TC1264

800 mA Fixed-Output CMOS LDO with Shutdown

Features
- Very Low Dropout Voltage
- 800 mA Output Current
- High Output Voltage Accuracy
- Standard or Custom Output Voltages
- Overcurrent and Overtemperature Protection

Applications
- Battery Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular/GSM/PHS Phones
- Linear Post-Regulators for SMPS
- Pagers

Typical Application

Description
The TC1264 is a fixed output, high accuracy (typically ±0.5%) CMOS low dropout regulator. Designed specifically for battery-operated systems, the TC1264’s CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current is typically 80 µA at full load (20 to 60 times lower than in bipolar regulators).

TC1264 key features include ultra low noise operation, very low dropout voltage (typically 450 mV at full load), and fast response to step changes in load.

The TC1264 incorporates both over temperature and over current protection. The TC1264 is stable with an output capacitor of only 1 µF and has a maximum output current of 800 mA. It is available in 3-Pin SOT-223, 3-Pin TO-220 and 3-Pin DDPAK packages.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage ...6.5V
Output Voltage.................. (VSS – 0.3V) to (VIN + 0.3V)
Power Dissipation................Internally Limited (Note 8)
Maximum Voltage on Any PinV IN +0.3V to -0.3V
Operating Temperature Range...... -40°C < TJ < 125°C
Storage Temperature......................-65°C to +150°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Operating Voltage V IN</td>
<td>2.7</td>
<td></td>
<td>6.0</td>
<td></td>
<td>V</td>
<td>Note 2</td>
</tr>
<tr>
<td>Maximum Output Current IOUTMAX</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output Voltage VOUT</td>
<td>V R – 2.5%</td>
<td>VR ± 0.5%</td>
<td>VR + 2.5%</td>
<td>V</td>
<td>VR ≥ 2.5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VR – 2%</td>
<td>VR ± 0.5%</td>
<td>VR + 3%</td>
<td>VR = 1.8V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VR – 7%</td>
<td>VR + 3%</td>
<td></td>
<td>I L = 0.1 mA to 800 mA (Note 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOUT Temperature Coefficient ΔVOUT/ΔT</td>
<td>—</td>
<td></td>
<td>40</td>
<td></td>
<td>ppm/°C</td>
<td>Note 4</td>
</tr>
<tr>
<td>Line Regulation ΔVOUT/ΔVIN</td>
<td>—</td>
<td></td>
<td>0.007</td>
<td>0.35</td>
<td>%</td>
<td>(VR + 1V) ≤ VIN ≤ 6V</td>
</tr>
<tr>
<td>Load Regulation (Note 5) ΔVOUT/VOUT</td>
<td>-0.01</td>
<td>0.002</td>
<td></td>
<td>0</td>
<td>%/mA</td>
<td>I L = 0.1 mA to IOUTMAX</td>
</tr>
<tr>
<td>Dropout Voltage (Note 6) V IN–VOUT</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td></td>
<td>mV</td>
<td>VR ≥ 2.5V, I L = 100 µA</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>50</td>
<td>160</td>
<td></td>
<td></td>
<td>I L = 100 mA</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>150</td>
<td>480</td>
<td></td>
<td></td>
<td>I L = 300 mA</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>260</td>
<td>800</td>
<td></td>
<td></td>
<td>I L = 500 mA</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>450</td>
<td>1300</td>
<td></td>
<td></td>
<td>I L = 800 mA</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>1000</td>
<td>1200</td>
<td></td>
<td></td>
<td>VR = 1.8V, I L = 500 mA</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>1200</td>
<td>1400</td>
<td></td>
<td></td>
<td>I L = 800 mA</td>
</tr>
<tr>
<td>Supply Current I DD</td>
<td>—</td>
<td>80</td>
<td>130</td>
<td></td>
<td>µA</td>
<td>SHDN = VIH, I L = 0</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio PSRR</td>
<td>—</td>
<td>64</td>
<td></td>
<td></td>
<td>db</td>
<td>F ≤ 1 kHz</td>
</tr>
<tr>
<td>Output Short Circuit Current IOUTSC</td>
<td>—</td>
<td>1200</td>
<td></td>
<td></td>
<td>mA</td>
<td>VOUT = 0V</td>
</tr>
</tbody>
</table>

Note 1: VR is the regulator output voltage setting.

