TC1264

800 mA Fixed-Output CMOS LDO with Shutdown

Features:
• Very Low Dropout Voltage
• 800 mA Output Current
• High Output Voltage Accuracy
• Standard or Custom Output Voltages
• Overcurrent and Overtemperature Protection

Applications:
• Battery Operated Systems
• Portable Computers
• Medical Instruments
• Instrumentation
• Cellular/GSM/PHS Phones
• Linear Post-Regulators for SMPS
• Pagers

Description:
The TC1264 is a fixed-output, high-accuracy (typically ±0.5%) CMOS low dropout regulator. Designed specifically for battery-operated systems, the TC1264's CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current is typically 80 µA at full load (20 to 60 times lower than in bipolar regulators).

TC1264 key features include ultra low noise operation, very low dropout voltage (typically 450 mV at full load), and fast response to step changes in load.

The TC1264 incorporates both over temperature and over current protection. The TC1264 is stable with an output capacitor of only 1 µF and has a maximum output current of 800 mA. It is available in 3-pin SOT-223, 3-pin TO-220 and 3-pin DDPAK packages.

Typical Application

![Typical Application Diagram]

Package Type

![Package Type Diagrams]
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage ...6.5V
Output Voltage.................. (VSS – 0.3V) to (VIN + 0.3V)
Power Dissipation................Internally Limited (Note 8)
Maximum Voltage on Any PinV IN +0.3V to -0.3V
Operating Temperature Range...... -40°C < TJ < 125°C
Storage Temperature..........................-65°C to +150°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, VIN = VR + 1.5V, (Note 1), IL = 100 µA, C L = 3.3 µF, SHDN > V IH, TA = +25°C. Boldface type specifications apply for junction temperatures of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Operating Voltage V IN</td>
<td>2.7</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>Note 2</td>
<td></td>
</tr>
<tr>
<td>Maximum Output Current I OUT MAX</td>
<td>800</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage V OUT</td>
<td>VR – 2.5%</td>
<td>VR ± 0.5%</td>
<td>VR + 2.5%</td>
<td>V</td>
<td>VR ≥ 2.5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VR – 2%</td>
<td>VR ± 0.5%</td>
<td>VR + 3%</td>
<td>V</td>
<td>VR = 1.8V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VR – 7%</td>
<td>—</td>
<td>VR + 3%</td>
<td>I L = 0.1 mA to 800 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOUT Temperature Coefficient ∆VOUT/∆T</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>ppm/°C</td>
<td>Note 4</td>
<td></td>
</tr>
<tr>
<td>Line Regulation ∆VOUT/∆VIN</td>
<td>—</td>
<td>0.007</td>
<td>0.35</td>
<td>%</td>
<td>(VR + 1V) ≤ VIN ≤ 6V</td>
<td></td>
</tr>
<tr>
<td>Load Regulation (Note 5) ∆VOUT/VOUT</td>
<td>-0.01</td>
<td>0.002</td>
<td>0</td>
<td>%/mA</td>
<td>I L = 0.1 mA to I OUT MAX</td>
<td></td>
</tr>
<tr>
<td>Dropout Voltage (Note 6) V IN–V OUT</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td>mV</td>
<td>VR ≥ 2.5V, I L = 100 µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>50</td>
<td>160</td>
<td></td>
<td>I L = 100 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>150</td>
<td>480</td>
<td></td>
<td>I L = 300 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>260</td>
<td>800</td>
<td></td>
<td>I L = 500 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>450</td>
<td>1300</td>
<td></td>
<td>I L = 800 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>1000</td>
<td>1200</td>
<td></td>
<td>VR = 1.8V, I L = 500 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>1200</td>
<td>1400</td>
<td></td>
<td>I L = 800 mA</td>
<td></td>
</tr>
<tr>
<td>Supply Current I DD</td>
<td>—</td>
<td>80</td>
<td>130</td>
<td>µA</td>
<td>SHDN = V IH, I L = 0</td>
<td></td>
</tr>
<tr>
<td>Power Supply Rejection Ratio PSRR</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>db</td>
<td>F ≤ 1 kHz</td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Current I OUT SC</td>
<td>—</td>
<td>1200</td>
<td>—</td>
<td>mA</td>
<td>V OUT = 0V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: VR is the regulator output voltage setting.

