TC1262
500mA Fixed Output CMOS LDO

Features
- Very Low Dropout Voltage
- 500mA Output Current
- High Output Voltage Accuracy
- Standard or Custom Output Voltages
- Over Current and Over Temperature Protection

Applications
- Battery Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular/GSM/PHS Phones
- Linear Post-Regulators for SMPS
- Pagers

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Junction Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1262-xxVDB</td>
<td>3-Pin SOT-223</td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>TC1262-xxVAB</td>
<td>3-Pin TO-220</td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>TC1262-xxVEB</td>
<td>3-Pin DDPAK</td>
<td>-40°C to +125°C</td>
</tr>
</tbody>
</table>

NOTE: xx indicates output voltages.
Available Output Voltages: 2.5, 2.8, 3.0, 3.3, 5.0.
Other output voltages are available. Please contact Microchip Technology Inc. for details.

General Description
The TC1262 is a fixed output, high accuracy (typically ±0.5%) CMOS low dropout regulator. Designed specifically for battery-operated systems, the TC1262's CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current is typically 80µA at full load (20 to 60 times lower than in bipolar regulators).

TC1262 key features include ultra low noise operation, very low dropout voltage (typically 350mV at full load), and fast response to step changes in load.

The TC1262 incorporates both over temperature and over current protection. The TC1262 is stable with an output capacitor of only 1µF and has a maximum output current of 500mA. It is available in 3-Pin SOT-223, 3-Pin TO-220 and 3-Pin DDPAK packages.

Typical Application

![Typical Application Diagram](image-url)
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage ...6.5V
Output Voltage .. (VSS – 0.3V) to (VIN + 0.3 V)
Power Dissipation................Internally Limited (Note 6)
Maximum Voltage on Any PinVIN +0.3V to -0.3V
Operating Temperature Range...... -40°C < TJ < 125°C
Storage Temperature..........................-65°C to +150°C

*Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1262 ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Operating Voltage</td>
<td>2.7</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>Note 7</td>
</tr>
<tr>
<td>IOUTMAX</td>
<td>Maximum Output Current</td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>V_R – 2.5%</td>
<td>V_R ±0.5%</td>
<td>V_R + 2.5%</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>ΔVOUT/ΔT</td>
<td>VOUT Temperature Coefficient</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>ppm/°C</td>
<td>Note 2</td>
</tr>
<tr>
<td>ΔVOUT/ΔVIN</td>
<td>Line Regulation</td>
<td>—</td>
<td>0.03</td>
<td>0.35</td>
<td>%/V</td>
<td>(VIN + 1V) ≤ VIN ≤ 6V</td>
</tr>
<tr>
<td>ΔVOUT/VOUT</td>
<td>Load Regulation</td>
<td>—</td>
<td>0.002</td>
<td>0.01</td>
<td>%/mA</td>
<td>IL = 0.1mA to IOUTMAX (Note 3)</td>
</tr>
<tr>
<td>VIN-VOUT</td>
<td>Dropout Voltage</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td>mV</td>
<td>IL = 100µmA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>60</td>
<td>130</td>
<td>mV</td>
<td>IL = 100mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>200</td>
<td>390</td>
<td>mV</td>
<td>IL = 300mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>350</td>
<td>650</td>
<td>mV</td>
<td>IL = 500mA (Note 4)</td>
</tr>
<tr>
<td>IDD</td>
<td>Supply Current</td>
<td>—</td>
<td>80</td>
<td>130</td>
<td>µA</td>
<td>IL = 0</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>dB</td>
<td>Fref ≤ 1kHz</td>
</tr>
<tr>
<td>IOUTSC</td>
<td>Output Short Circuit Current</td>
<td>—</td>
<td>1200</td>
<td>—</td>
<td>mA</td>
<td>VOUT = 0V</td>
</tr>
<tr>
<td>ΔVOUT/PD</td>
<td>Thermal Regulation</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>V/W</td>
<td>Note 5</td>
</tr>
</tbody>
</table>
eN | Output Noise | — | 260 | — | nV/√Hz | IL = IOUTMAX, Fref = 10kHz |

Note 1: VIN is the regulator output voltage setting.
Note 2: TC VOUT = (VOUTMAX – VOUTMIN) x 10^6 / VOUT x ΔT
Note 3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
Note 4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.
Note 5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to IOUTMAX at VIN = 6V for T = 10 msec.
Note 7: The minimum VIN has to justify the conditions: VIN ≥ VR + VDROPOUT and VIN ≥ 2.7V for IL = 0.1mA to IOUTMAX.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. (3-Pin SOT-223) (3-Pin TO-220) (3-Pin DDPAK)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 V_IN</td>
<td></td>
<td>Unregulated supply input.</td>
</tr>
<tr>
<td>2 GND</td>
<td></td>
<td>Ground terminal.</td>
</tr>
<tr>
<td>3 V_OUT</td>
<td></td>
<td>Regulated voltage output.</td>
</tr>
</tbody>
</table>

3.0 DETAILED DESCRIPTION

The TC1262 is a precision, fixed output LDO. Unlike bipolar regulators, the TC1262's supply current does not increase with load current. In addition, V_OUT remains stable and within regulation over the entire 0mA to I_LOAD_MAX load current range (an important consideration in RTC and CMOS RAM battery back-up applications).