2: The minimum V IN has to justify the conditions: V IN ≥ VR + VDROPOUT and V IN ≥ 2.7V for I L = 0.1 mA to IOUTMAX.

3: This accuracy represents the worst-case over the entire output current and temperature range.

4:

\[
TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) - 10^6}{V_{OUT} \times \Delta T}
\]

5: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

6: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at a 1.5V differential.

7: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I LMAX at VIN = 6V for T = 10 ms.

8: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., TJ, 0JA). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.
DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, \(V_{IN} = V_R + 1.5V \) (Note 1), \(I_L = 100 \ \mu A, C_L = 3.3 \ \mu F, \ \text{SHDN} > V_{IH}, \ T_A = +25^\circ C \). **Boldface** type specifications apply for junction temperatures of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Regulation</td>
<td>(-\Delta V_{OUT}/\Delta P_D)</td>
<td>0.04</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Noise</td>
<td>(eN)</td>
<td>260</td>
<td>—</td>
<td>(nV/\sqrt{Hz})</td>
<td>(I_L = I_{OUTMAX}), (F = 10 \ \text{kHz})</td>
</tr>
</tbody>
</table>

Note 7: Thermal regulation is defined as the change in output voltage at a time \(T \) after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to \(I_{LMAX} \) at \(V_{IN} = 6V \) for \(T = 10 \ \text{ms} \).

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, \(V_{IN} = V_R + 1.5V \), \(I_L = 100 \ \mu A, C_L = 3.3 \ \mu F, \ \text{SHDN} > V_{IH}, \ T_A = +25^\circ C \).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_J)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_A)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Package Resistances

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(\theta_{JA})</th>
<th>—</th>
<th>—</th>
<th>—</th>
<th>°C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, 3L-SOT-223</td>
<td>(\theta_{JA})</td>
<td>59</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance, 3L-DDPAK</td>
<td>(\theta_{JA})</td>
<td>71</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance, 3L-TO-220</td>
<td>(\theta_{JA})</td>
<td>71</td>
<td>—</td>
<td>—</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Note 1: Operation in this range must not cause \(T_J \) to exceed Maximum Junction Temperature (+125°C).
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Line Regulation vs. Temperature.

FIGURE 2-2: Output Noise vs. Frequency.

FIGURE 2-3: Load Regulation vs. Temperature.

FIGURE 2-4: \(I_{DD} \) vs. Temperature.

FIGURE 2-5: 3.0V Dropout Voltage vs. \(I_{LOAD} \).

FIGURE 2-6: 3.0V \(V_{OUT} \) vs. Temperature.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{IN}</td>
<td>Unregulated supply input</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground terminal</td>
</tr>
<tr>
<td>3</td>
<td>V_{OUT}</td>
<td>Regulated voltage output.</td>
</tr>
</tbody>
</table>

3.1 Unregulated Supply (V_{IN})
Unregulated supply input.

3.2 Ground (GND)
Ground terminal.

3.3 Regulated Output Voltage (V_{OUT})
Regulated voltage output.
4.0 DETAILED DESCRIPTION

The TC1264 is a precision, fixed output LDO. Unlike bipolar regulators, the TC1264’s supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation over the entire 0mA to $I_{LOAD\text{MAX}}$ load current range (an important consideration in RTC and CMOS RAM battery back-up applications).

Figure 4-1 shows a typical application circuit.