2: The minimum VIN has to justify the conditions: VIN ≥ VR + V DROP OUT and VIN ≥ 2.7V for I L = 0.1 mA to I OUT MAX.

3: This accuracy represents the worst-case over the entire output current and temperature range.

4:

\[
TCV_{OUT} = \frac{(V_{OUT MAX} - V_{OUT_MIN}) - 10^6}{V_{OUT} \times \Delta T}
\]

5: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

6: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at a 1.5V differential.

7: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I L MAX at VIN = 6V for T = 10 ms.

8: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., T A - T J, θ JA). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.
TC1264

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, \(V_{IN} = V_R + 1.5V, \) (Note 1), \(I_L = 100 \mu A, C_L = 3.3 \mu F, \) \(\overline{SHDN} > V_{IH}, \) \(T_A = +25^\circ C. \) **Boldface** type specifications apply for junction temperatures of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Regulation</td>
<td>(\Delta V_{OUT}/\Delta P_D)</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>V/W</td>
<td>Note 7</td>
</tr>
<tr>
<td>Output Noise</td>
<td>(eN)</td>
<td>—</td>
<td>260</td>
<td>—</td>
<td>nV/\sqrt{Hz}</td>
<td>(I_L = I_{OUTMAX}, F = 10 \text{ kHz})</td>
</tr>
</tbody>
</table>

Note:
1. \(V_R \) is the regulator output voltage setting.
2. The minimum \(V_{IN} \) has to justify the conditions: \(V_{IN} \geq V_R + V_{DROPOUT} \) and \(V_{IN} \geq 2.7V \) for \(I_L = 0.1 \) mA to \(I_{OUTMAX}. \)
3. This accuracy represents the worst-case over the entire output current and temperature range.
4.
 \[
 TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^6}{V_{OUT} \times \Delta T}
 \]
5. Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
6. Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at a 1.5V differential.
7. Thermal regulation is defined as the change in output voltage at a time \(T \) after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to \(I_{LMAX} \) at \(V_{IN} = 6V \) for \(T = 10 \) ms.
8. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., \(T_A, T_J, \theta_{JA} \)). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, \(V_{IN} = V_R + 1.5V, I_L = 100 \mu A, C_L = 3.3 \mu F, \overline{SHDN} > V_{IH}, T_A = +25^\circ C. \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_J)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_A)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>59</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>71</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>71</td>
<td>—</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Note:
1. Operation in this range must not cause \(T_J \) to exceed Maximum Junction Temperature (+125°C).
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Line Regulation vs. Temperature.

FIGURE 2-2: Output Noise vs. Frequency.

FIGURE 2-3: Load Regulation vs. Temperature.

FIGURE 2-4: \(I_{DD} \) vs. Temperature.

FIGURE 2-5: 3.0V Dropout Voltage vs. \(I_{LOAD} \).

FIGURE 2-6: 3.0V \(V_{OUT} \) vs. Temperature.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. 3-Pin SOT-223 3-Pin TO-220 3-Pin DDPAK</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 V_IN</td>
<td></td>
<td>Unregulated supply input</td>
</tr>
<tr>
<td>2 GND</td>
<td></td>
<td>Ground terminal</td>
</tr>
<tr>
<td>3 V_OUT</td>
<td></td>
<td>Regulated voltage output</td>
</tr>
</tbody>
</table>

3.1 Unregulated Supply (V_IN)

Unregulated supply input.

3.2 Ground (GND)

Ground terminal.

3.3 Regulated Output Voltage (V_OUT)

Regulated voltage output.
4.0 DETAILED DESCRIPTION

The TC1264 is a precision, fixed output LDO. Unlike bipolar regulators, the TC1264’s supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation over the entire 0mA to I_{LOADMAX} load current range (an important consideration in RTC and CMOS RAM battery back-up applications).

Figure 4-1 shows a typical application circuit.

