiplexer to select one of two input channels. This address is latched at the falling edge of the SCLK, which starts an A/D conversion. (0 = Input 1, 1 = Input 2).</td>
</tr>
<tr>
<td>15</td>
<td>SCLK</td>
<td>Digital Input. This is the microPort™ serial clock input. The TC3401 comes out of Sleep mode and a conversion cycle begins when this pin is driven low. After the conversion starts, each additional falling edge (up to six) detected on SCLK for t<sub>s</sub> seconds reduces the A/D resolution by one bit. When the conversion is complete, the data word can be shifted out on the SDAT pin by clocking the SCLK pin.</td>
</tr>
<tr>
<td>16</td>
<td>V<sub>DD</sub></td>
<td>Power Supply Input.</td>
</tr>
</tbody>
</table>
3.0 DETAILED DESCRIPTION

The TC3401 has a 16-bit sigma-delta A/D converter. It has two differential inputs, an analog multiplexer, a VDD monitor with reset generator and an early warning Power Fail detector. See the Typical Application circuit and the Functional Block diagram. The key components of the TC3401 are described below.

Also refer to Figure 3-5, A/D Operational Flowchart and the Timing Diagrams, Figure 3-1, Figure 3-2 and Figure 3-3.

3.1 A/D Converter Operation

When the TC3401 is not converting, it is in Sleep mode with both the SCLK and SDAT lines high. An A/D conversion is initiated by a high to low transition on the SCLK line at which time the internal clock of the TC3401 is started and the address value (ADDR) is internally latched. The address value steers the analog multiplexer to select the input channel to be converted. Each additional high to low transition of SCLK (following the initial SCLK falling edge) during the time interval \(t_4 \) will decrement the conversion resolution by one bit and reduce the conversion time by one half. The time interval \(t_4 \) is referred to as the resolution reduction window. The minimum conversion resolution is 10-bits so any more than 6 SCLK transitions during \(t_4 \) will be ignored.

After each high to low transition of SCLK, in the \(t_4 \) interval, the SDAT output is driven high by the TC3401 to acknowledge that the resolution has been decremented. When the SCLK returns high or the \(t_4 \) interval ends, the SDAT line returns low (see Figure 3-2). When the conversion is complete SDAT is driven high. The TC3401 now enters Sleep mode and the conversion value can be read as a serial data word on the SDAT line.

3.2 Reading the Data Word

After the conversion is complete and SDAT goes high, the conversion value can be clocked serially onto the SDAT line by high to low transitions of the SCLK. The data word is in two's compliment format with the sign bit clocked onto the SDAT line, first followed by the MSB and ending in the LSB. For a 16-bit conversion the data word would consist of a sign bit followed by 15 magnitude bits, Table 3-1 shows the data word versus input voltage for a 16-bit conversion. Note that the full scale input voltage range is \(\pm (2 \cdot \text{REF}_{\text{IN}} - 1 \text{LSB}) \). When \(\text{REF}_{\text{OUT}} \) is fed back directly to \(\text{REF}_{\text{IN}} \), an LSB is 73\,\mu V for a 16-bit conversion, as \(\text{REF}_{\text{OUT}} \) is typically 1.193\,V.

Figure 3-4 shows typical SCLK and SDAT waveforms for 16, 12 and 10-bit conversions. Note that any complete convert and read cycle requires 17 negative edge clock pulses. The first is the convert command. Then, up to six of these can occur in the resolution reduction window, \(t_4 \), to decrement resolution. The remaining pulses clock out the conversion data word.

<table>
<thead>
<tr>
<th>Data Word</th>
<th>(\text{IN}^+ - \text{IN}^-) (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0001</td>
<td>72.8 E-6</td>
</tr>
<tr>
<td>1111 1111 1111 1111</td>
<td>2.38596 (Positive Full Scale)</td>
</tr>
<tr>
<td>1000 0000 0000 0000</td>
<td>0</td>
</tr>
<tr>
<td>0000 0000 0000 0000</td>
<td>-72.8 E-6</td>
</tr>
<tr>
<td>0111 1111 1111 1111</td>
<td>-2.38596 (Negative Full Scale)</td>
</tr>
<tr>
<td>1000 0000 0000 0000</td>
<td>Reserved Code</td>
</tr>
</tbody>
</table>

The SCLK input has a filter which rejects any positive or negative pulse of width less than 50\,nsec to reduce noise. The rejection width of this pulse can vary between 50\,nsec and 750\,nsec depending on processing parameters and supply voltage.

Figure 3-1 and Table 3-2 show information for determining the mode of operation for the TC3401 part by recording the value of SDAT for SCLK in a high, then low, then high state. For example, if SCLK goes through a 1-0-1 transition and the corresponding values of SDAT are 1-1-0, then the SCLK falling edge started a new data conversion. A 0-1-0 for SDAT would have indicated a resolution reduction had occurred. This is useful if the microcontroller has a Watchdog Reset or otherwise loses track of where the TC3401 is in the conversion and data readout sequence. The microcontroller can simply transition SCLK until it “finds” a Start Conversion condition.