4.1 Output Capacitor

A 1 µF (min) capacitor from V_{OUT} to ground is required. The output capacitor should have an effective series resistance greater than 0.1Ω and less than 5Ω. A 1 µF capacitor should be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.
5.0 THERMAL CONSIDERATIONS

5.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

5.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst-case actual power dissipation:

EQUATION 5-1:

\[P_D = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX} \]

Where:

- \(P_D \) = Worst-case actual power dissipation
- \(V_{INMAX} \) = Maximum voltage on \(V_I \)
- \(V_{OUTMIN} \) = Minimum regulator output voltage
- \(I_{LOADMAX} \) = Maximum output (load) current

The maximum allowable power dissipation (Equation 5-2) is a function of the maximum ambient temperature \(T_{AMAX} \), the maximum allowable die temperature \(T_{JMAX} \) and the thermal resistance from junction-to-air \(\theta_{JA} \).

EQUATION 5-2:

\[P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}} \]

Where all terms are previously defined.

Table 5-1 and Table 5-2 show various values of \(\theta_{JA} \) for the TC1264 packages.

TABLE 5-1: THERMAL RESISTANCE GUIDELINES FOR TC1264 IN SOT-223 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance (\theta_{JA})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>225 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>53°C/W</td>
</tr>
<tr>
<td>100 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>59°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>52°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>0 sq mm</td>
<td>1000 sq mm</td>
<td>55°C/W</td>
</tr>
</tbody>
</table>

* Tab of device attached to topside copper

TABLE 5-2: THERMAL RESISTANCE GUIDELINES FOR TC1264 IN 3-PIN DDPACK/TO-220 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance (\theta_{JA})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>25°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>27°C/W</td>
</tr>
<tr>
<td>125 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>35°C/W</td>
</tr>
</tbody>
</table>

* Tab of device attached to topside copper

Equation 5-1 can be used in conjunction with Equation 5-2 to ensure regulator thermal operation is within limits. For example:

- **Given:**
 - \(V_{INMAX} = 3.3V \pm 10\% \)
 - \(V_{OUTMIN} = 2.7V \pm 0.5\% \)
 - \(I_{LOADMAX} = 275 mA \)
 - \(T_{JMAX} = 125°C \)
 - \(T_{AMAX} = 95°C \)
 - \(\theta_{JA} = 59°C/W \) (SOT-223)

- **Find:**
 1. Actual power dissipation.
 2. Maximum allowable dissipation

Actual power dissipation:

\[P_D = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX} \]

\[P_D = (3.3 \times 1.1) - (2.7 \times .995)275 \times 10^{-3} \]

\[P_D = 260 mW \]

Maximum allowable power dissipation:

\[P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}} \]

\[P_{DMAX} = \frac{(125 - 95)}{59} \]

\[P_{DMAX} = 508 mW \]

In this example, the TC1264 dissipates a maximum of 260 mW; below the allowable limit of 508 mW. In a similar manner, Equation 5-1 and Equation 5-2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable \(V_{IN} \) is found by substituting the maximum allowable power dissipation of 508mW into Equation 5-1, from which \(V_{INMAX} = 4.6V \).
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX...X</td>
<td>Customer-specific information</td>
</tr>
<tr>
<td>Y</td>
<td>Year code (last digit of calendar year)</td>
</tr>
<tr>
<td>YY</td>
<td>Year code (last 2 digits of calendar year)</td>
</tr>
<tr>
<td>WW</td>
<td>Week code (week of January 1 is week ‘01’)</td>
</tr>
<tr>
<td>NNN</td>
<td>Alphanumeric traceability code</td>
</tr>
<tr>
<td>@3</td>
<td>Pb-free JEDEC designator for Matte Tin (Sn)</td>
</tr>
</tbody>
</table>