![Typical Application Circuit](https://example.com/circuit.png)

4.1 Output Capacitor

A 1 µF (min) capacitor from V_{OUT} to ground is required. The output capacitor should have an effective series resistance greater than 0.1Ω and less than 5Ω. A 1 µF capacitor should be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.
5.0 THERMAL CONSIDERATIONS

5.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

5.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst-case actual power dissipation:

EQUATION 5-1:

\[P_D = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX} \]

Where:
- \(P_D \) = Worst-case actual power dissipation
- \(V_{INMAX} \) = Maximum voltage on \(V_{IN} \)
- \(V_{OUTMIN} \) = Minimum regulator output voltage
- \(I_{LOADMAX} \) = Maximum output (load) current

The maximum allowable power dissipation (Equation 5-2) is a function of the maximum ambient temperature (\(T_{AMAX} \)), the maximum allowable die temperature (\(T_{JMAX} \)) and the thermal resistance from junction-to-air (\(\theta_{JA} \)).

EQUATION 5-2:

\[P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}} \]

Where all terms are previously defined.

Table 5-1 and Table 5-2 show various values of \(\theta_{JA} \) for the TC1264 packages.

TABLE 5-1: THERMAL RESISTANCE GUIDELINES FOR TC1264 IN SOT-223 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance ((\theta_{JA}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>225 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>53°C/W</td>
</tr>
<tr>
<td>100 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>59°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>52°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>0 sq mm</td>
<td>1000 sq mm</td>
<td>55°C/W</td>
</tr>
</tbody>
</table>

* Tab of device attached to topside copper

TABLE 5-2: THERMAL RESISTANCE GUIDELINES FOR TC1264 IN 3-PIN DDPAK/TO-220 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance ((\theta_{JA}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>25°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>27°C/W</td>
</tr>
<tr>
<td>125 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>35°C/W</td>
</tr>
</tbody>
</table>

* Tab of device attached to topside copper

Equation 5-1 can be used in conjunction with Equation 5-2 to ensure regulator thermal operation is within limits. For example:

Given:
- \(V_{INMAX} = 3.3V \pm 10\% \)
- \(V_{OUTMIN} = 2.7V \pm 0.5\% \)
- \(I_{LOADMAX} = 275mA \)
- \(T_{JMAX} = 125°C \)
- \(T_{AMAX} = 95°C \)
- \(\theta_{JA} = 59°C/W \) (SOT-223)

Find:
1. Actual power dissipation.

Actual power dissipation:

\[P_D = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX} \]

\[P_D = (3.3 \times 1.1) - (2.7 \times .995) \times 275 \times 10^{-3} \]

\[P_D = 260 \text{ mW} \]

Maximum allowable power dissipation:

\[P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}} \]

\[P_{DMAX} = \frac{(125 - 95)}{59} \]

\[P_{DMAX} = 508 \text{ mW} \]

In this example, the TC1264 dissipates a maximum of 260 mW, which is below the allowable limit of 508 mW. In a similar manner, Equation 5-1 and Equation 5-2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable \(V_{IN} \) is found by substituting the maximum allowable power dissipation of 508 mW into Equation 5-1, from which \(V_{INMAX} = 4.6V \).
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- NNN Alphanumeric traceability code
- Pb-free JEDEC designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (\(^\text{\textcopyright} \) 11) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
3-Lead Plastic (EB) [DDPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff \S</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E1</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Length</td>
<td>H</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D1</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Pad Thickness</td>
<td>C2</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Pad Length</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>ϕ</td>
</tr>
</tbody>
</table>

Notes:
1. \S Significant Characteristic.
2. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-011B
3-Lead Plastic (EB) [DDPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Pad Width (X3)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X3)</td>
<td>Y1</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2011A
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Leads</td>
<td>N</td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Molded Package Height</td>
<td>A2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Tab Lead Width</td>
<td>b2</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Lead Angle</td>
<td>φ</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-032B
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Recommended Land Pattern

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td>2.30 BSC</td>
</tr>
<tr>
<td>Overall Pitch</td>
<td>E1</td>
<td>4.60 BSC</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td>6.10</td>
</tr>
<tr>
<td>Contact Pad Width</td>
<td>X1</td>
<td>0.95</td>
</tr>
<tr>
<td>Contact Pad Width</td>
<td>X2</td>
<td>3.25</td>
</tr>
<tr>
<td>Contact Pad Length</td>
<td>Y</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
2. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2032A
3-Lead Plastic Transistor Outline (AB) [TO-220]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com_packaging