Figure 3-1 shows a typical application circuit.

3.1 Output Capacitor

A 1μF (min) capacitor from V_OUT to ground is required. The output capacitor should have an effective series resistance greater than 0.1Ω and less than 5Ω, and a resonant frequency above 1MHz. A 1μF capacitor should be connected from V_IN to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.
4.0 THERMAL CONSIDERATIONS

4.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

4.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst case actual power dissipation:

EQUATION 4-1:

\[P_D \approx (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}} \]

Where:
- \(P_D \) = Worst case actual power dissipation
- \(V_{IN\text{MAX}} \) = Maximum voltage on \(V_IN \)
- \(V_{OUT\text{MIN}} \) = Minimum regulator output voltage
- \(I_{LOAD\text{MAX}} \) = Maximum output (load) current

The maximum allowable power dissipation (Equation 4-2) is a function of the maximum ambient temperature (\(T_{AMAX} \)), the maximum allowable die temperature (\(T_{JMAX} \)) and the thermal resistance from junction-to-air (\(\theta_{JA} \)).

EQUATION 4-2:

\[P_{D\text{MAX}} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}} \]

Where all terms are previously defined.

Table 4-1 and Table 4-2 show various values of \(\theta_{JA} \) for the TC1262 packages.

TABLE 4-1: THERMAL RESISTANCE GUIDELINES FOR TC1262 IN SOT-223 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance ((\theta_{JA}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>225 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>53°C/W</td>
</tr>
<tr>
<td>100 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>59°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>52°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>0 sq mm</td>
<td>1000 sq mm</td>
<td>55°C/W</td>
</tr>
</tbody>
</table>

*Tab of device attached to topside copper

TABLE 4-2: THERMAL RESISTANCE GUIDELINES FOR TC1262 IN 3-PIN DDPAK/TO-220 PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance ((\theta_{JA}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>25°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>27°C/W</td>
</tr>
<tr>
<td>125 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>35°C/W</td>
</tr>
</tbody>
</table>

*Tab of device attached to topside copper

Equation 4-1 can be used in conjunction with Equation 4-2 to ensure regulator thermal operation is within limits. For example:

Given:
- \(V_{IN\text{MAX}} = 3.3V \pm 10\% \)
- \(V_{OUT\text{MIN}} = 2.7V \pm 0.5\% \)
- \(I_{LOAD\text{MAX}} = 275mA \)
- \(T_{JMAX} = 125°C \)
- \(T_{AMAX} = 95°C \)
- \(\theta_{JA} = 59°C/W \) (SOT-223)

Find:
1. Actual power dissipation
2. Maximum allowable dissipation

Actual power dissipation:
\[
P_D \approx (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}}
= [(3.3 x 1.1) - (2.7 x .995)]275 x 10^{-3}
= 260mW
\]

Maximum allowable power dissipation:
\[
P_{D\text{MAX}} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}
= (125 - 95) \frac{59}{59}
= 508mW
\]

In this example, the TC1262 dissipates a maximum of 260mW; below the allowable limit of 508mW. In a similar manner, Equation 4-1 and Equation 4-2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable \(V_{IN} \), is found by substituting the maximum allowable power dissipation of 508mW into Equation 4-1, from which \(V_{IN\text{MAX}} = 4.6V \).
5.0 TYPICAL CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Package marking data not available at this time.

6.2 Taping Form

Component Taping Orientation for 3-Pin SOT-223 Devices

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Pin SOT-223</td>
<td>12 mm</td>
<td>8 mm</td>
<td>4000</td>
<td>13 in</td>
</tr>
</tbody>
</table>

Standard Reel Component Orientation for TR Suffix Device (Mark Right Side Up)

Component Taping Orientation for 3-Pin DDPAK Devices

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Pin DDPAK</td>
<td>24 mm</td>
<td>16 mm</td>
<td>750</td>
<td>13 in</td>
</tr>
</tbody>
</table>

Standard Reel Component Orientation for TR Suffix Device (Mark Right Side Up)
6.3 Package Dimensions

3-Pin SOT-223

Dimensions: inches (mm)

3-Pin TO-220

Dimensions: inches (mm)
6.3 Package Dimensions (Continued)

3-Pin DDPAK

Dimensions: inches (mm)
SALES AND SUPPORT

<table>
<thead>
<tr>
<th>Data Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:</td>
</tr>
<tr>
<td>1. Your local Microchip sales office</td>
</tr>
<tr>
<td>2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277</td>
</tr>
<tr>
<td>3. The Microchip Worldwide Site (www.microchip.com)</td>
</tr>
</tbody>
</table>

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.