* This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
3-Lead Plastic (EB) (DDPAK)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Dimension</th>
<th>UNITS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td></td>
<td></td>
<td>1.00 BSC</td>
<td>2.54 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.170</td>
<td>.177</td>
<td>.183</td>
<td>4.32</td>
<td>4.50</td>
<td>4.65</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.000</td>
<td>.005</td>
<td>.010</td>
<td>0.00</td>
<td>0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.385</td>
<td>.388</td>
<td>.410</td>
<td>9.78</td>
<td>10.11</td>
<td>10.41</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E1</td>
<td></td>
<td>256 REF</td>
<td>6.50 REF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D1</td>
<td>.549</td>
<td>.577</td>
<td>.605</td>
<td>13.94</td>
<td>14.66</td>
<td>15.37</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td></td>
<td>303 REF</td>
<td>7.70 REF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.014</td>
<td>.020</td>
<td>.026</td>
<td>0.36</td>
<td>0.51</td>
<td>0.66</td>
</tr>
<tr>
<td>Pad Thickness</td>
<td>c2</td>
<td>.045</td>
<td></td>
<td>.055</td>
<td>1.14</td>
<td></td>
<td>1.40</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
<td>.026</td>
<td>.032</td>
<td>.037</td>
<td>0.66</td>
<td>0.81</td>
<td>0.94</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
<td>.049</td>
<td>.050</td>
<td>.051</td>
<td>1.24</td>
<td>1.27</td>
<td>1.30</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.068</td>
<td></td>
<td>.110</td>
<td>1.73</td>
<td></td>
<td>2.79</td>
</tr>
<tr>
<td>Pad Length</td>
<td>L3</td>
<td>.045</td>
<td></td>
<td>.067</td>
<td>1.14</td>
<td></td>
<td>1.70</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td></td>
<td></td>
<td>8°</td>
<td>--</td>
<td>--</td>
<td>8°</td>
</tr>
<tr>
<td>Mold Draft Angle</td>
<td>a</td>
<td>3°</td>
<td>7°</td>
<td>3°</td>
<td>--</td>
<td>7°</td>
<td></td>
</tr>
</tbody>
</table>

*Controlling Parameter

§ Significant Characteristic

Notes:
- Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
- BSC: Basic Dimension. Theoretically, exact value shown without tolerances.
- See ASME Y14.5M
- REF: Reference Dimension, usually without tolerance, for information purposes only.
- See ASME Y14.5M
- JEDEC equivalent: TO-252

Revised 07-19-05

Drawing No. C04-011
3-Lead Plastic Small Outline Transistor (DB) (SOT-223)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.091 BSC</td>
</tr>
<tr>
<td>Outside lead pitch (basic)</td>
<td>e1</td>
<td>0.181 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>–</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.001</td>
</tr>
<tr>
<td>Molded Package Height</td>
<td>A2</td>
<td>0.061</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>0.264</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>0.130</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>0.248</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.009</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>0.026</td>
</tr>
<tr>
<td>Tab Lead Width</td>
<td>b2</td>
<td>0.114</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.035</td>
</tr>
<tr>
<td>Lead Angle</td>
<td>φ</td>
<td>0°</td>
</tr>
<tr>
<td>Mold Draft Angle, Top</td>
<td>α</td>
<td>10°</td>
</tr>
<tr>
<td>Mold Draft Angle, Bottom</td>
<td>β</td>
<td>10°</td>
</tr>
</tbody>
</table>

Controlling Parameter

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.005” (0.127mm) per side.
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- See ASME Y14.5M
- JEDEC Equivalent TO-261 AA
- Drawing No. C04-032

Revised 09-13-05

© 2006 Microchip Technology Inc.
TC1264

3-Lead Plastic Transistor Outline (AB) (TO-220)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES*</th>
<th>MILLIROOTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>Min</td>
</tr>
<tr>
<td>Pitch</td>
<td>e1</td>
<td>.100 BSC</td>
</tr>
<tr>
<td>Overall Pin Pitch</td>
<td>e1</td>
<td>.200 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.140</td>
</tr>
<tr>
<td>Tab Thickness</td>
<td>A1</td>
<td>.020</td>
</tr>
<tr>
<td>Base to Lead</td>
<td>A2</td>
<td>.080</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.380</td>
</tr>
<tr>
<td>Exposed Tab Width</td>
<td>E1</td>
<td>.270</td>
</tr>
<tr>
<td>– (SEE BOTTOM VARIANT B)</td>
<td>E3</td>
<td>.251</td>
</tr>
<tr>
<td>Hole Center to Tab Edge</td>
<td>Q</td>
<td>.100</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.560</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D1</td>
<td>.330</td>
</tr>
<tr>
<td>Exposed Tab Length</td>
<td>D2</td>
<td>.480</td>
</tr>
<tr>
<td>– (SEE BOTTOM VARIANT B)</td>
<td>D3</td>
<td>.243</td>
</tr>
<tr>
<td>– (SEE BOTTOM VARIANT B)</td>
<td>D4</td>
<td>.303</td>
</tr>
<tr>
<td>Tab Length</td>
<td>H1</td>
<td>.230</td>
</tr>
<tr>
<td>Mounting Hole Diameter</td>
<td>ϕP</td>
<td>.139</td>
</tr>
<tr>
<td>Lead Length</td>
<td>L</td>
<td>.500</td>
</tr>
<tr>
<td>Lead Shoulder</td>
<td>L1</td>
<td>-</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.012</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder Width</td>
<td>b2</td>
<td>.045</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Notes:

- Dimensions D1 and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- See ASME Y14.5M
- Drawing No. C04-158
APPENDIX A: REVISION HISTORY

Revision C (October 2006)

• **Section 1.0 “Electrical Characteristics”:**
 Changed dropout voltage voltage typical value for \(I_L = 500 \) mA from 700 to 1000 and maximum value from 1000 to 1200 for. Changed typical value for \(I_L = 800 \) mA from 890 to 1200

• **Section 6.0 “PackAging Information”:** Added package marking information and package outline drawings
 • Added disclaimer to package outline drawings.

Revision B (May 2002)

• Not Documented

Revision A (March 2002)

• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X.XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Voltage Option</td>
<td>Package</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>TC1264 Fixed Output CMOS LDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Option:*</td>
<td>1.8V = 1.8V</td>
</tr>
<tr>
<td></td>
<td>2.5V = 2.5V</td>
</tr>
<tr>
<td></td>
<td>3.0V = 3.0V</td>
</tr>
<tr>
<td></td>
<td>3.3V = 3.3V</td>
</tr>
<tr>
<td>* Other output voltages are available. Please contact your local Microchip sales office for details.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>AB = Plastic (TO-220), 3-Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DB = Plastic (SOT-223), 3-Lead, Tape and Reel</td>
</tr>
<tr>
<td>EB = Plastic Transistor Outline (DDPAK), 3-Lead</td>
<td></td>
</tr>
<tr>
<td>EBTR = Plastic Transistor Outline (DDPAK), 3-Lead, Tape and Reel</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- a) TC1264-1.8VAB 1.8V LDO, TO-220-3 pkg.
- b) TC1264-2.5VAB 2.5V LDO, TO-220-3 pkg.
- c) TC1264-3.0VAB 3.0V LDO, TO-220-3 pkg.
- d) TC1264-3.3VAB 3.3V LDO, TO-220-3 pkg.
- a) TC1264-1.8VEBTR 1.8V LDO, DDPAK-3 pkg., Tape and Reel
- b) TC1264-2.5VEBTR 2.5V LDO, DDPAK-3 pkg., Tape and Reel
- c) TC1264-3.0VEBTR 3.0V LDO, DDPAK-3 pkg., Tape and Reel
- d) TC1264-3.3VEBTR 3.3V LDO, DDPAK-3 pkg., Tape and Reel
- a) TC1264-1.8VDB 1.8V LDO, SOT-223 pkg.
- b) TC1264-1.8VDBTR 1.8V LDO, SOT-223 pkg., Tape and Reel
- c) TC1264-2.5VDB 2.5V LDO, SOT-223 pkg.
- d) TC1264-2.5VDBTR 2.5V LDO, SOT-223 pkg., Tape and Reel
- e) TC1264-3.0VDB 3.0V LDO, SOT-223 pkg.
- f) TC1264-3.0VDBTR 3.0V LDO, SOT-223 pkg., Tape and Reel
- g) TC1264-3.3VDB 3.3V LDO, SOT-223 pkg.
- h) TC1264-3.3VDBTR 3.3V LDO, SOT-223 pkg., Tape and Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademark

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELoO, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, rPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-7424

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3521
Fax: 86-591-8750-3506

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

10/19/06