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>Units</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>.100 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Pin Pitch</td>
<td>e1</td>
<td>.200 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.140</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Tab Thickness</td>
<td>A1</td>
<td>.020</td>
<td>055</td>
<td></td>
</tr>
<tr>
<td>Base to Lead</td>
<td>A2</td>
<td>.080</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.357</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Mounting Hole Center</td>
<td>Q</td>
<td>.100</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.560</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D1</td>
<td>.330</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>Tab Length</td>
<td>H1</td>
<td>.230</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Mounting Hole Diameter</td>
<td>dP</td>
<td>.139</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>Lead Length</td>
<td>L</td>
<td>.500</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Lead Shoulder</td>
<td>L1</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.012</td>
<td>024</td>
<td></td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>.015</td>
<td>027</td>
<td>040</td>
</tr>
<tr>
<td>Shoulder Width</td>
<td>b2</td>
<td>.045</td>
<td>057</td>
<td>070</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
2. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.
APPENDIX A: REVISION HISTORY

Revision D (September 2010)
The following is the list of modifications:
1. Updated Figure 2-4.

Revision C (October 2006)
The following is the list of modifications:
1. **Section 1.0 “Electrical Characteristics”**: Changed dropout voltage typical value for $I_L = 500$ mA from 700 to 1000 and maximum value from 1000 to 1200 for. Changed typical value for $I_L = 800$ mA from 890 to 1200.
2. **Section 6.0 “PackAging Information”**: Added package marking information and package outline drawings.
3. Added disclaimer to package outline drawings.

Revision B (May 2002)
• Undocumented Changes.

Revision A (March 2002)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X.XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>X.XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Voltage Option</td>
<td>Device</td>
<td>X.XX</td>
<td>XX</td>
</tr>
<tr>
<td>Option:*</td>
<td>TC1264 Fixed Output CMOS LDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Option:*</td>
<td>1.8V = 1.8V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5V = 2.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0V = 3.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3V = 3.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Other output voltages are available. Please contact your local Microchip sales office for details.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>AB = Plastic (TO-220), 3-Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB = Plastic (SOT-223), 3-Lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBTR = Plastic (SOT-223), 3-Lead, Tape and Reel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB = Plastic Transistor Outline (DPAK), 3-Lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBTR = Plastic Transistor Outline (DPAK), 3-Lead, Tape and Reel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tape and Reel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- **a)** TC1264-1.8VAB 1.8V LDO, TO-220-3 pkg.
- **b)** TC1264-2.5VAB 2.5V LDO, TO-220-3 pkg.
- **c)** TC1264-3.0VAB 3.0V LDO, TO-220-3 pkg.
- **d)** TC1264-3.3VAB 3.3V LDO, TO-220-3 pkg.
- **e)** TC1264-1.8VEBTR 1.8V LDO, DPAK-3 pkg., Tape and Reel
- **f)** TC1264-2.5VEBTR 2.5V LDO, DPAK-3 pkg., Tape and Reel
- **g)** TC1264-3.0VEBTR 3.0V LDO, DPAK-3 pkg., Tape and Reel
- **h)** TC1264-3.3VEBTR 3.3V LDO, DPAK-3 pkg., Tape and Reel
- **i)** TC1264-1.8VDB 1.8V LDO, SOT-223 pkg.
- **j)** TC1264-1.8VDBTR 1.8V LDO, SOT-223 pkg., Tape and Reel
- **k)** TC1264-2.5VDB 2.5V LDO, SOT-223 pkg.
- **l)** TC1264-2.5VDBTR 2.5V LDO, SOT-223 pkg., Tape and Reel
- **m)** TC1264-3.0VDB 3.0V LDO, SOT-223 pkg.
- **n)** TC1264-3.0VDBTR 3.0V LDO, SOT-223 pkg., Tape and Reel
- **o)** TC1264-3.3VDB 3.3V LDO, SOT-223 pkg.
- **p)** TC1264-3.3VDBTR 3.3V LDO, SOT-223 pkg., Tape and Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0064
Fax: 216-447-0063

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5573
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2933

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 603-6201-9857
Fax: 603-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/04/10