TABLE 3-1: DATA CONVERSION WORD VS. VOLTAGE INPUT (\(\text{REF}_{\text{IN}} = 1.193 \))

FIGURE 3-1: SCLK, SDAT LOGIC STATE DIAGRAM

TABLE 3-2: SCLK, SDAT LOGIC STATE

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>1</td>
<td>Data Transfer</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>Data Transfer or Busy*</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Start Conversion</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Resolution Reduction</td>
</tr>
</tbody>
</table>

Note: The code X00 has a dual meaning: Data Transfer or Busy converting. To avoid confusion, the user should send only the required number of pulses for the desired resolution, then wait for SDAT to rise to 1, indicating conversion is complete before clocking SCLK again to read out data bits.
FIGURE 3-2: CONVERSION AND DATA OUTPUT TIMING

FIGURE 3-3: RESET AND POWER FAIL TIMING
FIGURE 3-4: SCLK AND SDAT WAVEFORMS FOR 16, 12 AND 10-BIT CONVERSIONS

16-bit Data Conversion, Data Word A5A5h

SCLK

SDAT
t3a

Data Conversion Complete

16-bit Data Conversion, Long Start Pulse, Data Word 5A5Ah

SCLK

SDAT	> t3a

Data Conversion Complete

12-bit Conversion, Data Word = AB3h

SCLK

SDAT	< t4< t3e

Data Conversion Complete

10-bit Conversion with “Extra” Data Reduction Clocks, Data Word = 3A4h

SCLK

SDAT	< t4< t3g

Data Conversion Complete
FIGURE 3-5: A/D OPERATIONAL FLOWCHART

POR

Sleep
SDAT = High

SCLK
Hgh to Low?
Yes

Power Up Analog,
Start CONVCLK (= 0),
Start Conversion,
Resolution = 2m
(m = 16), Latch Input
Channel Address (if applicable).

SCLK
Low to High
transition?
Yes
SDAT = Low

CONVCLK < 2^9?
Yes

SDAT = High

A/D
Resolution
> 2^10?
Yes

Reduce A/D
Resolution by 1-bit
(m = m - 1);
SDAT = High

No

CONVCLK = 2^m?
(Conversion Done?)
Yes

Power Down Analog,
Conversion Complete,
SDAT = High

SCLK
Hgh to Low?
Yes

SDAT = Dm;
m = m - 1

m ≥ 0?
Yes

SDAT = High
Internal Reset

No

Sleep
3.3 V_{DD} Monitor

The TC3401 RESET output is in high impedance provided the voltage at V_{TH} is greater than the internal voltage reference. This reference is approximately the same value as the voltage appearing at REFOUT. When V_{TH} is less than the internal reference, RESET is pulled low. When V_{TH} rises above the internal reference voltage again, RESET is held low for the reset active time-out period, t_9, before being released. The RESET output is ensured to be valid for $V_{DD} = 1.3V$ to 5.5V.

When used to generate a Power-on or Brown-out Reset, an external resistor network is required to divide the appropriate V_{DD} threshold down to 1.23V at the V_{TH} input, (See the Typical Application circuit). For example, to generate a POR for a V_{DD} at 3V -10%, the values of $R1$ and $R2$ should be 137kΩ and 115kΩ respectively.

Since RESET is an open drain, it can be wired-OR’ed with another open drain or external switch if desired.

3.4 Power Fail Detector

The Power Fail detector is a comparator in which the inverting input is connected to the internal voltage reference. The non-inverting input is the PFI pin of the TC3401 and the PFO pin is the active low, open drain output. This comparator is suitable as an early warning fail or low battery indicator. In a typical application, where a voltage regulator is being used to supply power to a system, the Power Fail comparator would monitor the input voltage to the regulator while the V_{DD} monitor would measure the output voltage of the regulator. Both PFO and RESET would drive interrupt pins of a microcontroller.

The Power Fail detector may be used as a Wake-up or Watchdog Timer. The Typical Application circuit shows an RC network on PFI with the capacitor tied to a tristated μC I/O pin. If $R4$ is 1 MΩ and $C2$ is 10μF, the time constant is roughly ten seconds. The μC resets the RC network by driving the I/O tied to PFI low and then tristating it. The RC network will ramp to 1.23V in roughly 9 seconds, assuming a V_{BATT} of 3.0V. With PFO tied to a μC input or interrupt, the μC will see a low to high transition on PFO when the voltage on PFI exceeds 1.23V. The PFO output is specified to be valid for $V_{DD} = 1.3$ to 5.5V.
4.0 PACKAGING INFORMATION

4.1 Package Marking Information
Package marking data not available at this time.

4.2 Taping Forms

Component Taping Orientation for 16-Pin QSOP (Narrow) Devices

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-Pin QSOP (N)</td>
<td>12 mm</td>
<td>8 mm</td>
<td>2500</td>
<td>13 in</td>
</tr>
</tbody>
</table>
4.3 Package Dimensions

16-Pin PDIP (Narrow)

Dimensions: inches (mm)

16-Pin QSOP (Narrow)

Dimensions: inches (mm)
SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, Keeloq, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PROMATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rIPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PIC® 8-bit MCUs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.
AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 2008
Atlanta, GA 30350
Tel: 770-640-0334 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7924 Fax: 972-818-7924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1888

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5305

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7955 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd.
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282300 Fax: 86-10-85282310

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd.
Chengdu Liaison Office
Rm. 3401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd.
Fuzhou Liaison Office
Unit 701, 7/F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7530506 Fax: 86-591-7530521

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200005
Tel: 86-21-6275-5700 Fax: 86-21-6275-5000

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd.
Unit 1001, 10/F, Shenzhen Kerry Centre
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2351000 Fax: 86-755-2351000

China - Hong Kong SAR
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessy Road
Bangalore, 560 025, India
Tel: 91-80-22900361 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg., 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 02-2-554-7200 Fax: 02-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Lautrup høj 1-3
Ballup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-6275-2360 Fax: 49-89-6275-2360

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agraete Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

05/01/02

WORLDWIDE SALES AND SERVICE